超深井控温钻井隔热涂层参数影响机制研究

宋先知, 姚学喆, 许争鸣, 周蒙蒙, 王庆辰

宋先知,姚学喆,许争鸣,等. 超深井控温钻井隔热涂层参数影响机制研究[J]. 石油钻探技术,2024, 52(2):126-135. DOI: 10.11911/syztjs.2024048
引用本文: 宋先知,姚学喆,许争鸣,等. 超深井控温钻井隔热涂层参数影响机制研究[J]. 石油钻探技术,2024, 52(2):126-135. DOI: 10.11911/syztjs.2024048
SONG Xianzhi, YAO Xuezhe, XU Zhengming, et al. Research on the influence mechanism of heat-insulating coating parameters in temperature-controlled drilling of ultra-deep well [J]. Petroleum Drilling Techniques,2024, 52(2):126-135. DOI: 10.11911/syztjs.2024048
Citation: SONG Xianzhi, YAO Xuezhe, XU Zhengming, et al. Research on the influence mechanism of heat-insulating coating parameters in temperature-controlled drilling of ultra-deep well [J]. Petroleum Drilling Techniques,2024, 52(2):126-135. DOI: 10.11911/syztjs.2024048

超深井控温钻井隔热涂层参数影响机制研究

基金项目: 国家自然科学基金杰出青年科学基金项目“油气井流体力学与工程”(编号:52125401)资助。
详细信息
    作者简介:

    宋先知(1982—),男,黑龙江依安人,2004年毕业于石油大学(华东)石油工程专业,2010年获中国石油大学(北京)油气井工程专业博士学位,教授,博士生导师,主要从事井筒多相流、智能钻完井与地热钻完井等方面的研究与教学工作。E-mail:songxz@cup.edu.cn

    通讯作者:

    许争鸣,xuzm@cugb.edu.cn

  • 中图分类号: TE21

Research on the Influence Mechanism of Heat-Insulating Coating Parameters in Temperature-Controlled Drilling of Ultra-Deep Well

  • 摘要:

    为揭示隔热涂层对超深井井筒温度场的影响规律,针对隔热涂层与钻杆的导热特点,采用传热热阻形式计算钻杆的综合传热系数,构建了考虑钻杆内隔热涂层影响的超深井井筒–地层瞬态传热模型,并采用有限差分法对模型进行离散,利用高斯–赛德尔算法进行迭代求解。通过理论分析和现场数据验证了模型的准确性。研究发现,钻杆内隔热涂层的导热系数对井底循环温度影响显著,随着导热系数减小,井筒环空温度迅速降低,出口温度升高;隔热涂层的厚度和长度对井筒温度也有重要影响,隔热涂层厚度越大,井底循环温度越低。这些发现为超深井钻井过程中井筒温度的调控和隔热钻杆参数的优选提供了重要理论依据。

    Abstract:

    To reveal the influence of the heat-insulating coating on the wellbore temperature field of ultra-deep wells, the comprehensive heat transfer coefficient of the drill pipe was calculated in the form of heat transfer resistance according to the thermal conductivity characteristics of the heat-insulating coating and the drill pipe. A transient heat transfer model of the wellbore-formation of the ultra-deep well considering the heat-insulating coating inside the drill pipe was developed. The model was discretized by the finite difference method and solved iteratively by the Gauss-Seidel algorithm. The accuracy of the model was validated through theoretical analysis and field data. The results show that the thermal conductivity coefficient of the heat-insulating coating inside the drill pipe significantly affects the bottom hole circulating temperature. A decrease in conductivity coefficient leads to a rapid drop in wellbore annular temperature and an increase in exit temperature. The thickness and length of the heat-insulating coating also greatly impact wellbore temperature, with greater thickness resulting in a lower bottom hole circulating temperature. These findings offer essential theoretical support for wellbore temperature control and optimization of heat-insulating drill pipe parameters during ultra-deep well drilling.

