Processing math: 0%

粗糙裂缝内支撑剂运移与展布规律数值模拟

刘善勇, 尹彪, 楼一珊, 张艳

刘善勇,尹彪,楼一珊,等. 粗糙裂缝内支撑剂运移与展布规律数值模拟[J]. 石油钻探技术,2024,52(4):104-109. DOI: 10.11911/syztjs.2024057
引用本文: 刘善勇,尹彪,楼一珊,等. 粗糙裂缝内支撑剂运移与展布规律数值模拟[J]. 石油钻探技术,2024,52(4):104-109. DOI: 10.11911/syztjs.2024057
LIU Shanyong, YIN Biao, LOU Yishan, et al. Numerical simulation of migration and placement law of proppants in rough fractures [J]. Petroleum Drilling Techniques, 2024, 52(4):104-109. DOI: 10.11911/syztjs.2024057
Citation: LIU Shanyong, YIN Biao, LOU Yishan, et al. Numerical simulation of migration and placement law of proppants in rough fractures [J]. Petroleum Drilling Techniques, 2024, 52(4):104-109. DOI: 10.11911/syztjs.2024057

粗糙裂缝内支撑剂运移与展布规律数值模拟

基金项目: 油气钻采工程湖北省重点实验开放基金项目“深部低渗储层粗糙裂缝内支撑剂运移与展布行为机理研究”(编号:YQZC202410)、中国海洋石油有限公司“十四五”重大科技项目“海上低渗及潜山油气田有效开发技术”(编号:KJGG2022-0701)联合资助。
详细信息
    作者简介:

    刘善勇(1987—),男,湖北荆州人,2010年毕业于长江大学石油工程专业,2017年获长江大学油气井工程专业博士学位,副教授,主要从事岩石力学及储层改造工艺技术方面的研究。系本刊青年编委。E-mail:liushanyong@yangtzeu.edu.cn

    通讯作者:

    尹彪,2022730006@yangtzeu.edu.cn

  • 中图分类号: TE357.12

Numerical Simulation of Migration and Placement Law of Proppants in Rough Fractures

  • 摘要:

    粗糙狭窄裂缝壁面造成水力压裂有效裂缝体积减小,极大地影响缝内支撑剂运移与铺置和压裂改造效果。为此,采用Matlab建立自相关高斯分布曲面,并结合分形理论识别分析裂缝粗糙面,采用计算流体动力学—颗粒元(CFD-DEM)双向耦合方法,建立了不同粗糙度的裂缝三维模型,分析了不同支撑剂粒径组合在不同粗糙度缝道内的沉积和运移过程及规律。研究表明:随着缝面由平滑向粗糙变化,支撑剂堵塞明显;在重力作用下小粒径支撑剂(粒径与缝宽比为0.3)具有出更好的运移能力,但难以保证近井端支撑效果;大粒径支撑剂(粒径与缝宽比为0.8)覆盖面积增加158.1%,堵塞于缝口附近,影响后续支撑剂向远处运移,推荐粒径缝宽比为0.4;对于组合粒径加砂方式,推荐采用“先小后大”的注入顺序,以保证支撑剂运移距离和效率。研究结果有助于更好地理解裂缝粗糙度对支撑剂在裂缝中运移的影响,对压裂设计及施工参数优化具有指导意义。

    Abstract:

    The rough and narrow fracture walls reduce the effective fracture volume of hydraulic fracturing, which greatly affects the migration and placement of proppants in the fractures and the effect of fracturing stimulation. Therefore, the self-correlated Gaussian distribution surface was established by Matlab, and the rough fracture surface was identified and analyzed with fractal theory. The bidirectional coupling of the computational fluid dynamics-discrete element method (CFD-DEM) was employed to build three-dimensional models of fractures with different roughness, and the deposition and migration process and law of different combinations of proppant diameters within the rough fracture channels were investigated. The research findings indicate that as the fractured surface transitions from smooth to rough, proppant plugging becomes more evident. Under the influence of gravity, small-sized proppants (ratio of diameter to fracture width of 0.3) exhibit better migration capabilities but struggled to ensure the near-wellbore supporting effect. The area covered by large-sized proppants (ratio of diameter to fracture width of 0.8) increase by 158.1%, but the proppant is blocked near the fracture end, affecting subsequent proppant migration to distant areas. Therefore, the recommended ratio of diameter to fracture width is 0.4. For the sand addition method with combined particle diameters, it is recommended to inject small-sized sand first and then large-sized sand to ensure the proppant migration distance and efficiency. The research outcomes contribute to a better understanding of the influence of fracture roughness on proppant migration within fractures, providing important guidance for optimizing fracturing design and operation parameters.

