特深井井下等效冲击扭矩作用下钻铤接头三维力学特征分析

曲豪, 陈锋, 陈家磊, 张豪, 明传中, 李吉荣

曲豪,陈锋,陈家磊,等. 特深井井下等效冲击扭矩作用下钻铤接头三维力学特征分析[J]. 石油钻探技术,2024, 52(2):211-217. DOI: 10.11911/syztjs.2024044
引用本文: 曲豪,陈锋,陈家磊,等. 特深井井下等效冲击扭矩作用下钻铤接头三维力学特征分析[J]. 石油钻探技术,2024, 52(2):211-217. DOI: 10.11911/syztjs.2024044
QU Hao, CHEN Feng, CHEN Jialei, et al. Three-dimensional mechanical characteristics of drill collar joints under downhole equivalent impact torque in extra-deep well [J]. Petroleum Drilling Techniques,2024, 52(2):211-217. DOI: 10.11911/syztjs.2024044
Citation: QU Hao, CHEN Feng, CHEN Jialei, et al. Three-dimensional mechanical characteristics of drill collar joints under downhole equivalent impact torque in extra-deep well [J]. Petroleum Drilling Techniques,2024, 52(2):211-217. DOI: 10.11911/syztjs.2024044

特深井井下等效冲击扭矩作用下钻铤接头三维力学特征分析

基金项目: 国家自然科学基金项目“特深井‘钛-钢’复合钻柱动态安全性及异型材质接头失效机理研究”(编号:52374008) 、“考虑隔水管耦合作用的超深水超深曲井钻柱动力学研究”(编号:52174003)和上海市重点学科建设项目(编号:S30106)联合资助。
详细信息
    作者简介:

    曲豪(1993—),男,河南南阳人,2017年毕业于河北科技大学机械设计制造及其自动化专业,2022年获西南石油大学机电工程专业硕士学位,助理工程师,主要从事钻工具工程方向的研究工作。E-mail:1058518456@qq.com

    通讯作者:

    陈锋,chenfeng536@126.com

  • 中图分类号: TE921+.2

Three-Dimensional Mechanical Characteristics of Drill Collar Joints under Downhole Equivalent Impact Torque in Extra-Deep Well

  • 摘要:

    特深井钻井时钻柱在井下受到强烈的冲击扭矩作用,严重威胁着钻井施工安全,需要进行特深井钻柱井下冲击扭矩的测量和分析。首先,采用三维力学分析方法得到了不同扭矩作用下钻铤螺纹接头的受力特征,建立了内、外螺纹之间相对偏移量与井下等效冲击扭矩之间的对应关系;然后,以西部油田某特深井上部井段ϕ203.2 mm钻铤NC56接头为例,利用刻痕法测量内、外螺纹台肩的相对偏移量,反演得到与偏移量相对应的井下等效冲击扭矩,并用实际测得的钻铤接头卸扣扭矩进行了验证。实测数据表明,钻井过程中井下存在很大的冲击扭矩,使钻铤接头在井下发生二次上扣。根据实测偏移量反演计算的井下等效冲击扭矩与卸扣扭矩吻合程度高,表明该方法具有较好的可靠性。分析表明,上扣预紧状态对钻铤接头的井下二次上扣特性有很大影响,避免欠扭矩上扣是防止钻铤接头井下二次上扣的有效手段。

    Abstract:

    The drilling string in extra-deep wells is subjected to strong downhole impact torque during drilling, and its safety is facing severe challenges. Therefore, it is important to measure and analyze the downhole impact torque of drilling strings in extra-deep wells. First, the three-dimensional (3D) mechanical analysis method was used to obtain the mechanical characteristics of drill collar joints under different torque. Using that information, the corresponding relationship between the relative offset between internal and external threads and the downhole equivalent impact torque was established. Then, with the NC56 joint of ϕ203.2 mm drill collar in the upper section of an extra-deep well in an oilfield of western China as an example, the relative offset between internal and external thread shoulders was measured by the scratching mark, and the downhole equivalent impact torque corresponding to the offset was obtained through inversion and verified with the measured breakout torque of the drill collar joint. The measured data show that there was a large downhole impact torque during drilling, which can cause the drill collar joint to bring about downhole secondary makeup. The downhole equivalent impact torque calculated by the inversion of the measured offset is well consistent with the breakout torque, which shows a good reliability of the method. The results indicate that the pre-tightening state exerts a great influence on the downhole secondary makeup characteristics of the drill collar joint, and avoiding under-torque makeup is an effective means to prevent the drill collar joint from secondary makeup torque.

