Challenges and Efficient Operation Mechanism of Shale Oil Exploration and Development in China
-
摘要:
中国页岩油资源丰富,并在多个盆地取得重大勘探开发突破,已成为石油战略接替新领域,但页岩油勘探开发时间相对较短,顶层的战略规划与政策导向尚未明确,存在勘探突破难、开发成本高和组织运营不畅等问题。为此,调研剖析了中美页岩油经营理念、宏观环境、资源配置、生产运行、科技水平和信息化程度等现状,深入思考中国页岩油勘探开发的痛点、难点和阻点,认为当前中国页岩油勘探开发主要面临理念思路、技术能力、运营管理和绿色发展等4大挑战。围绕中国能源战略,提出了实现中国页岩油高效运营的对策建议:谋划稳中求进的页岩油发展战略,构建市场机制下多主体融合的战略合作共同体,打造多兵种协作的生产运行新模式,建立迭代式创新的科技发展新机制,建立数智化赋能的信息支撑新范式,开创绿色低碳化的产业发展新格局,营造高契合友好的外部运营新环境。
Abstract:China has abundant shale oil resources and has made significant exploration and development breakthroughs in multiple basins, which unveils a new field for implementing China’s petroleum strategy. However, the exploration and development of shale oil in China has a relatively short history, and the top-level strategic planning and policy guidance are not yet clear. There are a series of issues to be solved such as difficulties in exploration breakthroughs, high development costs, and inefficient organizational operation, etc. To this end, a comprehensive literature review was conducted to explore the current status of shale oil management concept, macro environment, resource allocation, production and operation, science and technology level, and informatization state in China and the U.S, and in-depth considerations were performed to fully understand the pain points, difficulties, and obstacles of shale oil exploration and development in China. It is believed that currently there are four major challenges in shale oil exploration and development in China, including conceptual thinking, technical capabilities, operation management, and green developmentl etc. Based on the national energy strategy, countermeasures and suggestions were proposed to achieve efficient operation of shale oil in China, including implementing shale oil development strategy in a steady manner, building a strategic cooperative community with multi-subject integration under the market mechanism, creating a new mode of production and operation with multi-force collaboration, establishing a new mechanism of iterative technological development and innovation, developing a new information support paradigm empowered by digital intelligence, opening a new landscape of green and low-carbon industrial development, and fostering a new highly compatible and friendly external operation environment.