  • 图  1   钻井液与隔热钻杆传热示意

    Figure  1.   Heat transfer between drilling fluid and heat-insulating drill pipe

    图  2   Holmes & Swift模型与本文模型计算结果对比结果

    Figure  2.   Comparison results between Holmes & Swift model and the proposed model

    图  3   X井井筒循环温度场的预测结果

    Figure  3.   Prediction results of wellbore circulation temperature field of Well X

    图  4   不同导热系数隔热涂层下的环空内温度剖面

    Figure  4.   Wellbore annular temperature profile under different thermal conductivities of heat-insulating coating

    图  5   不同厚度隔热涂层下的环空内温度剖面

    Figure  5.   Annular temperature profile under different thicknesses of heat-insulating coating

    图  6   不同长度隔热涂层下的环空内温度剖面

    Figure  6.   Annular temperature profile under different lengths of heat-insulating coating

    表  1   X井的井身结构与井眼扩大率

    Table  1   Casing program and borehole expansion rate of Well X

    开次钻头直径/mm井深/m套管外径/mm套管下深/m水泥返深/m井眼扩大率,%
    导管660.4105.00508.0105.000
    一开444.51 199.50339.71199.150
    二开311.14 363.00250.84 362.0003.94
    三开215.97 728.00177.87 726.774 1624.14
    四开149.28 543.003.43
    下载: 导出CSV

    表  2   X井的传热介质热物性参数

    Table  2   Thermal property parameters of heat transfer medium of Well X

    介质 密度/
    (kg·m−3
    比热容/
    (J·kg−1·℃−1
    导热系数/
    (W·m−1·℃−1
    钻井液 1 600 1 600 1.200
    钻柱 7 800 500 48.000
    套管 7 800 500 48.000
    水泥环 2 140 2 000 0.700
    地层岩石 2 655 985 2.021
    下载: 导出CSV
  • [1] 匡立春,支东明,王小军,等. 新疆地区含油气盆地深层—超深层成藏组合与勘探方向[J]. 中国石油勘探,2021,26(4):1–16.

    KUANG Lichun, ZHI Dongming, WANG Xiaojun, et al. Oil and gas accumulation assemblages in deep to ultra-deep formations and exploration targets of petroliferous basins in Xinjiang Region[J]. China Petroleum Exploration, 2021, 26(4): 1–16.

    [2] 王志刚,王稳石,张立烨,等. 万米科学超深井钻完井现状与展望[J]. 科技导报,2022,40(13):27–35.

    WANG Zhigang, WANG Wenshi, ZHANG Liye, et al. Present situation and prospect of drilling and completion of 10 000 meter scientific ultra deep wells[J]. Science & Technology Review, 2022, 40(13): 27–35.

    [3] 李涛,苏强,杨哲,等. 川西地区超深井钻井完井技术现状及攻关方向[J]. 石油钻探技术,2023,51(2):7–15.

    LI Tao, SU Qiang, YANG Zhe, et al. Current practices and research directions for drilling and completion technologies for ultra-deep wells in Western Sichuan[J]. Petroleum Drilling Techniques, 2023, 51(2): 7–15.

    [4] 汪海阁,黄洪春,纪国栋,等. 中国石油深井、超深井和水平井钻完井技术进展与挑战[J]. 中国石油勘探,2023,28(3):1–11.

    WANG Haige, HUANG Hongchun, JI Guodong, et al. Progress and challenges of drilling and completion technologies for deep, ultra-deep and horizontal wells of CNPC[J]. China Petroleum Exploration, 2023, 28(3): 1–11.

    [5] 苏义脑,路保平,刘岩生,等. 中国陆上深井超深井钻完井技术现状及攻关建议[J]. 石油钻采工艺,2020,42(5):527–542.

    SU Yinao, LU Baoping, LIU Yansheng, et al. Status and research suggestions on the drilling and completion technologies for onshore deep and ultra deep wells in China[J]. Oil Drilling & Production Technology, 2020, 42(5): 527–542.

    [6] 邓虎,贾利春. 四川盆地深井超深井钻井关键技术与展望[J]. 天然气工业,2022,42(12):82–94.

    DENG Hu, JIA Lichun. Key technologies for drilling deep and ultra-deep wells in the Sichuan Basin: current status, challenges and prospects[J]. Natural Gas Industry, 2022, 42(12): 82–94.

    [7] 汪海阁,黄洪春,毕文欣,等. 深井超深井油气钻井技术进展与展望[J]. 天然气工业,2021,41(8):163–177.

    WANG Haige, HUANG Hongchun, BI Wenxin, et al. Deep and ultra-deep oil/gas well drilling technologies: progress and prospect[J]. Natural Gas Industry, 2021, 41(8): 163–177.

    [8]

    KHALED M S, WANG Ningyu, ASHOK P, et al. Strategies for prevention of downhole tool failure caused by high bottomhole temperature in geothermal and high-pressure/high-temperature oil and gas wells[J]. SPE Drilling & Completion, 2023, 38(2): 243–260.