  • 近年来,页岩油气等非常规油气资源的勘探开发逐渐成为当前研究的热门领域之一,其规模化开采得益于储层改造技术的发展,压裂裂缝质量决定着压后产量的高低,而支撑剂的运移与铺置效果是评价人工裂缝有效性的关键[16]。粗糙壁面阻碍缝内支撑剂的高效运移与铺置[711],国内外学者从物理试验和数值模拟方面开展了大量研究,Wen Qingzhi等人[1213]通过平板试验模拟了支撑剂在不同复杂程度裂缝中的运移规律,分析了不同敏感因素对支撑剂运移和沉积的影响;郭天魁等人[14]研制了大尺寸压裂裂缝模拟装置,还原了支撑剂在裂缝中的真实运移情况;U. A. Inyang等人[1516]通过室内试验模拟了不同压裂工艺和施工参数下支撑剂的运移和展布情况。但是,由于试验仪器尺度、材质、参数和试验目的的差异较大,未形成统一的测试标准和流程,难以系统指导压裂设计。因此,基于流体动力学和流固耦合的数值模拟技术成为研究支撑剂运移与展布的另一重要手段。现阶段数值模拟方法主要为欧拉−欧拉法和欧拉−拉格朗日法,前者将固相和液相处理成连续介质,采用欧拉法描述流体与固体颗粒的运动过程[1719],该方法计算量小,常用于模拟低浓度固体颗粒的运移过程,但该方法无法考虑每个颗粒的运动与作用,而欧拉−拉格朗日法能较好地解决上述问题,模型收敛性较好,计算速度快[2022]。然而,当前关于粗糙裂缝对流体及颗粒流动行为的研究较少,且缺乏定量描述复杂结构面流动机制的研究。

    为此,针对不同粗糙度裂缝壁面编写了自相关高斯曲面代码,建立了不同粗糙度裂缝模型,采用CFD-DEM数值模拟方法,模拟了颗粒与流体在粗糙裂缝中的运移和粗糙裂缝内支撑剂的铺置过程,分析了裂缝内支撑剂颗粒滞留位置、堆积结构以及覆盖面积等展布规律,以期指导压裂参数优化。

    采用CFD-DEM双向耦合方法研究粗糙裂缝壁面间的颗粒−流体混合物流动问题,其耦合过程及过程中的固−液运动如图1所示[23]。通过计算同一时刻流域的压力和速度场,将流体压力和动量转移到颗粒运动,在循环结束前,在计算时间t上增加一个流场时间增量Δt,形成新的计算时间t'继续计算,直至计算时间与设置总时间ttotal相等时,循环结束。

    图  1  模拟流程[23]
    Figure  1.  Simulation flow chart[23]

    运动连续性和动量守恒方程为[24]

    \frac{\partial }{{\partial t}}({\varepsilon _{\text{g}}}\rho {}_{\text{g}}) + \nabla \cdot ({\varepsilon _{\text{g}}}\rho {}_{\text{g}}{\boldsymbol{u}_{\text{g}}}) = 0 (1)
    \begin{split} \frac{\partial }{\partial t}\left({\varepsilon }_{\text{g}}{\rho }_{\text{g}}{\boldsymbol{u}}_{\text{g}}\right)+\nabla \cdot \left({\varepsilon }_{\text{g}}{\rho }_{\text{g}}{\boldsymbol{u}}_{\text{g}}\right)=&-{\varepsilon }_{\text{g}}\nabla p+\nabla \cdot \left({\varepsilon }_{\text{g}}{\boldsymbol{\tau} }_{\text{g}}\right)+ \\& {\varepsilon }_{\text{g}}{\rho }_{\text{g}}{g}-{\boldsymbol{F}}_{\text{g}-\text{p}} \end{split} (2)

    考虑颗粒与颗粒、颗粒与壁面之间的碰撞,得到离散项控制方程:

