Key Technologies and Prospect of Salt Cavern Hydrogen Storage in China
-
摘要:
随着中国“双碳”目标的推进,传统化石能源正向可再生清洁能源转型。氢能具有来源广、能量密度高和高效清洁等特点,已成为未来重要的能源构成。盐穴的气密性优势明显,且盐与氢气不发生反应,是地下大规模储氢的首选。为聚焦中国盐穴储氢技术研究和未来发展,分析了储氢地质类型及特征,详细阐述了盐穴储氢研究进展和国外运营现状;围绕盐穴储氢技术,深入剖析了大尺寸钻完井、盐穴造腔及形态控制、腔体密封性评价、井筒完整性检测及评价、管材腐蚀及氢脆控制等关键技术;总结了近年来各国制定的相关氢能政策和战略目标,结合我国盐穴储氢未来发展的机遇和挑战,对盐穴储氢地质选择和评估、大尺寸井筒完整性、盐穴造腔形态控制和密封性检测、氢能和盐业有机协同发展进行了展望,以期推进氢能规模化应用与产业链发展。研究结果为中国盐穴储氢发展和规划提供了技术参考。
Abstract:With the advancement of China’s carbon peaking and carbon neutrality (“dual carbon”) goals, traditional fossil energy is being transformed into renewable and clean energy. Hydrogen energy, characterized by wide sources, high energy density, and high efficiency and cleanliness, has become an important energy component in the future. Salt caverns have especially obvious advantages in terms of gas tightness, and salt does not react with hydrogen, making them the first choice for large-scale underground hydrogen storage. In order to focus on the research and future development of salt cavern hydrogen storage technologies in China, the geological types and characteristics of hydrogen storage were analyzed and the research progress of salt cavern hydrogen storage and its current situation in foreign operations were discussed. In view of the salt cavern hydrogen storage technologies, the key technologies such as large-size drilling and completion, salt cavern cavity creation and morphology control, cavity sealing evaluation, wellbore integrity testing and evaluation, and control of tubing corrosion and hydrogen embrittlement were analyzed. The relevant hydrogen energy policies and strategic goals formulated by various countries in recent years were summarized. Combining the opportunities and challenges for the future development of salt cavern hydrogen storage in China, the prospects were provided for the geological selection and evaluation of salt cavern hydrogen storage, integrity of large-size wellbore, morphology control of salt cavern cavity creation and sealing detection, and organic synergistic development of hydrogen energy and salt, with a view to advancing the large-scale application of hydrogen energy and the development of industrial chain. The results of the study can provide a reference for the development and planning of salt cavern hydrogen storage in China.