    [9]

    SPINDLER R. Analytical models for wellbore-temperature distribution[J]. SPE Journal, 2011, 16(1): 125–133. doi: 10.2118/140135-PA

    [10]

    HASAN A R, KABIR C S. Wellbore heat-transfer modeling and applications[J]. Journal of Petroleum Science and Engineering, 2012, 86/87: 127–136. doi: 10.1016/j.petrol.2012.03.021

    [11]

    AL SAEDI A Q, FLORI R E, KABIR C S. Influence of frictional or rotational kinetic energy on wellbore-fluid/temperature profiles during drilling operations[J]. SPE Drilling & Completion, 2019, 34(2): 128–142.

    [12]

    WU Xingru, XU Boyue, LING Kegang. A semi-analytical solution to the transient temperature behavior along the vertical wellbore after well shut-in[J]. Journal of Petroleum Science and Engineering, 2015, 131: 122–130. doi: 10.1016/j.petrol.2015.04.034

    [13]

    XU Boyue, WU Xingru, GAO Yonghui, et al. A semi-analytical solution to the transient temperature behavior along the wellbore and its applications in production management[R]. SPE 170631, 2014.

    [14]

    PENG Yu, ZHAO Jinzhou, SEPEHRNOORI K, et al. Study of the heat transfer in the wellbore during acid/hydraulic fracturing using a semianalytical transient model[J]. SPE Journal, 2019, 24(2): 877–890. doi: 10.2118/194206-PA

    [15] 赵金洲,彭瑀,李勇明,等. 基于双层非稳态导热过程的井筒温度场半解析模型[J]. 天然气工业,2016,36(1):68–75.

    ZHAO Jinzhou, PENG Yu, LI Yongming, et al. A semi-analytic model of wellbore temperature field based on double-layer unsteady heat conducting process[J]. Natural Gas Industry, 2016, 36(1): 68–75.

    [16]

    YANG Mou, TANG Daqian, CHEN Yuanhang, et al. Determining initial formation temperature considering radial temperature gradient and axial thermal conduction of the wellbore fluid[J]. Applied Thermal Engineering, 2019, 147: 876–885. doi: 10.1016/j.applthermaleng.2018.11.006

    [17]

    MAO Liangjie, WEI Changjiang, JIA Hai, et al. Prediction model of drilling wellbore temperature considering bit heat generation and variation of mud thermophysical parameters[J]. Energy, 2023, 284: 129341. doi: 10.1016/j.energy.2023.129341

    [18] 张锐尧,李军,柳贡慧,等. 深水钻井多压力系统条件下的井筒温度场研究[J]. 石油机械,2021,49(7):77–85.

    ZHANG Ruiyao, LI Jun, LIU Gonghui, et al. Research on the wellbore temperature field under the multiple pressure system during deep water drilling[J]. China Petroleum Machinery, 2021, 49(7): 77–85.

    [19]

    LI Gao, YANG Mou, MENG Yingfeng, et al. Transient heat transfer models of wellbore and formation systems during the drilling process under well kick conditions in the bottom-hole[J]. Applied Thermal Engineering, 2016, 93: 339–347. doi: 10.1016/j.applthermaleng.2015.09.110

    [20] 赵向阳,赵聪,王鹏,等. 超深井井筒温度数值模型与解析模型计算精度对比研究[J]. 石油钻探技术,2022,50(4):69–75.

    ZHAO Xiangyang, ZHAO Cong, WANG Peng, et al. A comparative study on the calculation accuracy of numerical and analytical models for wellbore temperature in ultra-deep wells[J]. Petroleum Drilling Techniques, 2022, 50(4): 69–75.

    [21] 田得强,李中,许亮斌,等. 深水高温高压气井钻井循环温度压力耦合计算与分析[J]. 中国海上油气,2022,34(5):149–157.

    TIAN Deqiang, LI Zhong, XU Liangbin, et al. Coupling calculation and analysis of circulating temperature pressure distribution in deepwater HTHP gas well drilling[J]. China Offshore Oil and Gas, 2022, 34(5): 149–157.

    [22]

    CHEN Xin, HE Miao, XU Mingbiao, et al. Fully transient coupled prediction model of wellbore temperature and pressure for multi-phase flow during underbalanced drilling[J]. Geoenergy Science and Engineering, 2023, 223: 211540. doi: 10.1016/j.geoen.2023.211540

    [23]

    XU Zhengming, CHEN Xuejiao, SONG Xianzhi, et al. Gas-kick simulation in oil-based drilling fluids with nonequilibrium gas-dissolution and -evolution effects[J]. SPE Journal, 2021, 26(5): 2549–2569. doi: 10.2118/206717-PA

    [24]

    XU Zhengming, WU Kan, SONG Xianzhi, et al. A unified model to predict flowing pressure and temperature distributions in horizontal wellbores for different energized fracturing fluids[J]. SPE Journal, 2019, 24(2): 834–856.