  • 图  1   钻铤接头三维有限元模型

    Figure  1.   3D finite element model of drill collar joint

    图  2   上扣扭矩、轴向压缩载荷与井下扭矩加载曲线

    Figure  2.   Makeup torque, axial compression load, and downhole torque loading curve

    图  3   上扣扭矩作用下NC56钻铤接头Mises应力分布

    Figure  3.   Mises stress distribution of NC56 drill collar joint under makeup torque

    图  4   上扣扭矩作用下NC56钻铤接头各啮合面的接触受力情况

    Figure  4.   Contact feature of each meshing surface of NC56 drill collar joint under makeup torque

    图  5   不同轴向压缩载荷条件下NC56钻铤接头的受力特征

    Figure  5.   Stress characteristics of NC56 drill collar joint under different axial compression loads

    图  6   不同上扣扭矩条件下NC56钻铤接头的受力特征

    Figure  6.   Stress characteristics of NC56 drill collar joint under different makeup torques

    图  7   NC56钻铤接头内、外螺纹相对周向偏移量随井下等效冲击扭矩的变化曲线

    Figure  7.   Variation of relative circumferential offset of internal and external threads of NC56 drill collar joint with downhole equivalent impact torque

    图  8   ϕ203.2 mm钻铤接头二次上扣情况

    Figure  8.   Secondery makeup condition of a ϕ203.2 mm drill collar joint

    表  1   钻铤接头材料真实应力–塑性应变的关系

    Table  1   Real stress-plastic strain relationship of drill collar joint material

    真实应力/MPa 塑性应变 真实应力/MPa 塑性应变
    758.0 0 1 003.3 0.040 0
    790.1 0.000 5 1 017.6 0.045 0
    818.3 0.001 0 1 030.9 0.050 0
    878.5 0.006 0 1 043.0 0.055 0
    891.3 0.009 0 1 054.3 0.060 0
    905.2 0.012 0 1 063.6 0.065 0
    920.8 0.016 0 1 072.4 0.070 0
    940.1 0.021 0 1 079.8 0.075 0
    953.7 0.025 0 1 086.1 0.080 0
    971.3 0.030 0 1 091.2 0.085 0
    987.6 0.035 0 1 095.1 0.097 0
    下载: 导出CSV

    表  2   各分析步载荷工况设置

    Table  2   Load conditions for each analysis step

    载荷工况分析步1
    上扣扭矩/(kN·m)
    分析步2
    轴向压缩载荷/kN
    分析步3
    井下扭矩/(kN·m)
    工况1650120
    工况265120120
    工况358120120
    下载: 导出CSV

    表  3   ϕ203.2 mm钻铤接头刻痕偏移量、卸扣扭矩实测数据及理论分析结果

    Table  3   Measured data of scratching offset and breakout torque of ϕ203.2 mm drill collar joint and theoretical analysis results

    入井
    柱次
    上扣扭矩/
    (kN·m)
    刻痕偏移
    量/mm
    卸扣扭矩/
    (kN·m)
    井下等效
    冲击扭矩/
    (kN·m)
    等效冲击扭矩
    相对卸扣扭矩
    的误差,%
    2 58 6 82 77.9 5.0
    5 65 0 72 66.3 7.9
    下载: 导出CSV
  • [1] 孙金声,刘克松,金家锋,等. 中低熟页岩油原位转化技术研究现状及发展趋势[J]. 钻采工艺,2023,46(6):1–7.