-
-
表 1 不同地质类型储氢库对比[16]
Table 1 Comparison of hydrogen storage reservoirs of different geological types[16]
类型 优点 缺点 应用现状 枯竭气藏 存储容量巨大;
分布广,地层构造清晰;
地层中的剩余气可以用作缓冲气氢可能与地下矿物和流体发生反应;
储氢可能触发耗氢微生物的生长;
储氢库的应力场会发生变化,影响密封性;
垫底气比例高,收效率可能低尚无商业储氢案例,
有天然气储气库案例含水层 地层密封性相对好;
工程造价相对较低;
适宜地区潜在的库容大勘探难度大,选址受限;
盖层要求较高,需要不透水地层;
需采取注浆等措施提高储能效率;
地层不存在原生气体,垫底气比例高欧洲有少量天然气+
氢气混合储气库案例硬岩硐室 硬岩地层分布广泛,选址相对较易;
洞穴自稳性好,变形小,库容稳定;
运行压力区间大;
注采速度快,适合多循环注采;
垫底气比例要求低建库造价相对较高,经济性较差;
存储容积有限;
施工工艺复杂,技术难度较大尚无储氢案例 废弃矿井 废弃矿井分布多样,选址灵活;
垫底气比例可能低;
利用旧矿井,建设成本较低地质特性可能不适合长期储存;
废弃矿井的安全性难以有效保证尚未储氢案例 盐穴 盐岩渗透性小,密封性良好;
损伤自愈合性好,气体渗漏风险低;
地下工程相对简单、技术较成熟;
建库经济性好,造价相对较低;
注采效率高,速度快适合调峰,垫底气通常30%蠕变性较强,长期运行体积收缩较大;
氯离子作用下,高压氧腐蚀;
注采压力区间小;
盐岩地层分布相对较少,选址受限有储氢成功实例 国家/
地区储氢库名称 建库
时间气体组成 盐腔体积/
(104m3)深度/
m工作压力/
MPa美国 Clemens Dome 1983 H2 58.00 930 7.0~13.5 Moss Bluff 2007 H2 56.60 1 200 5.5~15.2 Spindletop 2014 H2 >58.00 1 340 6.8~20.2 英国 Tesside 1972 H2 21.00 365 4.5 Aldbrough 未来 天然气、H2 3 300.00 德国 Hypos 未来 H2 InSpEE 未来 H2 欧盟 HyUnder 未来 H2 40.00 法国 HyPster 未来 H2 4.84 Terega 未来 H2 33.00 丹麦 Green
Hydrogen
Hub未来 H2 0.66 1 370 荷兰 HyStock 未来 H2 0.66 1 200 LSES 未来 H2 140.00 影响因素 影响程度 产生不利影响的因素 井筒管柱及固井质量 高 生产套管腐坏,非气密扣,未到盐层或下管的距离不达标;
注采管柱、封隔器、安全阀等配件寿命较短,存在质量隐患和问题;
生产套管固井效果不理想,特别是与套管鞋邻近的区域盐腔压力 高 造腔时,若腔体压力超标,便会直接影响腔体特别是腔体脖颈处;
气库运行压力超标,影响了腔体尤其是腔体脖颈部位;
气库运行压力不足,使得腔顶垮塌,尤其是生产套管鞋部岩盐出现脱落问题盖层及夹层密封性 较高 盖层岩性不理想,受高压的影响,微孔隙、微孔洞或微裂隙贯通;
盖层突破压差不达标(深1 000 m处盖层突破压差需大于9.0 MPa);
夹层中有裂缝或大规模的溶洞;
岩盐层启动压力梯度不足,在0.05 MPa/m以下;
24 h内腔内气体漏失量在2.8 Nm3以上岩盐蠕变 低 盐穴井口密封的时间过长,放压不及时 卤水热膨胀 低 盐穴井口密封的时间过长,放压不及时 岩盐溶解 低 造腔时,生产套管鞋部出现溶解现象 岩盐渗透性 低 能够降低岩盐蠕变和卤水热膨胀所致的腔内升压现象,有利于提升气库密封性能 -
[1] 韩利,李琦,冷国云,等. 氢能储存技术最新进展[J]. 化工进展,2022,41(增刊1):108-117. HAN Li, LI Qi, LENG Guoyun, et al. Latest research progress of hydrogen energy storage technology[J]. Chemical Industry and Engineering Progress, 2022, 41(supplement 1): 108-117.
[2] 孙德强,张俊武,吴小梅,等. 我国氢能产业发展现状、挑战及对策[J]. 中国能源,2022,44(9):27–35. SUN Deqiang, ZHANG Junwu, WU Xiaomei, et al. Development status, challenges and countermeasures of hydrogen energy industry in China[J]. Energy of China, 2022, 44(9): 27–35.
[3] 张智,赵苑瑾,蔡楠. 中国氢能产业技术发展现状及未来展望[J]. 天然气工业,2022,42(5):156–165. ZHANG Zhi, ZHAO Yuanjin, CAI Nan. Technological development status and prospect of hydrogen energy industry in China[J]. Natural Gas Industry, 2022, 42(5): 156–165.