    [25] 王雪瑞,孙宝江,王志远,等. 考虑温度压力耦合效应的控压固井全过程水力参数计算方法[J]. 中国石油大学学报(自然科学版),2022,46(2):103–112.

    WANG Xuerui, SUN Baojiang, WANG Zhiyuan, et al. Calculation method of hydraulic parameters in whole cementing process considering coupling effect of temperature and pressure[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(2): 103–112.

    [26] 王金磊,江波,黄范勇. 井筒降温技术研究综述[J]. 新疆石油科技,2015,25(2):9–11.

    WANG Jinlei, JIANG Bo, HUANG Fanyong. A review of wellbore cooling technology[J]. Xinjiang Petroleum Science & Technology, 2015, 25(2): 9–11.

    [27] 吴鹏程,钟成旭,严俊涛,等. 深层页岩气水平井钻进中井筒–地层瞬态传热模型[J]. 石油钻采工艺,2022,44(1):1–8.

    WU Pengcheng, ZHONG Chengxu, YAN Juntao, et al. Well-formation transient heat transfer model during drilling of deep shale gas horizontal wells[J]. Oil Drilling & Production Technology, 2022, 44(1): 1–8.

    [28] 梁晓阳,赵聪,赵向阳,等. 基于热管技术的钻井液地面降温系统研制[J]. 石油机械,2023,51(3):24–32.

    LIANG Xiaoyang, ZHAO Cong, ZHAO Xiangyang, et al. Development of the drilling fluid surface cooling system based on heat pipes[J]. China Petroleum Machinery, 2023, 51(3): 24–32.

    [29] 李涛,杨哲,徐卫强,等. 泸州区块深层页岩气水平井优快钻井技术[J]. 石油钻探技术,2023,51(1):16–21.

    LI Tao, YANG Zhe, XU Weiqiang, et al. Optimized and fast drilling technology for deep shale gas horizontal wells in Luzhou Block[J]. Petroleum Drilling Techniques, 2023, 51(1): 16–21.

    [30] 贾利春,李枝林,张继川,等. 川南海相深层页岩气水平井钻井关键技术与实践[J]. 石油钻采工艺,2022,44(2):145–152.

    JIA Lichun, LI Zhilin, ZHANG Jichuan, et al. Key technology and practice of horizontal drilling for marine deep shale gas in southern Sichuan Basin[J]. Oil Drilling & Production Technology, 2022, 44(2): 145–152.

    [31] 王建龙,于志强,苑卓,等. 四川盆地泸州区块深层页岩气水平井钻井关键技术[J]. 石油钻探技术,2021,49(6):17–22.

    WANG Jianlong, YU Zhiqiang, YUAN Zhuo, et al. Key technologies for deep shale gas horizontal well drilling in Luzhou Block of Sichuan Basin[J]. Petroleum Drilling Techniques, 2021, 49(6): 17–22.

    [32] 刘昌弟,孙元伟,程怀标. 南海琼东南盆地高温低压大位移井钻井技术[J]. 特种油气藏,2013,20(6):80–83.

    LIU Changdi, SUN Yuanwei, CHENG Huaibiao. High temperature, low pressure and extended reach well drilling in the southeast Hainan Basin[J]. Special Oil & Gas Reservoirs, 2013, 20(6): 80–83.

    [33] 刘均一,陈二丁,李光泉,等. 基于相变蓄热原理的深井钻井液降温实验研究[J]. 石油钻探技术,2021,49(1):53–58.

    LIU Junyi, CHEN Erding, LI Guangquan, et al. Experimental study of drilling fluid cooling in deep wells based on phase change heat storage[J]. Petroleum Drilling Techniques, 2021, 49(1): 53–58.

    [34] 肖雨阳. 高含水气井井下节流工艺参数优化[D]. 荆州:长江大学,2023.

    XIAO Yuyang. Optimization of downhole throttling process parameters for gas wells with high water content[D]. Jingzhou: Yangtze University, 2023.

    [35] 闫新. 高含水气井井下节流特性研究[D]. 西安:西安石油大学,2021.