-
随着致密油气藏、非常规油气藏的深入开发,水力压裂技术已成为开发该类油气藏的核心技术之一。水力压裂的目的是在储层中形成具有高导流能力的人工裂缝,针对致密油气藏、非常规油气藏要尽可能形成复杂程度高的多级裂缝系统,而支撑剂是形成高导流裂缝的核心载体,压裂过程中支撑剂的运移及铺置规律是影响压裂改造效果的重要因素之一[1-5]。国内外学者对压裂过程中支撑剂的运移及铺置规律进行了大量的理论和实验研究[6-9]。实验装置从小型裂缝模拟装置发展为平行板模拟装置,目前主要采用可视化平行板物理模拟装置,装置规模相对较小,裂缝长度一般为2~4 m,裂缝级数相对较少,多以单一直缝为主,对于带分支缝的多级裂缝的模拟研究相对较少[10-14],导致目前针对多级裂缝系统中的支撑剂运移和沉降规律认识不清,压裂方案针对性不强。
针对以上问题,笔者采用自主研制的多尺度裂缝系统有效输砂模拟实验装置,开展了压裂液黏度、支撑剂类型、注入排量、砂比等因素对多级裂缝系统中动态输砂规律和砂堤分布形态影响的模拟实验,给出了不同实验条件下各级裂缝中的砂堤剖面高度,为压裂液、支撑剂优选及压裂施工参数优化提供了依据。
1. 大型物理模拟实验装置
为了研究多级裂缝内支撑剂的运移及铺置规律,基于裂缝中流体流动相似原理,中国石化石油工程技术研究院自主研制了多尺度裂缝系统有效输砂大型物理模拟实验装置,可以模拟压裂过程中不同排量下的流体流动。利用该装置可进行压裂过程中压裂液黏度、支撑剂粒径、注入流量和砂比等对各级裂缝中支撑剂运移及铺置影响的实验研究。
该实验装置主要由主控系统、配液混砂系统、裂缝模拟系统、循环系统、数据采集和处理系统等组成。主控系统主要由计算机、控制面板、安全报警系统等组成,用来控制装置各部分的安全运行。配液混砂系统主要由配液罐、混砂罐、加温装置、搅拌系统、螺杆泵和流量计等组成,实现压裂液的快速配制、加温保温、混砂及携砂液的均匀注入。裂缝模拟系统主要由裂缝主体系统、照明系统和流量计等组成,用来模拟储层裂缝系统。循环系统主要由循环泵、相应管阀件等组成,用来泵入携砂液并进行循环。数据采集及处理系统主要由流量监测系统、压力监测系统、计算机、高速高清摄像机、模型控制软件和数据处理软件等组成,实验过程中可以采集数据和视频,并进行处理。
大型物理模拟实验装置的工作温度为0~90 ℃,工作压力为0~0.2 MPa,模拟排量为0~15 m3/min。根据压裂施工过程中的射孔密度、孔径和排量等参数,按照流体线速度相似原理,设计了4套射孔模拟套件,具体参数见表1。
表 1 各射孔模拟套件孔眼参数Table 1. Tunnel parameters of perforation simulation kits编号 孔眼数量 模拟射孔密度/(孔·m–1) 孔径/mm 1 8 16 10.0 2 6 12 15.0 3 3 6 30.0 4 1 2 80.0 2. 多级裂缝动态输砂实验
考虑人工压裂裂缝缝长与缝高的比及实际缝宽,以及压裂施工时压裂液的黏度、支撑剂的粒径、排量和砂比等施工参数,设计了实验方案。
2.1 实验方案设计
2.1.1 裂缝参数设置
各级裂缝参数参考压裂人工裂缝缝长与缝宽比设定,模拟的裂缝系统如图1所示。其中,主裂缝长度4.80 m,缝高0.50 m,缝宽10.0 mm;一级分支缝缝长1.00 m,缝高0.50 m,缝宽5.0 mm;二级分支缝缝长0.50 m,缝高0.50 m,缝宽2.0 mm;各级裂缝与上一级裂缝的夹角为60°。
2.1.2 实验参数设置
实验参考常规压裂现场施工情况,考虑压裂施工时的压裂液、支撑剂、排量和砂比等,选用低黏、中黏和高黏3种黏度的清洁压裂液体系,支撑剂选用30/50目、40/70目和70/140目等3种粒径的陶粒,根据不同压裂液黏度设定砂比,制定实验方案,研究不同参数下携砂液在多级裂缝中的输砂情况(见表2)。
表 2 实验方案设计Table 2. Experimental scheme design方案 压裂液类型 黏度/(mPa·s) 陶粒粒径/目 排量/(m3·min–1) 砂比,% 粒径1 粒径2 粒径3 排量1 排量2 砂比1 砂比2 砂比3 1 低黏 6~9 30/50 40/70 70/140 4.0 6.0 5 10 15 2 中黏 21~24 30/50 40/70 70/140 4.0 6.0 10 15 20 3 高黏 39~42 70/140 40/70 70/140 4.0 6.0 15 20 25 参考压裂现场施工排量,根据裂缝中流体流动相似原理设定实验排量。本文模拟压裂现场施工排量为4.0和6.0 m3/min,计算得到实验设定加砂泵频率分别为13.84和19.86 Hz。参考常规压裂射孔参数,射孔模拟套件选用表1中的2号套件。
2.2 实验步骤