[4] TARKOWSKI R. Underground hydrogen storage: characteristics and prospects[J]. Renewable and Sustainable Energy Reviews, 2019, 105: 86–94. doi: 10.1016/j.rser.2019.01.051
[5] 刘玮,万燕鸣,熊亚林,等. “双碳” 目标下我国低碳清洁氢能进展与展望[J]. 储能科学与技术,2022,11(2):635–642. LIU Wei, WAN Yanming, XIONG Yalin, et al. Outlook of low carbon and clean hydrogen in China under the goal of “carbon peak and neutrality”[J]. Energy Storage Science and Technology, 2022, 11(2): 635–642.
[6] SAMBO C, DUDUN A, SAMUEL S A, et al. A review on worldwide underground hydrogen storage operating and potential fields[J]. International Journal of Hydrogen Energy, 2022, 47(54): 22840–22880. doi: 10.1016/j.ijhydene.2022.05.126
[7] 邹才能,熊波,薛华庆,等. 新能源在碳中和中的地位与作用[J]. 石油勘探与开发,2021,48(2):411–420. ZOU Caineng, XIONG Bo, XUE Huaqing, et al. The role of new energy in carbon neutral[J]. Petroleum Exploration and Development, 2021, 48(2): 411–420.
[8] 刘翠伟,洪伟民,王多才,等. 地下储氢技术研究进展[J]. 油气储运,2023,42(8):841–855. LIU Cuiwei, HONG Weimin, WANG Duocai, et al. Research progress of underground hydrogen storage technology[J]. Oil & Gas Storage and Transportation, 2023, 42(8): 841–855.
[9] 闫伟,冷光耀,李中,等. 氢能地下储存技术进展和挑战[J]. 石油学报,2023,44(3):556–568. YAN Wei, LENG Guangyao, LI Zhong, et al. Progress and challenges of underground hydrogen storage technology[J]. Acta Petrolei Sinica, 2023, 44(3): 556–568.
[10] KING M, JAIN A, BHAKAR R, et al. Overview of current compressed air energy storage projects and analysis of the potential underground storage capacity in India and the UK[J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110705. doi: 10.1016/j.rser.2021.110705
[11] WAN Mingzhong, JI Wendong, WAN Jifang, et al. Compressed air energy storage in salt caverns in China: development and outlook[J]. Advances in Geo-Energy Research, 2023, 9(1): 54–67. doi: 10.46690/ager.2023.07.06
[12] 潘松圻,邹才能,王杭州,等. 地下储氢库发展现状及气藏型储氢库高效建库十大技术挑战[J]. 天然气工业,2023,43(11):164–180. PAN Songqi, ZOU Caineng, WANG Hangzhou, et al. Development status of underground hydrogen storages and top ten technical challenges to efficient construction of gas reservoir-type underground hydrogen storages[J]. Natural Gas Industry, 2023, 43(11): 164–180.
[13] LEMIEUX A, SHKARUPIN A, SHARP K. Geologic feasibility of underground hydrogen storage in Canada[J]. International Journal of Hydrogen Energy, 2020, 45(56): 32243–32259. doi: 10.1016/j.ijhydene.2020.08.244
[14] PAN Bin, YIN Xia, JU Yang, et al. Underground hydrogen storage: influencing parameters and future outlook[J]. Advances in Colloid and Interface Science, 2021, 294: 102473. doi: 10.1016/j.cis.2021.102473
[15] WAN Jifang, SUN Yangqing, HE Yuxian, et al. Development and technology status of energy storage in depleted gas reservoirs[J]. International Journal of Coal Science & Technology, 2024, 11(1): 29.
[16] OLABI A G, WILBERFORCE T, RAMADAN M, et al. Compressed air energy storage systems: components and operating parameters: a review[J]. Journal of Energy Storage, 2021, 34: 102000. doi: 10.1016/j.est.2020.102000
[17] 姜德义,蒋昌奇,陈结,等. 盐岩巴西劈裂损伤愈合特性实验研究[J]. 工程科学学报,2020,42(5):570–577. JIANG Deyi, JIANG Changqi, CHEN Jie, et al. Experimental study of the self-healing property of damaged salt rock by Brazilian splitting[J]. Chinese Journal of Engineering, 2020, 42(5): 570–577.