    {m_i}\frac{{{\text{d}}{{{u}}_i}}}{{{\text{d}}t}} = {m_i}g + {f_{{\text{p}} - {\text{g}},i}} + \sum\nolimits_{j = 1}^{{k_i}} {{f_{{\text{c}},ij}}} (3)
    {I_i}\frac{{{\text{d}}{w_i}}}{{{\text{d}}t}} = \sum\nolimits_{j = 1}^{{k_i}} {{T_{ij}}} (4)

    颗粒−流体的曳力模型可表示为[25]

    {F_{\text{d}}} = \frac{{\beta ({u_{\text{g}}} - {u_{\text{p}}})}}{{{\rho _{\text{g}}}}} (5)
    \beta =\left\{\begin{array}{l}150\dfrac{(1-{\varepsilon }_{\text{g}})2{\mu }_{\text{g}}}{{\varepsilon }_{\text{g}}{d}_{\text{p}}{}^{2}}+1.75\dfrac{(1-{\varepsilon }_{\text{g}}){\rho }_{\text{g}}}{{d}_{\text{p}}}\left|{u}_{\text{g}}-{u}_{\text{p}}\right|\\ \dfrac{3}{4}{C}_{\text{D}}\dfrac{(1-{\varepsilon }_{\text{g}}){\rho }_{\text{g}}}{{d}_{\text{p}}}\left|{u}_{\text{g}}-{u}_{\text{p}}\right|{\varepsilon }_{\text{g}}{}^{-2.65}\\ {\varepsilon }_{\text{g}}>0.8\end{array}\right. (6)
    C_{\text{D}}=\left\{\begin{array}{ll}{\scriptstyle \dfrac{24}{Re}}(1+0.15Re^{0.687})&Re\le 1\;000\\ 0.44 & Re>1\;000\end{array}\right. (7)

    式中:Fd为流体施加的曳力,N;β为曳力方程;CD为曳力系数;ρg为连续相流体密度,kg/m3ug为流体运动速度,m/s;p为流体压力,Pa;εg为流体的体积分数;τg为流场内流体黏性应力张量;g为重力加速度,m/s2mi为颗粒质量,kg;fp-g是颗粒相与流体相间作用力,N;fc为颗粒间接触力,N;Ii为颗粒转动惯量距,kg·m2wi为颗粒的旋转角速度,rad/s;Tij为接触颗粒切向力力矩,N·m;up为颗粒流场速度;m/s;dp为颗粒直径,m;μg为流体黏度,Pa·s; Re为雷诺数;ij分别为第ij个颗粒。

    采用粗糙度系数CR描述结构面粗糙程度[26]CR与分形维数D之间的经验关系式为[27]

    \mathrm{ }C\mathrm{_R}=85.267\ 1(D-1)^{0.567\ 9} (8)

    利用分形插值模拟岩石裂缝表面实际粗糙形态,对粗糙面尺寸进行高斯自相关函数变换:

    C_{\text{h}}(u,v)=\sigma_{\text{h}}^2\text{exp}\left[-\left(\frac{u}{l_{\mathrm{c}1}}\right)^2-\left(\frac{v}{l_{\mathrm{c}2}}\right)^2\right] (9)

    式中:CR为粗糙度系数;Ch(u,υ)为自相关函数;σh2为总体粗糙度的平方;uυ分别为xy方向上的滞后;lc1lc2xy方向上的相关长度系数。

    通过自相关高斯函数得到不同粗糙度的点云数据,在此基础上建立三维曲面,通过盒维数法计算出处理后的二值图像,得到该曲面的分形维数D(见图2),代入式(8),求出曲面的粗糙度系数CR

    图  2  分形维数计算流程
    Figure  2.  Fractal dimension calculation process

    假设模型边界条件与实际裂缝中流动方式一致,采用平面注入混相方式,定义近井端左侧为入口,右侧为出口,y轴负方向为重力方向。DEM采用不同平均粒径支撑剂颗粒,静摩擦因数为0.50,滚动摩擦因数为0.40,颗粒质量流速为0.02 kg/s,边界条件如图3所示。