主要实验步骤为:1)在配液罐中配制压裂液;2)将压裂液注入到多级裂缝系统中,使其充满裂缝系统并循环;3)将配液罐中的压裂液注入到混砂罐中,按砂比加入支撑剂并搅拌均匀,配制好携砂液;4)启动数据采集系统及视频拍摄系统;5)开启注入泵,按实验要求排量将携砂液注入裂缝系统中;6)注入结束后,停泵,待裂缝系统中支撑剂完全沉降后,打开裂缝系统出口端阀门进行排空;7)采集并处理实验数据;8)清洗实验装置,结束实验。
3. 动态输砂规律分析
根据实验结果,分析了压裂液黏度、支撑剂粒径、注入排量和砂液比等因素对各级裂缝中支撑剂沉降规律和砂堤剖面高度的影响,并测量了各级裂缝中砂堤剖面的高度。
3.1 压裂液黏度对输砂规律的影响
在40/70目支撑剂、排量6.0 m3/min、砂比10%的条件下,采用低黏压裂液和中黏压裂液携砂时,各级裂缝中的砂堤剖面高度如图2所示。
从图2可以看出,在低黏、中黏压裂液条件下,主裂缝中砂堤的最高高度分别为18.0和11.0 cm,最低高度分别为6.0和4.0 cm,平均高度分别为13.5和6.4 cm;一级分支缝中砂堤的最高高度分别为15.0和11.0 cm,最低高度分别为10.0和6.0 cm,平均高度分别为12.3和7.9 cm;二级分支缝中砂堤的最高高度分别为14.0和10.0 cm,最低高度分别为4.0和4.0 cm,平均高度分别为9.1和6.5 cm。
以上研究表明,压裂液黏度越高,其携砂能力越强,支撑剂更多地被输送至裂缝深处,砂堤剖面高度越小,且这种趋势在主裂缝中更加明显。
3.2 支撑剂粒径对砂堤剖面的影响
在低黏压裂液、模拟排量4.0 m3/min、砂比10%的条件下,40/70目和70/140目支撑剂在各级裂缝中的砂堤剖面高度如图3所示。
从图3可以看出,采用40/70目、70/140目支撑剂时,主裂缝中砂堤的最高高度分别为17.0和12.0 cm,最低高度分别为5.0和5.0 cm,平均高度分别为14.4和8.4 cm;一级分支缝中砂堤的最高高度分别为15.0和12.0 cm,最低高度分别为14.0和8.0 cm,平均高度分别为14.8和10.7 cm;二级分支缝中砂堤的最高高度分别为14.0和12.0 cm,最低高度分别为6.0和7.0 cm,平均高度分别为8.5和9.8 cm。
以上研究表明,支撑剂粒径越小,压裂液对其携带能力越强,支撑剂更多地被输送至裂缝深处,砂堤剖面高度越小,且这种趋势在主裂缝中更加明显。
3.3 排量对砂堤剖面的影响
在中黏压裂液、40/70目支撑剂、砂比15%的条件下,排量为4.0和6.0 m3/min时,各级裂缝中砂堤剖面高度如图4所示。
从图4可以看出,排量为4.0和6.0 m3/min时,主裂缝中砂堤的最高高度分别为17.0和16.0 cm,最低高度分别为6.0和4.0 cm,平均高度分别为12.0和10.7 cm;一级分支缝中砂堤的最高高度分别为17.0和15.0 cm,最低高度分别为10.0和10.0 cm,平均高度分别为13.2和13.0 cm;二级分支缝中砂堤的最高高度分别为14.0和14.0 cm,最低高度分别为6.0和4.0 cm,平均高度分别为10.2和6.6 cm。
以上研究表明,排量越大,压裂液的携砂能力越强,支撑剂越容易被输送至裂缝深处,砂堤剖面高度越小,对中大粒径支撑剂的影响更加明显。
3.4 砂比对砂堤剖面的影响
在中黏压裂液、70/140目支撑剂、排量6.0 m3/min的条件下,砂比为5%和20%时,各级裂缝中砂堤剖面高度如图5所示。
从图5可以看出,砂比为5%和20%时,主裂缝中砂堤的最高高度分别为4.0和12.0 cm,最低高度分别为1.0和3.0 cm,平均高度分别为2.3和8.9 cm;一级分支缝中砂堤的最高高度分别为3.0和13.0 cm,最低高度分别为1.0和11.0 cm,平均高度分别为1.6和12.3 cm;二级分支缝中砂堤的最高高度分别为1.0和12.0 cm,最低高度分别为0.5和5.0 cm,平均高度分别为0.7和9.0 cm。
以上研究表明,砂比越高,砂堤剖面高度越大,且分支缝中砂堤高度的增大幅度大于主裂缝。
4. 结论与认识
1)利用研制的多尺度裂缝系统有效输砂大型物理模拟实验装置,开展了多级裂缝动态输砂物理模拟实验,分析了不同条件下多级裂缝系统中支撑剂的输送及沉降规律,定量评价了各因素对输砂规律的影响,为压裂液及支撑剂优选、施工参数优化提供了依据。
2)压裂时采用低黏度压裂液携带小粒径支撑剂支撑微小分支缝,中黏度压裂液携带中粒径支撑剂支撑次级裂缝或主裂缝中部位置,高黏度压裂液携带大粒径支撑剂支撑主裂缝或缝口,有利于压裂液与支撑剂相互匹配,裂缝中支撑剂均匀合理分布,提高裂缝有效支撑率。
3)采用等密度单一粒径支撑剂,在不同砂比下进行了不同黏度清洁压裂液的动态输砂规律实验研究,未考虑压裂液类型、密度和混合粒径支撑剂等情况,且模拟压裂施工排量较低,存在一定局限性。
4)可参照文中思路及方法,进一步探索不同压裂液体系、不同密度压裂液、混合粒径支撑剂和高排量等条件下多级裂缝系统中的动态输砂规律,为体积压裂方案设计和施工参数优化提供理论依据。
-
表 1 美国水力压裂工艺迭代升级情况
Table 1 Iterative upgrading of fracturing technology in the U.S.