[18] 李建君,陈加松,刘继芹,等. 盐穴储气库天然气阻溶回溶造腔工艺[J]. 油气储运,2017,36(7):816–824. LI Jianjun, CHEN Jiasong, LIU Jiqin, et al. Re-leaching solution mining technology under natural gas for salt-cavern gas storage[J]. Oil & Gas Storage and Transportation, 2017, 36(7): 816–824.
[19] 曹仟妮,贾孟硕,李博达,等. 面向盐穴大规模储氢商业模式的副产氢供应链管理决策[J]. 清华大学学报(自然科学版),2023,63(12):2019–2032. CAO Qianni, JIA Mengshuo, LI Boda, et al. Decisions of a byproduct hydrogen supply chain for a business model of large-scale hydrogen storage[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(12): 2019–2032.
[20] RAZA A, ARIF M, GLATZ G, et al. A holistic overview of underground hydrogen storage: influencing factors, current understanding, and outlook[J]. Fuel, 2022, 330: 125636. doi: 10.1016/j.fuel.2022.125636
[21] 骆正山,欧阳长风,王小完,等. 盐穴储气库注采管柱内腐蚀速率预测模型研究[J]. 表面技术,2022,51(6):283–290. LUO Zhengshan, OUYANG Changfeng, WANG Xiaowan, et al. Research on prediction model of internal corrosion rate in injection and production string of salt cavern gas storage[J]. Surface Technology, 2022, 51(6): 283–290.
[22] VANDEGINSTE V, JI Yukun, BUYSSCHAERT F, et al. Mineralogy, microstructures and geomechanics of rock salt for underground gas storage[J]. Deep Underground Science and Engineering, 2023, 2(2): 129–147. doi: 10.1002/dug2.12039
[23] MAHMUD W M. Impact of salinity and temperature variations on relative permeability and residual oil saturation in neutral-wet sandstone[J]. Capillarity, 2022, 5(2): 23–31. doi: 10.46690/capi.2022.02.01
[24] 郑雅丽,完颜祺琪,邱小松,等. 盐穴地下储气库选址与评价新技术[J]. 天然气工业,2019,39(6):123–130. ZHENG Yali, WANYAN Qiqi, QIU Xiaosong, et al. New technologies for site selection and evaluation of salt-cavern underground gas storages[J]. Natural Gas Industry, 2019, 39(6): 123–130.
[25] LI Jingcui, WAN Jingcui, LIU Hangming, et al. Stability analysis of a typical salt cavern gas storage in the Jintan Area of China[J]. Energies, 2022, 15(11): 4167. doi: 10.3390/en15114167
[26] 彭芬,张宝,杨鹏程,等. 库车山前超深巨厚致密砂岩纵向细分层改造技术[J]. 石油钻探技术,2024,52(2):187–193. PENG Fen, ZHANG Bao, YANG Pengcheng, et al. Vertical subdivision layer stimulation technology for ultra-deep and super-thick tight sandstone in Kuqa piedmont[J]. Petroleum Drilling Techniques, 2024, 52(2): 187–193.
[27] 曹烨,邱国玉,邹振东. 中国盐矿资源概况及其产业形势分析[J]. 无机盐工业,2018,50(3):1–5. CAO Ye, QIU Guoyu, ZOU Zhendong. Analysis on salt mine resources and its industrial situation in China[J]. Inorganic Chemicals Industry, 2018, 50(3): 1–5.
[28] 刘继芹,刘玉刚,陈加松,等. 盐穴储气库天然气阻溶造腔数值模拟[J]. 油气储运,2017,36(7):825–831. LIU Jiqin, LIU Yugang, CHEN Jiasong, et al. A numerical simulation for the solution mining under natural gas of salt-cavern gas storage[J]. Oil & Gas Storage and Transportation, 2017, 36(7): 825–831.
