深层裂缝性致密砂岩气藏基质–裂缝气体流动机理

曲鸿雁, 胡佳伟, 周福建, 史纪龙, 刘成

曲鸿雁,胡佳伟,周福建,等. 深层裂缝性致密砂岩气藏基质–裂缝气体流动机理[J]. 石油钻探技术,2024, 52(2):153-164. DOI: 10.11911/syztjs.2024045
引用本文: 曲鸿雁,胡佳伟,周福建,等. 深层裂缝性致密砂岩气藏基质–裂缝气体流动机理[J]. 石油钻探技术,2024, 52(2):153-164. DOI: 10.11911/syztjs.2024045
QU Hongyan, HU Jiawei, ZHOU Fujian, et al. Mechanism of gas flow in matrix-fracture in deep fractured tight sandstone gas reservoirs [J]. Petroleum Drilling Techniques,2024, 52(2):153-164. DOI: 10.11911/syztjs.2024045
Citation: QU Hongyan, HU Jiawei, ZHOU Fujian, et al. Mechanism of gas flow in matrix-fracture in deep fractured tight sandstone gas reservoirs [J]. Petroleum Drilling Techniques,2024, 52(2):153-164. DOI: 10.11911/syztjs.2024045

深层裂缝性致密砂岩气藏基质–裂缝气体流动机理

基金项目: 国家自然科学基金项目“超低渗透、致密储层蓄能重复压裂增能机理研究”(编号:52174044)、“致密储层缝内变载荷驱动裂缝疲劳扩展机理研究”(编号:52004302)和中国石油战略合作科技专项“准噶尔盆地玛湖中下组合和吉木萨尔陆相页岩油高效勘探开发理论及关键技术研究”(编号:ZLZX 2020-01-07)联合资助。
详细信息
    作者简介:

    曲鸿雁(1983—),女,山东烟台人,2006年毕业于中国石油大学(华东)信息与计算科学专业,2009年获中国石油大学(华东)应用数学专业硕士学位,2014年获西澳大学石油工程专业博士学位,研究员,博士生导师,主要从事非常规油气藏增产提采理论与技术方面的研究工作。E-mail: hongyan.qu@cup.edu.cn

  • 中图分类号: TE312

Mechanism of Gas Flow in Matrix-Fracture in Deep Fractured Tight Sandstone Gas Reservoirs

  • 摘要:

    为了探明深层裂缝性致密气藏的气体流动规律,研发了基质–裂缝系统气体流动物理模拟装置,建立了高温高压基质–裂缝系统气体流动物理模拟方法,模拟了不同温度和压力条件下气体从基质到天然裂缝及人工裂缝的流动过程,以及基质与裂缝之间的传质过程;对比分析了不同温度和压力条件下气体流动的差异性,明确了高温高压作用下应力和流态对气体流动规律的综合影响。模拟结果显示,储层压力和应力显著影响气体流量和岩石渗透率,温度变化对气体流量和渗透率的影响相对较小,含天然裂缝岩心受应力敏感和气体滑脱效应的影响显著。研究结果为深层裂缝性致密气藏的高效开发提供了理论依据。

    Abstract:

    In order to investigate the gas flow law of deep fractured tight gas reservoirs, a gas flow physical simulation device for matrix-fracture system was developed. Moreover, a gas flow physical simulation method for high-temperature and high-pressure matrix-fracture system was established and was used to simulate the gas flow process from matrix to natural and artificial fractures, as well as the mass transfer process between matrix and fracture under different temperature and pressure conditions. The differences in gas flow behavior under different temperature and pressure conditions were compared, and the comprehensive influence of stress and flow pattern on gas flow law under high temperature and high pressure was clarified. The simulation results show that the gas flow and rock permeability are significantly affected by reservoir pressure and stress, while the temperature changes have a relatively minor impact on gas flow and permeability. In addition, cores with natural fractures are significantly affected by stress sensitivity and gas slippage effect. The findings of this study can provide a theoretical basis for the efficient development of deep fractured tight gas reservoirs.