时间 井间距/m 水平段长度/m 段间距/m 簇间距/m 加砂强度/(t·m−1) 2008—2014 400 1500 100~150 15~25 1.5 2015—2017 200 1500~3000 50~80 9~15 4.5 2018 100~150 1500~3000 <30 6~15 >7.5 2019至今 50~100 1500~3000 30~50 6~10 4.5~6.0 -
[1] 王敏生,光新军,耿黎东. 页岩油高效开发钻井完井关键技术及发展方向[J]. 石油钻探技术,2019,47(5):1–10. WANG Minsheng, GUANG Xinjun, GENG Lidong. Key drilling/completion technologies and development trends in the efficient development of shale oil[J]. Petroleum Drilling Techniques, 2019, 47(5): 1–10.
[2] 闫林,陈福利,王志平,等. 我国页岩油有效开发面临的挑战及关键技术研究[J]. 石油钻探技术,2020,48(3):63–69. YAN Lin, CHEN Fuli, WANG Zhiping, et al. Challenges and technical countermeasures for effective development of shale oil in China[J]. Petroleum Drilling Techniques, 2020, 48(3): 63–69.
[3] U. S. Energy Information Administration. U. S. crude oil and natural gas proved reserves, year-end 2017[R]. Washington, D. C. : U. S. Department of Energy, 2018.
[4] U. S. Energy Information Administration. Annual energy outlook 2022[R]. Washington, D. C. : U. S. Department of Energy, 2022: 13-25.
[5] 唐玮,梁坤,冯金德,等. 低油价下美国页岩油困境对我国油田勘探开发的启示[J]. 石油科技论坛,2020,39(4):26–30. TANG Wei, LIANG Kun, FENG Jinde, et al. Enlightenment from dilemma of us shale oil development under low oil prices[J]. Petroleum Science and Technology Forum, 2020, 39(4): 26–30.
[6] 吕建中,刘嘉,张焕芝,等. 技术组合是油气上游增产降本提效的关键:美国页岩油气开发的成功实践与启示[J]. 国际石油经济,2019,27(7):34–38. LYU Jianzhong, LIU Jia, ZHANG Huanzhi, et al. Technology combination: the key to achieve “increase production, decrease cost and improve efficiency” in upstream:successful practice and enlightenments of the US shale oil and gas development[J]. International Petroleum Economics, 2019, 27(7): 34–38.
[7] 张焕芝,杨金华,张嘉铭,等. 北美页岩油气生产经验对中国页岩油气降低桶油成本的启示[N]. 石油商报,2018-03-07(08). ZHANG Huanzhi, YANG Jinhua, ZHANG Jiaming, et al. Inspiration of North American shale oil and gas production experience on reducing barrel oil costs for shale oil and gas in China[N]. petroleum Business News, 2018-03-07(08).
[8] 杨金华,张焕芝,刘知鑫. 美国二叠盆地页岩油气开发10大举措[J]. 世界石油工业,2022,29(4):80–81. YANG Jinhua, ZHANG Huanzhi, LIU Zhixin. Top 10 measures for shale oil and gas development in the Permian Basin of the United States[J]. World Petroleum Industry, 2022, 29(4): 80–81.
[9] 齐黎明,荆克尧,田雨露,等. 美国页岩油气公司应对油价暴跌经营策略[J]. 国际石油经济,2021,29(7):92–99. QI Liming, JING Keyao, TIAN Yulu, et al. Analysis on operation strategies of U. S. shale oil & gas companies under oil prices plunging[J]. International Petroleum Economics, 2021, 29(7): 92–99.
[10] 周庆凡,杨国丰. 美国页岩油气勘探开发现状与发展前景[J]. 国际石油经济,2018,26(9):39–46. ZHOU Qingfan, YANG Guofeng. Status and prospects of shale oil & gas exploration in the United States[J]. International Petroleum Economics, 2018, 26(9): 39–46.