    SUN Jinsheng, LIU Kesong, JIN Jiafeng, et al. Research status and development trend of in-situ catalytic conversion technology for medium-low maturity shale oil[J]. Drilling & Production Technology, 2023, 46(6): 1–7.

    [2] 贾承造. 中国石油工业上游发展面临的挑战与未来科技攻关方向[J]. 石油学报,2020,41(12):1445–1464.

    JIA Chengzao. Development challenges and future scientific and technological researches in China’s petroleum industry upstream[J]. Acta Petrolei Sinica, 2020, 41(12): 1445–1464.

    [3] 王建云,韩涛,赵宽心,等. 塔深5井超深层钻井关键技术[J]. 石油钻探技术,2022,50(5):27–33.

    WANG Jianyun, HAN Tao, ZHAO Kuanxin, et al. Key drilling technologies for the ultra-deep Well Tashen 5[J]. Petroleum Drilling Techniques, 2022, 50(5): 27–33.

    [4]

    TANG Liping, GUO Baolin, ZHU Xiaohua, et al. Stick–slip vibrations in oil well drillstring: a review[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2020, 39(4): 885–907. doi: 10.1177/1461348419853658

    [5] 何立成,唐波. 准噶尔盆地超深井钻井技术现状与发展建议[J]. 石油钻探技术,2022,50(5):1–8.

    HE Licheng, TANG Bo. The up to date technologies of ultra-deep well drilling in Junggar Basin and suggestions for further improvements[J]. Petroleum Drilling Techniques, 2022, 50(5): 1–8.

    [6]

    VIJAYAN K, VLAJIC N, FRISWELL M I. Drillstring-borehole interaction: backward whirl instabilities and axial loading[J]. Meccanica, 2017, 52(11): 2945–2957.

    [7] 滕学清,李宁,狄勤丰,等. 塔里木盆地超深井311.2 mm井眼钻柱动力学特性及参数设计[J]. 石油学报,2014,35(2):359–364.

    TENG Xueqing, LI Ning, DI Qinfeng, et al. Parameter optimization and dynamic characteristics of drill string in the borehole with diameter of 311.2 mm of ultra-deep oil well in Tarim Basin[J]. Acta Petrolei Sinica, 2014, 35(2): 359–364.

    [8]

    NOABAHAR SADEGHI A, ARIKAN K B, ÖZBEK M E. Modelling and controlling of drill string stick slip vibrations in an oil well drilling rig[J]. Journal of Petroleum Science and Engineering, 2022, 216: 110759. doi: 10.1016/j.petrol.2022.110759

    [9]

    CHEN Jingkai, LIAO Hualin, ZHANG Yanting, et al. A torsional-axial vibration analysis of drill string endowed with kinematic coupling and stochastic approach[J]. Journal of Petroleum Science and Engineering, 2021, 198: 108157. doi: 10.1016/j.petrol.2020.108157

    [10]

    WANG Wenchang, LI Shengqian, YUAN Xun. Effect of Power-V on the stick–slip vibration of a drill string[J]. Chemistry and Technology of Fuels and Oils, 2023, 59(1): 202–212. doi: 10.1007/s10553-023-01517-5

    [11]

    CHOE Y M, KIM G S, KIM I S, et al. Influence of torsional stick-slip vibration on whirl behavior in drill string system[J]. Geoenergy Science and Engineering, 2023, 227: 211931. doi: 10.1016/j.geoen.2023.211931

    [12] 狄勤丰,骆大坤,周星,等. 横向主动控斜力作用下底部钻具组合动力学特征[J]. 石油学报,2023,44(9):1552–1561.

    DI Qinfeng, LUO Dakun, ZHOU Xing, et al. Analysis of dynamic characteristics of bottom hole assembly under transverse active dev-iation control force[J]. Acta Petrolei Sinica, 2023, 44(9): 1552–1561.