  • 图  1   基质–裂缝系统岩心组合

    Figure  1.   Core combination of matrix-fracture system

    图  2   人工钢块岩心轴面和端面

    Figure  2.   Axial and end faces of artificial steel core

    图  3   岩心CT扫描结果(左为外观,右为透视)

    Figure  3.   CT scanning results of cores (the left represents appearance, the right represents perspective)

    图  4   基质–裂缝系统气体流动模拟装置示意

    Figure  4.   Simulation device for gas flow in matrix-fracture system

    图  5   1#–3#、2#–4#岩心组合不同注入压力下基质–裂缝系统BC节点流量和压力随温度的变化

    Figure  5.   Evolution of flow rate and gas pressure in nodes B and C of matrix-fracture system of 1#–3# and 2#–4# core combinations with temperatures at different gas pressures

    图  6   1#–3#、2#–4#岩心组合不同温度下基质–裂缝系统流量随压力平方差的变化

    Figure  6.   Evolution of flow rate in matrix-fracture system of 1#–3# and 2#–4# core combinations with pressure square difference at different temperatures

    图  7   不同温度条件下氮气密度随压力的变化

    Figure  7.   Variation of nitrogen density with pressure at different temperatures

    图  8   不同温度和压力条件下的气体压缩系数

    Figure  8.   Gas compression coefficient at different temperatures and pressures

    图  9   不同温度条件下氮气黏度随压力的变化关系

    Figure  9.   Variation of nitrogen viscosity with pressure at different temperatures

    图  10   上、下游压力随时间的变化关系

    Figure  10.   Variation of upstream and downstream pressures with time

    图  11   不同气体压力下半对数图中衰减曲线斜率随温度的变化关系

    Figure  11.   Variation of decay curve slope in semi-logarithmic graph with temperature at different gas pressures

    图  12   不同气体压力下气体黏度和压缩系数之积随温度的变化关系

    Figure  12.   Variation of product of gas viscosity and compression coefficient with temperature at different gas pressures

    图  13   5#岩心不同气体压力下渗透率随温度的变化关系

    Figure  13.   Variation of permeability of core 5# with temperature at different gas pressures

    图  14   形状因子计算结果

    Figure  14.   Calculation results of shape factor

    表  1   试验岩心基本参数

    Table  1   Basic parameters of test cores

    岩心类别编号长度/cm直径/cm渗透率/mD孔隙度,%
    基质1#2.282.460.000 592.2
    2#4.872.480.001 521.7
    裂缝3#1.952.460.004 662.1
    4#5.052.470.011 020.8
    5#5.212.460.006 392.3
    下载: 导出CSV

    表  2   不同方法得到形状因子的对比

    Table  2   Comparison of shape factor results obtained by different methods

    方法 一维
    流动
    不同岩心的形状因子/m−2
    2#岩心 4#岩心 5#岩心
    Warren & Root公式[50] 12/L2 4 705.42 4 735.37 4 415.76
    Kazemi公式[5152] 4/L2 1 568.47 1 578.45 1 471.92
    Coats公式[5354] 8/L2 3 136.95 3 156.91 2 943.84
    李晓良公式[5556] π2/L2 3 870.07 3 894.71 3 631.83
    试验测试 最大值 6 903.82 6 604.15 3 412.88
    最小值 2 709.05 2 318.07 2 153.92
    平均值 4 249.67 3 403.42 2 904.41
    下载: 导出CSV
  • [1] 陈双艳,谢俊,刘一丹,等. 裂缝性低渗透油藏储层物性的主控因素及其对产能的影响:以大情字井油田黑43区块为例[J]. 山东科技大学学报(自然科学版),2014,33(1):33–39.

    CHEN Shuangyan, XIE Jun, LIU Yidan, et al. Main controlling factors of reservoir physical property of fractured low permeability reservoir and their influence on productivity: a case study of Hei-43 Block, Daqingzijing Oilfield[J]. Journal of Shandong University of Science and Technology(Natural Science), 2014, 33(1): 33–39.

    [2] 林应之,林启才,邓世杨,等. 深层砂岩裂缝性气藏缝网压裂裂缝导流能力分析[J]. 油气井测试,2021,30(5):9–17.

    LIN Yingzhi, LIN Qicai, DENG Shiyang, et al. Analysis on fracture conductivity of fracture network fracturing in deep sandstone fractured gas reservoir[J]. Well Testing, 2021, 30(5): 9–17.

    [3] 禹定孺,刘春雷. 库车坳陷大北地区白垩系裂缝及产能特征[J]. 重庆科技学院学报(自然科学版),2011,13(5):16–18.