[11] XIONG Hongjie. The effective cluster spacing plays the vital role in unconventional reservoir development: Permian Basin case studies[R]. SPE 199721, 2020.
[12] 郭旭升,黎茂稳,赵梦云. 页岩油开发利用及在能源中的作用[J]. 中国科学院院刊,2023,38(1):38–47. GUO Xusheng, LI Maowen, ZHAO Mengyun. Shale oil development and utilization and its role in energy industry[J]. Bulletin of Chinese Academy of Sciences, 2023, 38(1): 38–47.
[13] 汪天凯,何文渊,袁余洋,等. 美国页岩油低油价下效益开发新进展及启示[J]. 石油科技论坛,2017,36(2):60–68. WANG Tiankai, HE Wenyuan, YUAN Yuyang, et al. Latest development in US cost-effective development of shale oil under background of low oil prices[J]. Petroleum Science and Technology Forum, 2017, 36(2): 60–68.
[14] 李亚茜,姜杉钰,牛琮凯. 从国内外经验谈重庆页岩油气产业集聚发展[J]. 世界石油工业,2023,30(5):19–25. LI Yaxi, JIANG Shanyu, NIU Congkai. Thought on the development of Chongqing shale oil and gas industry agglomeration[J]. World Petroleum Industry, 2023, 30(5): 19–25.
[15] XU Tao, ZHENG Wei, BAIHLY J, et al. Permian Basin production performance comparison over time and the parent-child well study[R]. SPE 194310, 2019.
[16] BARBA R, VILLARREAL M. The economics of refracturing in the Haynesville[R]. SPE 212371, 2023.
[17] JARIPATKE O A, BARMAN I, NDUNGU J G, et al. Review of Permian completion designs and results[R]. SPE 191560, 2018.
[18] TABATABAIE S H, BURROUGH T, CADENA C R. A machine learning approach to benchmarking operators performance: a new perspective utilizing factor contribution analysis[R]. SPE Journal, 2022, 27(6): 3314-3327.
[19] Rystad Energy. US shale oil producers generated the highest FCF in industry history[EB/OL]. (2020-11-19) [2024-01-20].https://www.rystadenergy.com/clients/articles/shalewell/2020/shale-financial-update/.
[20] 金之钧,白振瑞,高波,等. 中国迎来页岩油气革命了吗?[J]. 石油与天然气地质,2019,40(3):451–458. JIN Zhijun, BAI Zhenrui, GAO Bo, et al. Has China ushered in the shale oil and gas revolution?[J]. Oil & Gas Geology, 2019, 40(3): 451–458.
[21] 赵群,赵萌,赵素平,等. 美国页岩油气发展现状、成本效益危机及解决方案[J]. 非常规油气,2023,10(5):1–7. ZHAO Qun, ZHAO Meng, ZHAO Suping, et al. The development status, cost-effectiveness crisis and solution of shale oil and gas in the United States[J]. Unconventional Oil & Gas, 2023, 10(5): 1–7.
[22] 周庆凡,金之钧,杨国丰,等. 美国页岩油勘探开发现状与前景展望[J]. 石油与天然气地质,2019,40(3):469–477. ZHOU Qingfan, JIN Zhijun, YANG Guofeng, et al. Shale oil exploration and production in the U. S. : status and outlook[J]. Oil & Gas Geology, 2019, 40(3): 469–477.
[23] 邓正红. 页岩战略:美联储在行动[M]. 北京:石油工业出版社,2017. DENG Zhenghong. Shale strategy: the federal reserve in action[M]. Beijing: Petroleum Industry Press, 2017.
[24] 周雪. 美国页岩油勘探开发现状及其对中国的启示[J]. 现代化工,2022,42(7):5-9. ZHOU Xue. Current situation of U. S. A. shale oil exploration and development, and enlightenment to China[J]. Modern Chemical Industry, 2023, 42(7): 5-9.
[25] 国家能源局. 2023年全国油气勘探开发十大标志性成果[EB/OL]. (2024-01-09)[2024-01-20].https://www.nea.gov.cn/2024-01/09/c_1310759352.htm. National Energy Administration. Ten landmark achievements in national oil and gas exploration and development in 2023[EB/OL]. (2024-01-09) [2024-01-20].https://www.nea.gov.cn/2024-01/09/c_1310759352.htm.