    图  3  模型边界条件
    Figure  3.  Boundary condition of model

    采用结构化网格划分方法监测不同网格数量下同一高度沿y轴不同位置的湍流动能及绝对压力,将网格数量优化为10 500 个,如图4所示。

    图  4  网格无关性验证
    Figure  4.  Grid independence verification

    为验证模型的准确性,采用文献[28]中的试验参数,建立380 mm×190 mm×2 mm平板模型,监测4 s内颗粒平均沉降速度。模型结果与试验结果间的平均误差为8.48 %,匹配性较好。误差成因主要在于部分颗粒进入分支裂缝,沉降速度偏低(见图5)。粗糙的壁面使颗粒运动受阻,颗粒运动不规则程度增加,沉降悬浮时间更长(见图6)。

    图  5  支撑剂颗粒平均沉降速度
    Figure  5.  Average settling velocity of proppant particles
    图  6  粗糙裂缝内颗粒沉降情况
    Figure  6.  Particle deposition in rough fractures

    支撑剂的沉降过程受多种因素影响,包括裂缝壁面粗糙度、支撑剂粒径、粒径组合方式等。颗粒在重力作用下沉降到裂缝底部,形成支撑剂床(见图6中蓝色区域)。随时间推移支撑剂床不断变高,其顶部上方空间变小,颗粒受到湍流作用影响,随着壁面粗糙度增大,缝道内流体湍流动能增大,扰动增加造成流道内支撑剂最大速度随之变大。当沉降时间为15 s时,颗粒沉降、摩擦和湍流效应达到平衡,此时支撑剂床高度为53 mm。此后已沉降支撑剂基本不再流动,继续泵入携砂液会造成砂堵。

    支撑剂在裂缝中的沉积高度和覆盖面积可反映支撑剂堵塞和裂缝的支撑效果,支撑剂悬浮区的形状也可表征支撑剂向深处的运移距离。在高粗糙度下,颗粒在缝口处的堆积高度更高,离缝口越远,颗粒沉积高度的下降越明显(见图7)。另外,压裂裂缝壁面越粗糙,支撑剂在裂缝中运移得越远,分布范围也会越广,模拟结果与Guo Tiankui等人[29]的研究结果一致。当裂缝粗糙度过大时(CR=76),支撑剂在裂缝曲率较大的区域形成卡槽和堵塞。

    图  7  支撑剂在粗糙裂缝内的分布情况
    Figure  7.  Distribution of proppants in rough fractures

    为提高模型计算效率,采用支撑剂粒径与缝宽比( \frac{{{d}}}{{{w}}} )来表征不同粒径通过缝宽的能力。选取CR=28、缝宽为1 mm作为初始条件,其余边界条件不变,分析不同 \frac{{{d}}}{{{w}}} 条件下颗粒体积分数分布情况(见图8)。当 \frac{{{d}}}{{{w}}} =0.3时,10 s后部分支撑剂发生沉降,形成多段凸起砂床,此时已沉降支撑剂在携砂液扰动下仍然具有流动性。当 \frac{{{d}}}{{{w}}} =0.4时,支撑剂悬浮比例相对较大,在入口形成一定沉降,改善近井段充填效果。当 \frac{{{d}}}{{{w}}} =0.8时,颗粒在缝道内的流动能形成固定通道(红色虚线),大尺寸支撑剂会提高近井端的支撑效果,但运移效率明显降低,造成入口短时间内堵塞,不利于支撑剂的高效铺置。通过监测得到相同质量流量下近井端已沉降支撑剂覆盖面积分别为41.7,83.3,175.0,195.0和215.0 cm2,覆盖面积显著增加,表明小粒径支撑剂携砂效率高,大粒径支撑剂铺置效果好。

    图  8  不同粒径支撑剂的体积分数分布
    Figure  8.  Distribution of proppant volume fraction with different particle diameters

    在边界条件一致的前提下,分析相同质量流量下不同粒径颗粒注入顺序对支撑剂铺置的影响。不同粒径颗粒在裂缝内的速度分布如图9所示。由图9可以看出:随着颗粒床高度增加,顶部颗粒速度较其他地方更大,颗粒堆积形态不规则,在裂缝曲面曲率较大的地方会形成间隙或堵塞;3种粒径支撑剂混合同时注入时,粒径0.4 mm支撑剂(黑色颗粒)主要呈悬浮态;粒径0.6 mm支撑剂(黄色颗粒)在沉积区底部呈层叠状分布;粒径0.8 mm支撑剂(红色颗粒)会导致近井端砂堤高度过高,后续支撑剂运移距离受限;“先小后大”的注入方式可在保证支撑剂整体运移效率的同时,增加后期井筒附近的支撑效果;“先大后小”的注入方式则受裂缝粗糙程度的影响,大粒径有加剧裂缝局部堵塞的风险。因此,对于岩性复杂或粗糙程度比较大的储层,在压裂过程中可先泵注加入小粒径支撑剂的携砂液,再泵注加入大粒径支撑剂的携砂液,以降低砂堵风险,提高输砂效率。