    YU Dingru, LIU Chunlei. On the characters of productivity and crack at Dabei Area in Kuqa depression of the Cretaceous stage[J]. Journal of Chongqing University of Science and Technology(Natural Sciences Edition), 2011, 13(5): 16–18.

    [4] 肖阳,刘守昱,何永志,等. 致密砂岩裂缝性气藏缝网压裂裂缝复杂程度评价方法[J]. 特种油气藏,2022,29(2):157–163.

    XIAO Yang, LIU Shouyu, HE Yongzhi, et al. Evaluation method of fracture complexity of fracture network fracturing for tight sandstone fractured gas reservoir[J]. Special Oil & Gas Reservoirs, 2022, 29(2): 157–163.

    [5] 陈勉,周健,金衍,等. 随机裂缝性储层压裂特征实验研究[J]. 石油学报,2008,29(3):431–434.

    CHEN Mian, ZHOU Jian, JIN Yan, et al. Experimental study on fracturing features in naturally fractured reservoir[J]. Acta Petrolei Sinica, 2008, 29(3): 431–434.

    [6] 孙鑫,刘礼军,侯树刚,等. 基于页岩油水两相渗流特性的油井产能模拟研究[J]. 石油钻探技术,2023,51(5):167–172.

    SUN Xin, LIU Lijun, HOU Shugang, et al. Numerical simulation of shale oil well productivity based on shale oil-water two-phase flow characteristics[J]. Petroleum Drilling Techniques, 2023, 51(5): 167–172.

    [7]

    MORIDIS G J, BLASINGAME T A, FREEMAN C M. Analysis of mechanisms of flow in fractured tight-gas and shale-gas reservoirs[R]. SPE 139250, 2010.

    [8]

    FREEMAN C M, MORIDIS G, ILK D, et al. A numerical study of performance for tight gas and shale gas reservoir systems[J]. Journal of Petroleum Science and Engineering, 2013, 108: 22–39. doi: 10.1016/j.petrol.2013.05.007

    [9] 陈志明,张绍琦,周彪,等. 考虑离散裂缝的非均质裂缝性气藏数值试井新模型[J]. 天然气工业,2023,43(2):77–86.

    CHEN Zhiming, ZHANG Shaoqi, ZHOU Biao, et al. A new numerical well testing model considering discrete fractures for heterogeneous fractured gas reservoirs[J]. Natural Gas Industry, 2023, 43(2): 77–86.

    [10]

    GUO Tonglou, KOU Zuhao, ZHAO Yulong, et al. Role of gas multiple transport mechanisms and fracture network heterogeneity on the performance of hydraulic fractured multiwell-pad in unconventional reservoirs[J]. Fuel, 2023, 342: 127808. doi: 10.1016/j.fuel.2023.127808

    [11]

    KARNIADAKIS G, BESKOK A, ALURU N. Microflows and nanoflows: fundamentals and simulation[M]. New York: Springer, 2005.

    [12]

    ECONOMIDES M J, MARTIN T. Modern fracturing: Enhancing natural gas production[M]. Houston: Energy Tribune Publishing Inc. , 2007.

    [13]

    HORNYAK G L, DUTTA J, TIBBALS H F, et al. Introduction to nanoscience[M]. Boca Raton: CRC Press, 2008.

    [14]

    YUCEL AKKUTLU I, FATHI E. Multiscale gas transport in shales with local kerogen heterogeneities[J]. SPE Journal, 2012, 17(4): 1002–1011. doi: 10.2118/146422-PA

    [15] 张德良,张烈辉,赵玉龙,等. 低渗透气藏多级压裂水平井稳态产能模型[J]. 油气地质与采收率,2013,20(3):107–110.

    ZHANG Deliang, ZHANG Liehui, ZHAO Yulong, et al. Study on steady productivity of fractured horizontal well in low permeability gas reservoir[J]. Petroleum Geology and Recovery Efficiency, 2013, 20(3): 107–110.