[29] 李文婧,姜源,单保东,等. 盐穴储气库注采运行时温效应对腔体稳定性的影响[J]. 石油学报,2020,41(6):762–776. LI Wenjing, JIANG Yuan, SHAN Baodong, et al. Time-temperature effect on cavity stability during gas injection and production in gas storage with salt caves[J]. Acta Petrolei Sinica, 2020, 41(6): 762–776.
[30] 杨春和,梁卫国,魏东吼,等. 中国盐岩能源地下储存可行性研究[J]. 岩石力学与工程学报,2005,24(24):4409–4417. YANG Chunhe, LIANG Weiguo, WEI Donghou, et al. Investigation on possibility of energy storage in salt rock in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(24): 4409–4417.
[31] 朱华银,王粟,张敏,等. 盐穴储气库全周期注采模拟:以JT储气库X1和X2盐腔为例[J]. 石油学报,2021,42(3):367–377. ZHU Huayin, WANG Su, ZHANG Min, et al. Cyclic injection-production simulation of salt cavern gas storages: a case study of X1 and X2 salt caverns of JT Gas Storage[J]. Acta Petrolei Sinica, 2021, 42(3): 367–377.
[32] JIANG Yujing, CHEN Lugen, WANG Dong, et al. Mechanical properties and acoustic emission characteristics of soft rock with different water contents under dynamic disturbance[J]. International Journal of Coal Science & Technology, 2024, 11(1): 36.
[33] 石悦,郭文朋,徐宁,等. 采卤老腔改建盐穴储气库关键技术及应用[J]. 特种油气藏,2021,28(5):134–139. SHI Yue, GUO Wenpeng, XU Ning, et al. Key technology and application of reconstruction of existing brine extraction caverns into salt cavern gas storage[J]. Special Oil & Gas Reservoirs, 2021, 28(5): 134–139.
[34] 王敏生,姚云飞. 碳中和约束下油气行业发展形势及应对策略[J]. 石油钻探技术,2021,49(5):1–6. WANG Minsheng, YAO Yunfei. Development situation and countermeasures of the oil and gas industry facing the challenge of carbon neutrality[J]. Petroleum Drilling Techniques, 2021, 49(5): 1–6.
[35] 张荣达,张庆斌,高睿. 氢储能电站运营的模式优选与激励机制[J]. 西南石油大学学报(社会科学版),2024,26(3):9–17. ZHANG Rongda, ZHANG Qingbin, GAO Rui. Operation mode optimization and incentive mechanism of hydrogen energy storage power station[J]. Journal of Southwest Petroleum University(Social Sciences Edition), 2024, 26(3): 9–17.
[36] IORDACHE I, SCHITEA D, GHEORGHE A V, et al. Hydrogen underground storage in Romania, potential directions of development, stakeholders and general aspects[J]. International Journal of Hydrogen Energy, 2014, 39(21): 11071–11081. doi: 10.1016/j.ijhydene.2014.05.067
[37] LE DUIGOU A, BADER A G, LANOIX J C, et al. Relevance and costs of large scale underground hydrogen storage in France[J]. International Journal of Hydrogen Energy, 2017, 42(36): 22987–23003. doi: 10.1016/j.ijhydene.2017.06.239
[38] LEMIEUX A, SHARP K, SHKARUPIN A. Preliminary assessment of underground hydrogen storage sites in Ontario, Canada[J]. International Journal of Hydrogen Energy, 2019, 44(29): 15193–15204. doi: 10.1016/j.ijhydene.2019.04.113
[39] CAGLAYAN D G, WEBER N, HEINRICHS H U, et al. Technical potential of salt caverns for hydrogen storage in Europe[J]. International Journal of Hydrogen Energy, 2020, 45(11): 6793–6805. doi: 10.1016/j.ijhydene.2019.12.161
[40] LIU Wei, ZHANG Zhixin, CHEN Jie, et al. Feasibility evaluation of large-scale underground hydrogen storage in bedded salt rocks of China: a case study in Jiangsu Province[J]. Energy, 2020, 198: 117348. doi: 10.1016/j.energy.2020.117348
[41] HEMATPUR H, ABDOLLAHI R, ROSTAMI S, et al. Review of underground hydrogen storage: concepts and challenges[J]. Advances in Geo-Energy Research, 2023, 7(2): 111–131. doi: 10.46690/ager.2023.02.05
[42] 纪钦洪,于广欣,黄海龙,等. 海上风电制氢技术现状与发展趋势[J]. 中国海上油气,2023,35(1):179–186. JI Qinhong, YU Guangxin, HUANG Hailong, et al. Present status and developing trend of offshore wind-to-hydrogen technology[J]. China Offshore Oil and Gas, 2023, 35(1): 179–186.