    图  9  混合粒径支撑剂在粗糙裂缝内的运移规律
    Figure  9.  Migration law of mixed particle size proppants in rough fcracture

    1)粗糙度越大,流域内湍流动能和壁面剪切力在壁面处的变化越明显,这会影响支撑剂的运移和铺置。当粗糙度较大时,支撑剂易在缝内形成卡槽,且支撑剂在缝内的运移和铺置更不规则。

    2)当粒径与缝宽比较小时,支撑剂在缝内不能形成稳定的支撑剂床,小粒径支撑剂在流体的作用下能运移得更远,大粒径支撑剂受重力影响短时间内在近井端沉积,运移距离短。

    3)泵注混合粒径支撑剂时,大粒径支撑剂在缝道曲率较大区域形成间隙或卡槽效应,限制小颗粒支撑剂向深处运移,宜采用“先小后大”的泵注顺序。

  • 图  1   模拟流程[23]

    Figure  1.   Simulation flow chart[23]

    图  2   分形维数计算流程

    Figure  2.   Fractal dimension calculation process

    图  3   模型边界条件

    Figure  3.   Boundary condition of model

    图  4   网格无关性验证

    Figure  4.   Grid independence verification

    图  5   支撑剂颗粒平均沉降速度

    Figure  5.   Average settling velocity of proppant particles

    图  6   粗糙裂缝内颗粒沉降情况

    Figure  6.   Particle deposition in rough fractures

    图  7   支撑剂在粗糙裂缝内的分布情况

    Figure  7.   Distribution of proppants in rough fractures

    图  8   不同粒径支撑剂的体积分数分布

    Figure  8.   Distribution of proppant volume fraction with different particle diameters

    图  9   混合粒径支撑剂在粗糙裂缝内的运移规律

    Figure  9.   Migration law of mixed particle size proppants in rough fcracture

  • [1] 路保平. 中国石化石油工程技术新进展与发展建议[J]. 石油钻探技术,2021,49(1):1–10.

    LU Baoping. New progress and development proposals of Sinopec’s petroleum engineering technologies[J]. Petroleum Drilling Techniques, 2021, 49(1): 1–10.

    [2] 程鑫,柴小颖,杨会洁,等. 尖北气田基岩构造裂缝特征及其对储层的影响[J]. 西南石油大学学报(自然科学版),2023,45(6):18–30. doi: 10.11885/j.issn.1674-5086.2021.12.21.02

    CHENG Xin, CHAI Xiaoying, YANG Huijie, et al. Structural fracture characteristics of basement rocks in Jianbei Gas Field and its reservoir improvement effect[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2023, 45(6): 18–30. doi: 10.11885/j.issn.1674-5086.2021.12.21.02

    [3] 舒红林,刘臣,李志强,等. 昭通浅层页岩气压裂复杂裂缝扩展数值模拟研究[J]. 石油钻探技术,2023,51(6):77–84.

    SHU Honglin, LIU Chen, LI Zhiqiang, et al. Numerical simulation of complex fracture propagation in shallow shale gas fracturing in Zhaotong[J]. Petroleum Drilling Techniques, 2023, 51(6): 77–84.

    [4] 唐圣来. 基于嵌入式多尺度裂缝模型的地质建模方法及应用[J]. 特种油气藏,2023,30(1):36–40.

    TANG Shenglai. Geological modeling method and its application based on embedded multi-scale fracture model[J]. Special Oil & Gas Reservoirs, 2023, 30(1): 36–40.

    [5] 潘林华,王海波,贺甲元,等. 水力压裂支撑剂运移与展布模拟研究进展[J]. 天然气工业,2020,40(10):54–65.

    PAN Linhua, WANG Haibo, HE Jiayuan, et al. Progress of simulation study on the migration and distribution of proppants in hydraulic fractures[J]. Natural Gas Industry, 2020, 40(10): 54–65.