[26] 袁建强. 济阳坳陷页岩油多层立体开发关键工程技术[J]. 石油钻探技术,2023,51(1):1–8. YUAN Jianqiang. Key engineering technologies for three-dimensional development of multiple formations of shale oil in Jiyang Depression[J]. Petroleum Drilling Techniques, 2023, 51(1): 1–8.
[27] 李民峰,刘楠. 独家| 10问10答!权威详解大庆油田古龙页岩油[EB/OL]. 黑龙江日报,2021-08-25 [ 2024-01-20].https://new.qq.com/rain/a/20210825A04DFJ00. LI Minfeng, LIU Nan. Exclusive | 10 questions and answers! Authoritative detailed explanation of Gulong shale oil in Daqing Oilfield[EB/OL]. Heilongjiang Daily, 2021-08-25 [2024-01-20].https://new.qq.com/rain/a/20210825A04DFJ00.
[28] 吴钧,于晓红,王权,等.松辽盆地古龙页岩油勘探开发全息智能生态系统设计与开发[J].大庆石油地质与开发,2021,40(5):181-190. WU Jun,YU Xiaohong,WANG Quan,et al. Design and development of holographic intelligent ecosystem for exploration and development of Gulong shale oil in Songliao Basin[J].Petroleum Geology & Oilfield Development in Daqing,2021,40(5):181-190.
[29] 克拉玛依融媒. 吉木萨尔:石头缝里 “榨” 油[EB/OL]. (2023-08-30)[2024-01-20].https://roll.sohu.com/a/716280276_121119059. Karamay Financing Media. Jimsar: Squeezing oil from a crack in the stone[EB/OL]. (2023-08-30)[2024-01-20].https://roll.sohu.com/a/716280276_121119059.
[30] 余果林,肖丹. 又见春风过陇塬:长庆陇东页岩油规模效益开发纪略[N]. 中国石油报,2023-06-27(01). YU Guolin, XIAO Dan. Spring breeze over Longyuan again: a brief account of the scale benefit development of Longdong shale oil in Changqing[N]. China Petroleum Daily, 2023-06-27(01).
[31] 徐佳,高鹏. “改” 出新活力 “革” 出新路径:长庆油田创新生产组织模式助推高质量发展纪实[N]. 中国石油报,2022-12-13(04). XU Jia, GAO Peng. “Transforming” into new vitality and “innovating” into new paths: Changqing Oilfield innovative production organization model to promote high-quality development documentary[N]. China Petroleum Daily, 2022-12-13(04).
[32] 张东清,万云强,张文平,等. 涪陵页岩气田立体开发优快钻井技术[J]. 石油钻探技术,2023,51(2):16–21. ZHANG Dongqing, WAN Yunqiang, ZHANG Wenping, et al. Optimal and fast drilling technologies for stereoscopic development of the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2023, 51(2): 16–21.
[33] 孙焕泉. 济阳坳陷页岩油勘探实践与认识[J]. 中国石油勘探,2017,22(4):1–14. SUN Huanquan. Exploration practice and cognitions of shale oil in Jiyang Depression[J]. China Petroleum Exploration, 2017, 22(4): 1–14.
[34] 赵福豪,黄维安,雍锐,等. 地质工程一体化研究与应用现状[J]. 石油钻采工艺,2021,43(2):131–138. ZHAO Fuhao, HUANG Weian, YONG Rui, et al. Research and application status of geology-engineering integration[J]. Oil Drilling & Production Technology, 2021, 43(2): 131–138.
[35] 何骁,周鹏,杨洪志,等. 页岩气地质工程一体化管理实践与展望[J]. 天然气工业,2022,42(2):1–10. HE Xiao, ZHOU Peng, YANG Hongzhi, et al. Management practice and prospect of shale gas geology-engineering integration[J]. Natural Gas Industry, 2022, 42(2): 1–10.
[36] 林腊梅,程付启,刘骏锐,等. 济阳坳陷渤南洼陷沙一段页岩油资源潜力评价[J]. 中国海上油气,2022,34(4):85–96. LIN Lamei, CHENG Fuqi, LIU Junrui, et al. Evaluation of shale oil resource potential in the Es1 Member in Bonan Sag, Jiyang Depression[J]. China Offshore Oil and Gas, 2022, 34(4): 85–96.
[37] 舒逸,郑有恒,包汉勇,等. 四川盆地复兴地区下侏罗统页岩油气富集高产主控因素[J]. 世界石油工业,2023,30(5):26–38. SHU Yi, ZHENG Youheng, BAO Hanyong, et al. Main controlling factors for high yield and enrichment of shale oil and gas in the Lower Jurassic in the Fuxing area of Sichuan Basin[J]. World Petroleum Industry, 2023, 30(5): 26–38.