[43] 袁光杰,张弘,金根泰,等. 我国地下储气库钻井完井技术现状与发展建议[J]. 石油钻探技术,2020,48(3):1–7. YUAN Guangjie, ZHANG Hong, JIN Gentai, et al. Current status and development suggestions in drilling and completion technology of underground gas storage in China[J]. Petroleum Drilling Techniques, 2020, 48(3): 1–7.
[44] 郑雅丽,邱小松,赖欣,等. 盐穴储气库地质体完整性管理体系[J]. 油气储运,2022,41(9):1021–1028. ZHENG Yali, QIU Xiaosong, LAI Xin, et al. Integrity management system for geological body of salt-cavern gas storage[J]. Oil & Gas Storage and Transportation, 2022, 41(9): 1021–1028.
[45] 练章华,牟易升,张强,等. 超深气井油管气密封检测应力分析及防控措施[J]. 石油钻采工艺,2018,40(3):324–329. LIAN Zhanghua, MOU Yisheng, ZHANG Qiang, et al. Analysis and control measures on the air tightness detecting pressure of tubing in ultra-deep gas wells[J]. Oil Drilling & Production Technology, 2018, 40(3): 324–329.
[46] WAN Jifang, MENG Tao, LI Jinlong, et al. Energy storage salt cavern construction and evaluation technology[J]. Advances in Geo-Energy Research, 2023, 9(3): 141–145. doi: 10.46690/ager.2023.09.01
[47] MATOS C R, CARNEIRO J F, SILVA P P. Overview of large-scale underground energy storage technologies for integration of renewable energies and criteria for reservoir identification[J]. Journal of Energy Storage, 2019, 21: 241–258. doi: 10.1016/j.est.2018.11.023
[48] 卢雪梅. 氢气地储成西方国家储能研究热点[J]. 石油与天然气地质,2021,42(6):1240. LU Xuemei. Hydrogen storage has become a research hotspot for energy storage in western countries[J]. Oil & Gas Geology, 2021, 42(6): 1240.
[49] SAINZ-GARCIA A, ABARCA E, RUBI V, et al. Assessment of feasible strategies for seasonal underground hydrogen storage in a saline aquifer[J]. International Journal of Hydrogen Energy, 2017, 42(26): 16657–16666. doi: 10.1016/j.ijhydene.2017.05.076
[50] ZIVAR D, KUMAR S, FOROOZESH J. Underground hydrogen storage: a comprehensive review[J]. International Journal of Hydrogen Energy, 2021, 46(45): 23436–23462. doi: 10.1016/j.ijhydene.2020.08.138
[51] 敖海兵,陈加松,胡志鹏,等. 盐穴储气库运行损伤评价体系[J]. 油气储运,2017,36(8):910–917. AO Haibing, CHEN Jiasong, HU Zhipeng, et al. Study on the damage assessment system of salt-cavern gas storage[J]. Oil & Gas Storage and Transportation, 2017, 36(8): 910–917.