    [6] 耿宇迪,蒋廷学,刘志远,等. 深层缝洞型碳酸盐岩储层水力裂缝扩展机理研究[J]. 石油钻探技术,2023,51(2):81–89.

    GENG Yudi, JIANG Tingxue, LIU Zhiyuan, et al. Mechanism of hydraulic fracture propagation in deep fracture-cavity carbonate reservoirs[J]. Petroleum Drilling Techniques, 2023, 51(2): 81–89.

    [7] 宋丽阳,王纪伟,刘长印,等. 低渗砂泥交互油藏压裂多裂缝扩展规律[J]. 断块油气田,2023,30(1):25–30.

    SONG Liyang, WANG Jiwei, LIU Changyin, et al. Multi-fractures propagation law of low permeability sand shale interbed oil reservoirs fracturing[J]. Fault-Block Oil & Gas Field, 2023, 30(1): 25–30.

    [8] 吴百烈,彭成勇,武广瑷,等. 可压性指数对压裂裂缝扩展规律的影响研究:以南海LF油田为例[J]. 石油钻探技术,2023,51(3):105–112.

    WU Bailie, PENG Chengyong, WU Guang'ai, et al. Effect of fracability index on fracture propagation: a case study of LF Oilfield in South China Sea[J]. Petroleum Drilling Techniques, 2023, 51(3): 105–112.

    [9] 蒋廷学,卞晓冰,侯磊,等. 粗糙裂缝内支撑剂运移铺置行为试验[J]. 中国石油大学学报(自然科学版),2021,45(6):95–101.

    JIANG Tingxue, BIAN Xiaobing, HOU Lei, et al. Experiment on proppant migration and placement behavior in rough fractures[J]. Journal of China University of Petroleum(Edition of Natural Science), 2021, 45(6): 95–101.

    [10] 陈珂,于志豪,王守毅,等. 断层附近非均匀应力场页岩压裂缝网扩展模拟[J]. 断块油气田,2023,30(2):213–221.

    CHEN Ke, YU Zhihao, WANG Shouyi, et al. Shale fracture network propagation simulation in non-uniform stress field near fault[J]. Fault-Block Oil and Gas Field, 2023, 30(2): 213–221.

    [11] 吴峙颖,胡亚斐,蒋廷学,等. 孔洞型碳酸盐岩储层压裂裂缝转向扩展特征研究[J]. 石油钻探技术,2022,50(4):90–96. doi: 10.11911/syztjs.2022084

    WU Zhiying, HU Yafei, JIANG Tingxue, et al. Study on propagation and diversion characteristics of hydraulic fractures in vuggy carbonate reservoirs[J]. Petroleum Drilling Techniques, 2022, 50(4): 90–96. doi: 10.11911/syztjs.2022084

    [12]

    WEN Qingzhi, WANG Shuting, DUAN Xiaofei, et al. Experimental investigation of proppant settling in complex hydraulic-natural fracture system in shale reservoirs[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 70–80. doi: 10.1016/j.jngse.2016.05.010

    [13]

    RAIMBAY A, BABADAGLI T, KURU E, et al. Quantitative and visual analysis of proppant transport in rough fractures[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 1291–1307. doi: 10.1016/j.jngse.2016.06.040

    [14] 郭天魁,曲占庆,李明忠,等. 大型复杂裂缝支撑剂运移铺置虚拟仿真装置的开发[J]. 实验室研究与探索,2018,37(10):242–246.

    GUO Tiankui, QU Zhanqing, LI Mingzhong, et al. Development of the large-scale virtual simulation experimental device of proppant transportation and placement in complex fractures[J]. Research and Exploration in Laboratory, 2018, 37(10): 242–246.

    [15]

    INYANG U A, NGUYEN P D, CORTEZ J. Development and field applications of highly conductive proppant-free channel fracturing method[R]. SPE 168996, 2014.