    [16]

    XU Jianchun, GUO Chaohua, WEI Mingzhen, et al. Production performance analysis for composite shale gas reservoir considering multiple transport mechanisms[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 382–395. doi: 10.1016/j.jngse.2015.05.033

    [17] 郭平,徐永高,陈召佑,等. 对低渗气藏渗流机理实验研究的新认识[J]. 天然气工业,2007,27(7):86–88. doi: 10.3321/j.issn:1000-0976.2007.07.025

    GUO Ping, XU Yonggao, CHEN Zhaoyou, et al. New ideas obtained from laboratory study of flowing mechanisms in low-permeability reservoirs[J]. Natural Gas Industry, 2007, 27(7): 86–88. doi: 10.3321/j.issn:1000-0976.2007.07.025

    [18] 温晓红,周拓,胡勇,等. 致密岩心中气体渗流特征及影响因素实验研究[J]. 石油实验地质,2010,32(6):592–595.

    WEN Xiaohong, ZHOU Tuo, HU Yong, et al. Experimental study of properties and influencing factors of gas flow in tight core[J]. Petroleum Geology and Experiment, 2010, 32(6): 592–595.

    [19] 胡勇,李熙喆,卢祥国,等. 砂岩气藏衰竭开采过程中含水饱和度变化规律[J]. 石油勘探与开发,2014,41(6):723–726.

    HU Yong, LI Xizhe, LU Xiangguo, et al. Varying law of water saturation in the depletion-drive development of sandstone gas reservoirs[J]. Petroleum Exploration and Development, 2014, 41(6): 723–726.

    [20] 姚约东,李相方,葛家理,等. 低渗气层中气体渗流克林贝尔效应的实验研究[J]. 天然气工业,2004,24(11):100–102.

    YAO Yuedong, LI Xiangfang, GE Jiali, et al. Experimental research for Klinkenberg effect of gas percolation in low permeable gas reservoirs[J]. Natural Gas Industry, 2004, 24(11): 100–102.

    [21] 杨朝蓬,沙雁红,刘尚奇,等. 苏里格致密砂岩气藏单相气体渗流特征[J]. 科技导报,2014,32(28/29):54–58.

    YANG Zhaopeng, SHA Yanhong, LIU Shangqi, et al. Flow behavior of single-phase gas in Sulige tight sandstone gas reservoir[J]. Science & Technology Review, 2014, 32(28/29): 54–58.

    [22]

    CUI X, BUSTIN A M M, BUSTIN R M. Measurements of gas permeability and diffusivity of tight reservoir rocks: different approaches and their applications[J]. Geofluids, 2009, 9(3): 208–223. doi: 10.1111/j.1468-8123.2009.00244.x

    [23] 李清宇,王乾,徐献芝. 细观渗流的研究与进展[J]. 渗流力学进展,2014,4(2):29-41.

    LI Qingyu, WANG Qian, XU Xianzhi, Research and development on micro seepage[J]. Advances in Porous Flow, 2014, 4(2): 29-41.

    [24]

    RAEINI A Q, BLUNT M J, BIJELJIC B. Direct simulations of two-phase flow on micro-CT images of porous media and upscaling of pore-scale forces[J]. Advances in Water Resources, 2014, 74: 116–126. doi: 10.1016/j.advwatres.2014.08.012

    [25] 刘向君,朱洪林,梁利喜. 基于微CT技术的砂岩数字岩石物理实验[J]. 地球物理学报,2014,57(4):1133–1140.

    LIU Xiangjun, ZHU Honglin, LIANG Lixi. Digital rock physics of sandstone based on micro-CT technology[J]. Chinese Journal of Geophysics, 2014, 57(4): 1133–1140.

    [26] 雷鹏,魏铭江,吕栋梁. 形状因子及窜流系数测试实验研究[J]. 内江科技,2014,35(5):104–105.

    LEI Peng, WEI Mingjiang, LYU Dongliang. Experimental study on shape factor and channeling coefficient[J]. Nei Jiang Science & Technology, 2014, 35(5): 104–105.

    [27] 杨建,康毅力,王业众,等. 裂缝性致密砂岩储层气体传质实验[J]. 天然气工业,2010,30(10):39–41.

    YANG Jian, KANG Yili, WANG Yezhong, et al. An experimental study of gas mass-transfer for fractured tight sand gas reservoirs[J]. Natural Gas Industry, 2010, 30(10): 39–41.

    [28]

    KUDAPA V K, KUMAR S, GUPTA D K, et al. Modelling of gas production from shale matrix to fracture network[R]. SPE187473, 2017.