[38] 康玉柱. 中国非常规油气勘探重大进展和资源潜力[J]. 石油科技论坛,2018,37(4):1–7. KANG Yuzhu. Significant exploration progress and resource potential of unconventional oil and gas in China[J]. Petroleum Science and Technology Forum, 2018, 37(4): 1–7.
[39] 敬民. 如何赢得页岩油革命[J]. 中国石油石化,2023(24):34–37. JING Min. How to win the shale oil revolution[J]. China Petrochem, 2023(24): 34–37.
[40] 邹才能,潘松圻,荆振华,等. 页岩油气革命及影响[J]. 石油学报,2020,41(1):1–12. doi: 10.1038/s41401-019-0299-4 ZOU Caineng, PAN Songqi, JING Zhenhua, et al. Shale oil and gas revolution and its impact[J]. Acta Petrolei Sinica, 2020, 41(1): 1–12. doi: 10.1038/s41401-019-0299-4
[41] 邹才能,马锋,潘松圻,等. 全球页岩油形成分布潜力及中国陆相页岩油理论技术进展[J]. 地学前缘,2023,30(1):128-142. ZOU Caineng, MA Feng, PAN Songqi. Formation and distribution potential of global shale oil and the developments of continental shale oil theory and technology in China[J]. Earth Science Frontiers, 30(1): 128-142.
[42] 赵文智,胡素云,侯连华,等. 中国陆相页岩油类型、资源潜力及与致密油的边界[J]. 石油勘探与开发,2020,47(1):1–10. doi: 10.1016/S1876-3804(20)60001-5 ZHAO Wenzhi, HU Suyun, HOU Lianhua, et al. Types and resource potential of continental shale oil in China and its boundary with tight oil[J]. Petroleum Exploration and Development, 2020, 47(1): 1–10. doi: 10.1016/S1876-3804(20)60001-5
[43] 马永生,蔡勋育,赵培荣,等. 中国陆相页岩油地质特征与勘探实践[J]. 地质学报,2022,96(1):155–171. MA Yongsheng, CAI Xunyu, ZHAO Peirong, et al. Geological characteristics and exploration practices of continental shale oil in China[J]. Acta Geologica Sinica, 2022, 96(1): 155–171.
[44] 马永生,蔡勋育,赵培荣. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发,2018,45(4):561–574. MA Yongsheng, CAI Xunyu, ZHAO Peirong. China’s shale gas exploration and development: Understanding and practice[J]. Petroleum Exploration and Development, 2018, 45(4): 561–574.
[45] 付茜,刘启东,刘世丽,等. 中国 “夹层型” 页岩油勘探开发现状及前景[J]. 石油钻采工艺,2019,41(1):63–70. FU Qian, LIU Qidong, LIU Shili, et al. Exploration & development status and prospect of sandwich-type shale oil reservoirs in China[J]. Oil Drilling & Production Technology, 2019, 41(1): 63–70.
[46] 慕立俊,拜杰,齐银,等. 庆城夹层型页岩油地质工程一体化压裂技术[J]. 石油钻探技术,2023,51(5):33–41. MU Lijun, BAI Jie, QI Yin, et al. Geological engineering integrated fracturing technology for Qingcheng interlayer shale oil[J]. Petroleum Drilling Techniques, 2023, 51(5): 33–41.
[47] 田启忠,戴荣东,王继强,等. 胜利油田页岩油丛式井提速提效钻井技术[J]. 石油钻采工艺,2023,45(4):404–409. TIAN Qizhong, DAI Rongdong, WANG Jiqiang, et al. An efficient and fast shale oil cluster well drilling technology for Shengli Oilfield[J]. Oil Drilling & Production Technology, 2023, 45(4): 404–409.
[48] 朱海燕,焦子曦,刘惠民,等. 济阳坳陷陆相页岩油气藏组合缝网高导流压裂关键技术[J]. 天然气工业,2023,43(11):120–130. ZHU Haiyan, JIAO Zixi, LIU Huimin, et al. A new high-conductivity combined network fracturing technology for continental shale oil and gas reservoirs in the Jiyang Depression[J]. Natural Gas Industry, 2023, 43(11): 120–130.