    YAN Xin. Study on downhole throttling characteristics of high water-cut gas wells[D]. Xi’an: Xi’an Shiyou University, 2021.

    [36] 余朝毅. 井下节流机理研究及现场应用[D]. 成都:西南石油大学,2004.

    YU Zhaoyi. Research on downhole throttling mechanism and field application[D]. Chengdu: Southwest Petroleum University, 2004.

    [37]

    SOPRANI S, ENGELBRECHT K, NØRGAARD A J. Active cooling and thermal management of a downhole tool electronics section[C]//Proceedings of the 24th IIR International Congress of Refrigeration. Paris: International Institute of Refrigeration, 2015: 85.

    [38]

    CHIN Y D, KVAERNER A. Cool-down-temperature overshoot phenomenon in subsea flowline and riser systems[R]. OTC 15253, 2003.

    [39]

    BONNISSEL M, OZOUX V, COUPRIE S, et al. Gel based materials for high insulation and long cool down time in deep water[R]. OTC 16504, 2004.

    [40]

    JANOFF D, MCKIE N, DAVALATH J. Prediction of cool down times and designing of insulation for subsea production equip-ment[R]. OTC 16507, 2004.

    [41]

    DAVALATH J, STEVENS K. Cool-down thermal performance of subsea systems based on Gulf of Mexico field experience[R]. OTC 17972, 2006.

    [42] 刘珂,高文凯,洪迪峰,等. 随钻仪器井下降温系统阻热性能研究[J]. 石油机械,2020,48(8):23–30.

    LIU Ke, GAO Wenkai, HONG Difeng, et al. Study on thermal resistance performance of downhole cooling system of instrument while drilling[J]. China Petroleum Machinery, 2020, 48(8): 23–30.

    [43] 刘珂,苏义脑,高文凯,等. 随钻仪器井下降温系统冷却效果数值研究[J]. 石油机械,2022,50(7):18–25.

    LIU Ke, SU Yinao, GAO Wenkai, et al. Numerical study on cooling effect of downhole cooling system of instrument while drilling[J]. China Petroleum Machinery, 2022, 50(7): 18–25.

    [44] 刘珂,高文凯,窦修荣,等. 随钻仪器井下降温系统传热特性研究[J]. 石油机械,2022,50(2):23–32.

    LIU Ke, GAO Wenkai, DOU Xiurong, et al. Heat transfer characteristic study on downhole cooling system of drilling instrument[J]. China Petroleum Machinery, 2022, 50(2): 23–32.

    [45] 杨世铭,陶文铨. 传热学[M]. 4版. 北京:高等教育出版社,2006.

    YANG Shiming, TAO Wenquan. Heat transfer[M]. 4th ed. Beijing: Higher Education Press, 2006.

  • 期刊类型引用(7)

    1. 梁红军,刘洪涛,颜辉,陈凯枫,阳君奇,周智. 防斜打快技术在库车前陆区的实践应用. 新疆石油天然气. 2023(02): 49-55 . 百度学术
    2. 马俊强,李飞,张光伟. 浅析煤层气参数井取芯段井斜超标原因及预防措施——基于平参2井. 中国煤层气. 2022(03): 21-25 . 百度学术
    3. 李成嵩,王银生. 东营地区地热回灌井钻井完井技术研究与试验. 石油钻探技术. 2021(06): 50-54 . 本站查看
    4. 张凯. 复合钻进技术在红柳煤矿冻结孔施工中的应用. 探矿工程(岩土钻掘工程). 2020(02): 54-58 . 百度学术
    5. 路宗羽,赵飞,雷鸣,邹灵战,石建刚,卓鲁斌. 新疆玛湖油田砂砾岩致密油水平井钻井关键技术. 石油钻探技术. 2019(02): 9-14 . 本站查看
    6. 刘勇. 石油定向井常用钻具组合的分析与探讨. 中国石油石化. 2017(02): 3-4 . 百度学术
    7. 李玮,李卓伦,刘伟卿,邱晓宁,陈世春. 扭转冲击提速工具在文安区块的现场应用. 特种油气藏. 2016(04): 144-146+158 . 百度学术

    其他类型引用(4)

图(6)  /  表(2)
计量
  • 文章访问数:  322
  • HTML全文浏览量:  35
  • PDF下载量:  139
  • 被引次数: 11
出版历程
  • 收稿日期:  2024-02-20
  • 修回日期:  2024-03-06
  • 网络出版日期:  2024-04-07
  • 刊出日期:  2024-04-02

目录

    /

    返回文章
    返回