    [29]

    ZHANG Jingzhe, RASLAN M, WU Cheng, et al. A generalized dynamic transfer function for ultra-tight dual-porosity systems[R]. SPE 209324, 2022.

    [30]

    ROSTAMI P, SHARIFI M, DEJAM M. Shape factor for regular and irregular matrix blocks in fractured porous media[J]. Petroleum Science, 2020, 17(1): 136–152. doi: 10.1007/s12182-019-00399-9

    [31]

    WANG Zhechao, GUO Jiafan, PAN Zhejun, et al. A generalized matrix-fracture flow transfer model for fractured porous media[J]. Journal of Porous Media, 2021, 24(3): 51–75. doi: 10.1615/JPorMedia.2021034619

    [32]

    HASSANZADEH H, POOLADI-DARVISH M. Effects of fracture boundary conditions on matrix-fracture transfer shape factor[J]. Transport in Porous Media, 2006, 64(1): 51–71. doi: 10.1007/s11242-005-1398-x

    [33]

    RANJBAR E, HASSANZADEH H. Matrix–fracture transfer shape factor for modeling flow of a compressible fluid in dual-porosity media[J]. Advances in Water Resources, 2011, 34(5): 627–639. doi: 10.1016/j.advwatres.2011.02.012

    [34]

    ZHOU Quanlin, OLDENBURG C M, SPANGLER L H, et al. Approximate solutions for diffusive fracture-matrix transfer: application to storage of dissolved CO2 in fractured rocks[J]. Water Resources Research, 2017, 53(2): 1746–1762. doi: 10.1002/2016WR019868

    [35]

    WANG Lu, YANG Shenglai, MENG Zhan, et al. Time-dependent shape factors for fractured reservoir simulation: effect of stress sensitivity in matrix system[J]. Journal of Petroleum Science and Engineering, 2018, 163: 556–569. doi: 10.1016/j.petrol.2018.01.020

    [36]

    BERRE I, DOSTER F, KEILEGAVLEN E. Flow in fractured porous media: a review of conceptual models and discretization approaches[J]. Transport in Porous Media, 2019, 130(1): 215–236. doi: 10.1007/s11242-018-1171-6

    [37]

    LIU Kai, YIN Daiyin, SUN Yeheng, et al. Analytical and experimental study of stress sensitivity effect on matrix/fracture transfer in fractured tight reservoir[J]. Journal of Petroleum Science and Engineering, 2020, 195: 107958. doi: 10.1016/j.petrol.2020.107958

    [38] 王大为,高振南,李俊飞,等. 裂缝性低渗透油藏窜流规律实验研究[J]. 非常规油气,2021,8(4):43–47.

    WANG Dawei, GAO Zhennan, LI Junfei, et al. Experimental study on crossflow law of fractured low permeability reservoir[J]. Unconventional Oil & Gas, 2021, 8(4): 43–47.

    [39] 康毅力,赖哲涵,陈明君,等. 基于压力衰减法的页岩气体扩散系数应力敏感性实验[J]. 天然气工业,2022,42(2):59–70.

    KANG Yili, LAI Zhehan, CHEN Mingjun, et al. Stress sensitivity experiments of shale gas diffusion coefficients based on the pressure decay method[J]. Natural Gas Industry, 2022, 42(2): 59–70.

    [40]

    WANG Zhechao, GUO Jiafan, QIAO Liping, et al. Matrix–fracture flow transfer in fractured porous media: experiments and simulations[J]. Rock Mechanics and Rock Engineering, 2022, 55(4): 2407–2423. doi: 10.1007/s00603-022-02785-z

    [41]

    GAO Zheng, LI Bobo, LI Jianhua, et al. Coal permeability related to matrix-fracture interaction at different temperatures and stresses[J]. Journal of Petroleum Science and Engineering, 2021, 200: 108428. doi: 10.1016/j.petrol.2021.108428

    [42]

    SU Yuliang, WANG Chengwei, LI Lei, et al. Experimental on physical properties of shale gas under low-velocity seepage and stress sensitivity environment[J]. Journal of Petroleum Science and Engineering, 2022, 218: 110974. doi: 10.1016/j.petrol.2022.110974

    [43]