[49] 杨国丰,周庆凡,卢雪梅. 页岩油勘探开发成本研究[J]. 中国石油勘探,2019,24(5):576–588. YANG Guofeng, ZHOU Qingfan, LU Xuemei. Study on the cost of shale oil exploration and development[J]. China Petroleum Exploration, 2019, 24(5): 576–588.
[50] U. S. Energy Information Administration. Trends in U. S. oil and natural gas upstream costs[R]. Washington, D. C. : U. S. Department of Energy, 2016.
[51] 袁士义,雷征东,李军诗,等. 陆相页岩油开发技术进展及规模效益开发对策思考[J]. 中国石油大学学报(自然科学版),2023,47(5):13–24. YUAN Shiyi, LEI Zhengdong, LI Junshi, et al. Progress in technology for the development of continental shale oil and thoughts on the development of scale benefits and strategies[J]. Journal of China University of Petroleum(Edition of Natural Science), 2023, 47(5): 13–24.
[52] 郭焦锋,王婕,孟凡达. 对标国际一流,切实推进中国页岩油上游产业高质量发展[J]. 中国石油勘探,2019,24(5):547–552. GUO Jiaofeng, WANG Jie, MENG Fanda. Promoting the high-quality development of China’s shale oil upstream industry by following international first-class standard[J]. China Petroleum Exploration, 2019, 24(5): 547–552.
[53] 王敏生,闫娜,光新军. 国际油田服务公司低碳发展策略与启示[J]. 油气与新能源,2023,35(2):13–20. WANG Minsheng, YAN Na, GUANG Xinjun. Strategy and revelation on low carbon development in international oilfield service companies[J]. Petroleum and New Energy, 2023, 35(2): 13–20.
[54] 孙德强,许金华,潘教峰,等. 基于智库研究双螺旋法的中国页岩油科技创新治理体系构建[J]. 智库理论与实践,2022,7(5):29-35. SUN Deqiang, XU Jinhua, PAN Jiaofeng, et al. Construction of Chinese shale oil technology innovation governance system based on the double helix structure of think tank research[J]. Think Tank: Theory & Practice, 2022, 7(5): 29-35.
[55] 王敏生. 油气井钻完井作业碳减排发展方向与建议[J]. 石油钻探技术,2022,50(6):1–6. WANG Minsheng. Development direction and suggestions for carbon emission reduction during drilling and completion[J]. Petroleum Drilling Techniques, 2022, 50(6): 1–6.
[56] 李阳,王敏生,薛兆杰,等. 绿色低碳油气开发工程技术的发展思考[J]. 石油钻探技术,2023,51(4):11–19. LI Yang, WANG Minsheng, XUE Zhaojie, et al. Thoughts on green and low-carbon oil and gas development engineering technologies [J]. Petroleum Drilling Techniques, 2023, 51(4): 11–19.
-
期刊类型引用(8)
1. 刘搏,蒋建方,闫琦睿,褚占宇,刘金栋. 压裂支撑剂在水平井内输送规律实验研究. 石油化工应用. 2025(04): 16-22 . 百度学术
2. 闫琦睿,蒋建方,刘搏,褚占宇,刘金栋. 大排量压裂组合粒径支撑剂铺置效果研究. 石油地质与工程. 2024(06): 112-119 . 百度学术
3. 陈立超,张典坤,吕帅锋,肖宇航,王生维. 内蒙古西部沙漠砂支撑力学性能及压裂工程意义. 材料导报. 2024(S2): 147-153 . 百度学术
4. 王治国,陈志畅,仝少凯,贾栋尧,罗向荣,苏晓辉. 支撑剂在纳米改性VES压裂液中的运移特性. 当代化工. 2023(01): 193-197 . 百度学术
5. 马代兵,陈立超. 煤层气直井压裂效果及其对产能影响——以窑街矿区为例. 煤炭科学技术. 2023(06): 130-136 . 百度学术
6. 王雪飞,王素玲,侯峰,王明,李雪梅,孙丹丹. 基于CFD-DEM方法的迂曲裂缝中支撑剂运移关键影响因素分析. 特种油气藏. 2022(06): 150-158 . 百度学术
7. 张红杰,刘欣佳,张潇,张遂安,邵冰冰. 煤系储层综合开发中的压裂射孔方案优化研究. 特种油气藏. 2021(01): 154-160 . 百度学术
8. 张潇,刘欣佳,田永东,张遂安,连浩宇,郑伟博,马雄强. 水力压裂支撑剂铺置形态影响因素研究. 特种油气藏. 2021(06): 113-120 . 百度学术
其他类型引用(2)