[52] REITENBACH V, GANZER L, ALBRECHT D, et al. Influence of added hydrogen on underground gas storage: a review of key issues[J]. Environmental Earth Sciences, 2015, 73(11): 6927–6937. doi: 10.1007/s12665-015-4176-2
[53] CHEN Dongxu, WANG Laigui, VERSAILLOT P D, et al. Triaxial creep damage characteristics of sandstone under high crustal stress and its constitutive model for engineering application[J]. Deep Underground Science and Engineering, 2023, 2(3): 262–273. doi: 10.1002/dug2.12033
[54] 袁光杰,班凡生,万继方. 盐穴储库造腔工程技术[M]. 北京:石油工业出版社,2020. YUAN Guangjie, BAN Fansheng, WAN Jifang. Cavity engineering technology of salt cavern reservoir[M]. Beijing: Petroleum Industry Press, 2020.
[55] 袁光杰,申瑞臣,袁进平,等. 盐穴储气库密封测试技术的研究及应用[J]. 石油学报,2007,28(4):119–121. YUAN Guangjie, SHEN Ruichen, YUAN Jinping, et al. Study and application of tightness testing technology for salt cavern gas storage[J]. Acta Petrolei Sinica, 2007, 28(4): 119–121.
[56] EBIGBO A, GOLFIER F, QUINTARD M. A coupled, pore-scale model for methanogenic microbial activity in underground hydrogen storage[J]. Advances in Water Resources, 2013, 61: 74–85. doi: 10.1016/j.advwatres.2013.09.004
[57] 吴俊霞,伊伟锴,孙鹏,等. 文23储气库封堵井完整性保障技术[J]. 石油钻探技术,2022,50(5):57–62. doi: 10.11911/syztjs.2022027 WU Junxia, YI Weikai, SUN Peng, et al. Integrity assurance technologies for plugged wells in Wen 23 Gas Storage[J]. Petroleum Drilling Techniques, 2022, 50(5): 57–62. doi: 10.11911/syztjs.2022027
[58] 张波,胥志雄,高文祥,等. 深层气井生产管柱完整性检测技术总结及评价[J]. 天然气与石油,2020,38(5):49–57. ZHANG Bo, XU Zhixiong, GAO Wenxiang, et al. Summary and evaluation of integrity detection technology for production string in deep gas well[J]. Natural Gas and Oil, 2020, 38(5): 49–57.
[59] LI Jingcui, WAN Jifang, WANG Tingting, et al. Leakage simulation and acoustic characteristics based on acoustic logging by ultrasonic detection[J]. Advances in Geo-Energy Research, 2022, 6(3): 181–191. doi: 10.46690/ager.2022.03.02
[60] 黄运华,陈恒,赵起越,等. 高强度低合金钢中纳米析出相对腐蚀行为影响的研究进展[J]. 工程科学学报,2021,43(3):321–331. HUANG Yunhua, CHEN Heng, ZHAO Qiyue, et al. Influence of nanosized precipitate on the corrosion behavior of high-strength low-alloy steels: a review[J]. Chinese Journal of Engineering, 2021, 43(3): 321–331.
[61] YU Junwei, LIN Tianhao, LI Jialin, et al. Construction of PAN-based activated carbon nanofibers for hydrogen storage under ambient pressure[J]. Capillarity, 2023, 6(3): 49–56. doi: 10.46690/capi.2023.03.02
[62] 高嘉珮,彭冲,牛梦龙,等. 多氢酸酸化反应特征及动力学[J]. 石油学报,2019,40(2):207–214. GAO Jiapei, PENG Chong, NIU Menglong, et al. Acidification characteristics and kinetics of multi-hydrogen acid[J]. Acta Petrolei Sinica, 2019, 40(2): 207–214.
[63] CAI Rui, GUI Jie, LI Mingxing, et al. Corrosion reason analysis of 13Cr110 tubing in an injection and production well of the Suqiao Gas Storage Group[J]. International Journal of Photoenergy, 2021, 2021: 6639179.