    ZHANG Yuxiang, YAN Haijun, YANG Shenglai, et al. Effects of temperature on seepage capacity for a multi-type ultra-deep carbonate gas reservoir[J]. Journal of Natural Gas Geoscience, 2023, 8(2): 153–167. doi: 10.1016/j.jnggs.2023.03.003

    [44]

    WANG Jinkai, FU Jialin, XIE Jun, et al. Quantitative characterisation of gas loss and numerical simulations of underground gas storage based on gas displacement experiments performed with systems of small-core devices connected in series[J]. Journal of Natural Gas Science and Engineering, 2020, 81: 103495. doi: 10.1016/j.jngse.2020.103495

    [45]

    MEN Xinyang, TAO Shu, LIU Zhenxing, et al. Experimental study on gas mass transfer process in a heterogeneous coal reservoir[J]. Fuel Processing Technology, 2021, 216: 106779. doi: 10.1016/j.fuproc.2021.106779

    [46] 葛家理. 油气层渗流力学[M]. 北京:石油工业出版社,1982:187-189.

    GE Jiali. Permeation mechanics of oil and gas reservoirs[M]. Beijing: Petroleum Industry Press, 1982: 187-189.

    [47] 夏阳,邓英豪,韦世明,等. 压裂页岩气藏多尺度耦合流动数值模拟研究[J]. 力学学报,2023,55(3):616–629.

    XIA Yang, DENG Yinghao, WEI Shiming, et al. Numerical simulation of multi-scale coupled flow in after- fracturing shale gas reservoirs[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(3): 616–629.

    [48] 朱超凡,李亚军,桑茜,等. 裂缝性致密砂岩气藏时变形状因子研究[J]. 天然气地球科学,2017,28(5):792–800.

    ZHU Chaofan, LI Yajun, SANG Qian, et al. The time-dependent shape factor study for tight sandstone with fracture[J]. Natural Gas Geoscience, 2017, 28(5): 792–800.

    [49]

    PAN Zhejun, CONNELL L D, CAMILLERI M. Laboratory characterisation of coal reservoir permeability for primary and enhanced coalbed methane recovery[J]. International Journal of Coal Geology, 2010, 82(3/4): 252–261.

    [50]

    WARREN J E, ROOT P J. The behavior of naturally fractured reservoirs[J]. SPE Journal, 1963, 3(3): 245–255.

    [51]

    KAZEMI H, MERRILL L S, Jr, PORTERFIELD K L, et al. Numerical simulation of water-oil flow in naturally fractured reservoirs[J]. SPE Journal, 1976, 16(6): 317–326.

    [52]

    LIM K T, AZIZ K. Matrix-fracture transfer shape factors for dual-porosity simulators[J]. Journal of Petroleum Science and Engineering, 1995, 13(3/4): 169–178.

    [53]

    COATS K H. Implicit compositional simulation of single-porosity and dual-porosity reservoirs[R]. SPE 18427, 1989.

    [54]

    UEDA Y, MURATA S, WATANABE Y, et al. Investigation of the shape factor used in the dual-porosity reservoir simulator[R]. SPE 19469, 1989.

    [55] 李晓良,何勇明,金潮苏,等. 裂缝性油藏窜流函数及形状因子研究(一)[J]. 石油钻探技术,2008,36(1):73–75.

    LI Xiaoliang, HE Yongming, JIN Chaosu, et al. Research on transfer function and shaping factors for fractured reservoir (Ⅰ)[J]. Petroleum Drilling Techniques, 2008, 36(1): 73–75.

    [56] 何勇明. 裂缝性油藏形状因子研究及应用[D]. 成都:成都理工大学,2007.

    HE Yongming. The shape factor study and application for fractured reservoir[D]. Chengdu: Chengdu University of Technology, 2007.

  • 期刊类型引用(1)

    1. 王军磊,位云生,曹正林,陈东,唐海发. 基于相渗滞后效应的水驱裂缝性气藏注N_2提高天然气采收率机理. 天然气工业. 2025(03): 96-111 . 百度学术

    其他类型引用(0)

图(14)  /  表(2)
计量
  • 文章访问数:  114
  • HTML全文浏览量:  23
  • PDF下载量:  78
  • 被引次数: 1
出版历程
  • 收稿日期:  2024-01-31
  • 修回日期:  2024-03-12
  • 网络出版日期:  2024-04-24
  • 刊出日期:  2024-04-02

目录

    /

    返回文章
    返回