    [16]

    HUANG Hai, BABADAGLI T, LI H A, et al. Effect of injection parameters on proppant transport in rough vertical fractures: an experimental analysis on visual models[J]. Journal of Petroleum Science and Engineering, 2019, 180: 380–395. doi: 10.1016/j.petrol.2019.05.009

    [17]

    DONTSOV E V, PEIRCE A P. Proppant transport in hydraulic fracturing: crack tip screen-out in KGD and P3D models[J]. International Journal of Solids and Structures, 2015, 63: 206–218. doi: 10.1016/j.ijsolstr.2015.02.051

    [18] 温庆志,段晓飞,战永平,等. 支撑剂在复杂缝网中的沉降运移规律研究[J]. 西安石油大学学报(自然科学版),2016,31(1):79–84.

    WEN Qingzhi, DUAN Xiaofei, ZHAN Yongping, et al. Study on settlement and migration law of proppant in complex fracture network[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2016, 31(1): 79–84.

    [19]

    SHIOZAWA S, MCCLURE M. Simulation of proppant transport with gravitational settling and fracture closure in a three-dimensional hydraulic fracturing simulator[J]. Journal of Petroleum Science and Engineering, 2016, 138: 298–314. doi: 10.1016/j.petrol.2016.01.002

    [20]

    ZHANG Guodong, GUTIERREZ M, LI Mingzhong. A coupled CFD-DEM approach to model particle-fluid mixture transport between two parallel plates to improve understanding of proppant micromechanics in hydraulic fractures[J]. Powder Technology, 2017, 308: 235–248. doi: 10.1016/j.powtec.2016.11.055

    [21] 郭天魁,宫远志,刘晓强,等. 复杂裂缝中支撑剂运移铺置规律数值模拟[J]. 中国石油大学学报(自然科学版),2022,46(3):89–95.

    GUO Tiankui, GONG Yuanzhi, LIU Xiaoqiang, et al. Numerical simulation of proppant migration and distribution in complex fractures[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(3): 89–95.

    [22]

    LU Cong, MA Li, LI Zhili, et al. A novel hydraulic fracturing method based on the coupled CFD-DEM numerical simulation study[J]. Applied Sciences, 2020, 10(9): 3027. doi: 10.3390/app10093027

    [23]

    ZENG Junsheng, LI Heng, ZHANG Dongxiao. Numerical simulation of proppant transport in hydraulic fracture with the upscaling CFD-DEM method[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 264–277. doi: 10.1016/j.jngse.2016.05.030

    [24]

    WANG Xiaoyu, YAO Jun, GONG Liang, et al. Numerical simulations of proppant deposition and transport characteristics in hydraulic fractures and fracture networks[J]. Journal of Petroleum Science and Engineering, 2019, 183: 106401. doi: 10.1016/j.petrol.2019.106401

    [25]

    WEN C Y, YU Y H. Mechanics of fluidization[J]. Chemical Engineering Progress, Symposium Series, 1966, 62(1): 100–111.

    [26]

    BARTON N. Review of a new shear-strength criterion for rock joints[J]. Engineering Geology, 1973, 7(4): 287–332. doi: 10.1016/0013-7952(73)90013-6

    [27] 谢和平,PARISEAU W G. 岩石节理粗糙系数(JRC)的分形估计[J]. 中国科学(B辑),1994,24(5):524–530.

    XIE Heping, PARISEAU W G. Fractal estimation of rock joint roughness coefficient[J]. Science in China(Series B), 1994, 24(5): 524–530.

    [28]

    ZHANG Bo, PATHEGAMA GAMAGE R, ZHANG Chengpeng, et al. Hydrocarbon recovery: optimized CFD-DEM modeling of proppant transport in rough rock fractures[J]. Fuel, 2022, 311: 122560. doi: 10.1016/j.fuel.2021.122560

    [29]

    GUO Tiankui, LUO Zhilin, ZHOU Jin, et al. Numerical simulation on proppant migration and placement within the rough and complex fractures[J]. Petroleum Science, 2022, 19(5): 2268–2283. doi: 10.1016/j.petsci.2022.04.010

  • 期刊类型引用(1)

    1. 祁生金. 裂缝延伸方向对水平井主压裂缝内支撑剂运移规律的影响. 特种油气藏. 2025(01): 167-174 . 百度学术

    其他类型引用(0)

图(9)
计量
  • 文章访问数:  204
  • HTML全文浏览量:  30
  • PDF下载量:  63
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-12-04
  • 修回日期:  2024-04-30
  • 录用日期:  2024-07-16
  • 网络出版日期:  2024-07-18
  • 刊出日期:  2024-08-25

目录

/

返回文章
返回