    [13]

    MOHAMMADZADEH M, ARBABTAFTI M, SHAHGHOLI M, et al. Nonlinear vibrations of composite drill strings considering drill string–wellbore contact and bit–rock interaction[J]. Archive of Applied Mechanics, 2022, 92(9): 2569–2592. doi: 10.1007/s00419-022-02198-y

    [14] 滕学清,狄勤丰,李宁,等. 超深井钻柱粘滑振动特征的测量与分析[J]. 石油钻探技术,2017,45(2):32–39.

    TENG Xueqing, DI Qinfeng, LI Ning, et al. Measurement and analysis of stick-slip characteristics of drill string in ultra-deep wells[J]. Petroleum Drilling Techniques, 2017, 45(2): 32–39.

    [15]

    DONG Guangjian, CHEN Yingjie, FU Jianhong, et al. The drillstring dynamic frequency domains modes and mode shapes characteristics of compound drilling for the high-quality slim borehole[J]. International Journal of Hydrogen Energy, 2023, 48(30): 11322–11332. doi: 10.1016/j.ijhydene.2022.07.021

    [16]

    LI Yongsheng, GAO Deli. A nonlinear dynamic model for characterizing downhole motions of drill-string in a deviated well[J]. Journal of Natural Gas Science and Engineering, 2017, 38: 466–474. doi: 10.1016/j.jngse.2017.01.006

    [17]

    DI Qinfeng, QIN Ken, CHEN Tao, et al. An innovative method for studying the dynamic failure mechanism of box connection of stabilizer in large diameter wellbore of ultra-deep wells[J]. Journal of Petroleum Science and Engineering, 2021, 205: 108822. doi: 10.1016/j.petrol.2021.108822

    [18] 李子丰. 油气井管柱冲击动力问题研究概况和发展趋势[J]. 石油学报,2019,40(5):604–610.

    LI Zifeng. Research situation and development trend of string dynamic shock in oil and gas wells[J]. Acta Petrolei Sinica, 2019, 40(5): 604–610.

    [19]

    HOHL A, TERGEIST M, OUESLATI H, et al. Prediction and mitigation of torsional vibrations in drilling systems[R]. SPE 178874, 2016.

    [20]

    SUGIURA J, JONES S. A drill bit and a drilling motor with embedded high-frequency (1 600 Hz) drilling dynamics sensors provide new insights into challenging downhole drilling conditions[J]. SPE Drilling & Completion, 2019, 34(3): 223–247.

    [21]

    SHEN Yuelin, CHEN Wei, ZHANG Zhengxin, et al. Drilling dynamics model to mitigate high frequency torsional oscillation[R]. SPE 199634, 2020.

    [22] 张洪武,关振群,李云鹏,等. 有限元分析与CAE技术基础[M]. 北京:清华大学出版社,2004:54-58.

    ZHANG Hongwu, GUAN Zhenqun, LI Yunpeng, et al. Fundamentals of finite element analysis and CAE technology[M]. Beijing: Tsinghua University Press, 2004: 54-58.

    [23] 王勖成. 有限单元法[M]. 北京:清华大学出版社,2003:677-678.

    WANG Xucheng. Finite element method[M]. Beijing: Tsinghua University Press, 2003: 677-678.

    [24] 狄勤丰,陈锋,王文昌,等. 双台肩钻杆接头三维力学分析[J]. 石油学报,2012,33(5):871–877.

    DI Qinfeng, CHEN Feng, WANG Wenchang, et al. Three-dimensional mechanical analysis of the double-shouldered tool joint[J]. Acta Petrolei Sinica, 2012, 33(5): 871–877.

  • 期刊类型引用(1)

    1. 曲永春,马智鹏,庞慧峰. 标准井深度量值传递新方法及应用. 石油管材与仪器. 2021(04): 55-57 . 百度学术

    其他类型引用(1)

图(8)  /  表(3)
计量
  • 文章访问数:  118
  • HTML全文浏览量:  21
  • PDF下载量:  73
  • 被引次数: 2
出版历程
  • 收稿日期:  2024-02-07
  • 修回日期:  2024-03-06
  • 网络出版日期:  2024-04-08
  • 刊出日期:  2024-04-02

目录

    /

    返回文章
    返回