[64] UGARTE E R, SALEHI S. A review on well integrity issues for underground hydrogen storage[J]. Journal of Energy Resources Technology, 2022, 144(4): 042001. doi: 10.1115/1.4052626
[65] 徐硕,余碧莹. 中国氢能技术发展现状与未来展望[J]. 北京理工大学学报(社会科学版),2021,23(6):1–12. XU Shuo, YU Biying. Current development and prospect of hydrogen energy technology in China[J]. Journal of Beijing Institute of Technology(Social Sciences Edition), 2021, 23(6): 1–12.
[66] 陆佳敏,徐俊辉,王卫东,等. 大规模地下储氢技术研究展望[J]. 储能科学与技术,2022,11(11):3699–3707. LU Jiamin, XU Junhui, WANG Weidong, et al. Development of large-scale underground hydrogen storage technology[J]. Energy Storage Science and Technology, 2022, 11(11): 3699–3707.
[67] 魏凤,任小波,高林,等. 碳中和目标下美国氢能战略转型及特征分析[J]. 中国科学院院刊,2021,36(9):1049–1057. WEI Feng, REN Xiaobo, GAO Lin, et al. Analysis on transformation and characteristics of American hydrogen energy strategy under carbon neutralization goal[J]. Bulletin of the Chinese Academy of Sciences, 2021, 36(9): 1049–1057.
[68] 刘大正,崔咏梅,赵飞. 新型储能商业化运行模式分析与发展建议[J]. 分布式能源,2022,7(5):46–55. LIU Dazheng, CUI Yongmei, ZHAO Fei. Operating mode analysis and developmental suggestions of new energy storage in commercial application scenarios[J]. Distributed Energy, 2022, 7(5): 46–55.
[69] 孙旭东,赵玉莹,李诗睿,等. 我国地方性氢能发展政策的文本量化分析 [J]. 化工进展,2023,42(7):3478–3488. SUN Xudong, ZHAO Yuying, LI Shirui, et al. Textual quantitative analysis on China’s local hydrogen energy development policies[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3478–3488.
-
期刊类型引用(10)
1. 杨进,李磊,宋宇,仝刚,张明贺,张慧. 中国海洋油气钻井技术发展现状及展望. 石油学报. 2023(12): 2308-2318 . 百度学术
2. 王国娜,张海军,孙景涛,张巍,曲大孜,郝晨. 大港油田大型井丛场高效钻井技术优化与应用. 石油钻探技术. 2022(02): 51-57 . 本站查看
3. 刘亮,涂福洪,郑海刚,郭亮,邢帅,王莹. 大港油田人工岛单筒双井钻完井关键技术. 西部探矿工程. 2022(07): 70-73 . 百度学术
4. 刁斌斌,高德利,胡德高,刘尧文. 基于贡献率分析的井眼轨迹测量主要误差源辨识. 钻采工艺. 2021(01): 1-6 . 百度学术
5. 谢鑫,丁少华,王进涛,窦正道,徐浩. 丛式井施工顺序优化探讨. 复杂油气藏. 2021(01): 80-84 . 百度学术
6. 李琪,刘毅,王六鹏,高云文,张燕娜,张明. 密集井网直井段井眼轨道交碰风险计算新方法. 石油钻采工艺. 2021(01): 29-33 . 百度学术
7. 张海军,张楠,刘军彪,钱锋,孔祥吉. 尼日尔沙漠油田小规模“工厂化”钻井工艺优化. 西南石油大学学报(自然科学版). 2020(05): 145-152 . 百度学术
8. 赵平起,李东平,唐世忠,滕国权. 大港油田井丛场建设管理创新与实践. 国际石油经济. 2020(12): 95-100 . 百度学术
9. 王建龙,许京国,杜强,金海峰,程东,郑锋,李瑞明. 大港油田埕海2-2人工岛钻井提速提效关键技术. 石油机械. 2019(07): 30-35 . 百度学术
10. 林家昱,王晓鹏,张羽臣,张磊,李进. 渤海油田丛式井综合调整加密防碰技术. 石油工业技术监督. 2019(11): 1-4+8 . 百度学术
其他类型引用(2)