万米深井钻柱减振增能提速方法研究

纪国栋, 陈畅畅, 郭建华, 夏连彬, 刘永旺, 孙钰淇

纪国栋,陈畅畅,郭建华,等. 万米深井钻柱减振增能提速方法研究[J]. 石油钻探技术,2024, 52(2):100-107. DOI: 10.11911/syztjs.2024038
引用本文: 纪国栋,陈畅畅,郭建华,等. 万米深井钻柱减振增能提速方法研究[J]. 石油钻探技术,2024, 52(2):100-107. DOI: 10.11911/syztjs.2024038
JI Guodong, CHEN Changchang, GUO Jianhua, et al. Research on vibration reduction, energy enhancement, and acceleration methods for drilling strings of 10 000-meter deep wells [J]. Petroleum Drilling Techniques,2024, 52(2):100-107. DOI: 10.11911/syztjs.2024038
Citation: JI Guodong, CHEN Changchang, GUO Jianhua, et al. Research on vibration reduction, energy enhancement, and acceleration methods for drilling strings of 10 000-meter deep wells [J]. Petroleum Drilling Techniques,2024, 52(2):100-107. DOI: 10.11911/syztjs.2024038

万米深井钻柱减振增能提速方法研究

基金项目: 中国石油集团关键核心技术攻关项目“万米超深层油气资源钻完井关键技术与装备研究”(编号:2022ZG06)资助。
详细信息
    作者简介:

    纪国栋(1986—),男,山东单县人,2008年毕业于中国石油大学(华东)石油工程专业,2020年获中国石油勘探开发研究院油气井工程专业博士学位,高级工程师,主要从事深井超深井钻井安全与提速研究工作。E-mail: jigddri@cnpc.com.cn

    通讯作者:

    陈畅畅,chenccdr@cnpc.com.cn

  • 中图分类号: TE245

Research on Vibration Reduction, Energy Enhancement, and Acceleration Methods for Drilling Strings of 10 000-Meter Deep Wells

  • 摘要:

    万米深井超深超长井段钻进过程中存在钻柱振动剧烈、能量传递困难、破岩效率低、钻头使用寿命短等问题,亟需开展万米深井钻柱减振与井底增能技术研究。根据超深层钻井环境的主要特征,结合近年来钻柱动力学研究结果,提出了以钻井过程中钻柱振动为能量来源提高井底钻井液射流压力的方法,在减小钻柱振动保护钻头的同时,提高钻头射流压力,实现井下增能破岩,解决井下振动强度大、井底水力能量不足的问题;并研制了井底钻柱减振增能装置,进行了现场试验。研究和试验结果表明:钻柱振动蕴含巨大的能量,该能量可以转化为破岩提速能量;设计的井底钻柱减振增能装置,可以提高钻井液射流压力,同时可以降低钻柱振动导致的安全风险,从而显著提高钻井速度。研究成果为万米深井减振提速技术开拓了新方向,为加快深部油气资源的勘探与开发提供了技术支持。

    Abstract:

    There are a series of problems in the drilling process of ultra-deep and ultra-long sections of 10 000-meter deep wells, such as severe vibration of the drilling string, slow speed of rock breaking, and short effective working life of the drill bit. Therefore, it is urgent to carry out research on vibration reduction of the drilling string and downhole energy enhancement technology of the 10 000-meter deep wells. According to the main characteristics of the ultra-deep drilling environment and recent research results on drilling string dynamics, a method was proposed to use drilling string vibration as an energy source during the drilling process to increase the jet pressure of downhole drilling fluid. While reducing drilling string vibration to protect the drill bit, the method increased the jet pressure of the drill bit to achieve downhole energy enhancement and rock breaking, solving the problems of high vibration intensity and insufficient hydraulic energy at the bottom of the wells. A vibration reduction and energy enhancement device for the downhole drilling string was developed, and on-site tests were conducted. The research results indicate that drilling string vibration contains enormous energy, which can be converted into energy for accelerating rock breaking. The designed vibration reduction and energy enhancement device for the downhole drilling string can increase the jet pressure of drilling fluid and reduce the safety risks caused by drilling string vibration, thereby significantly improving drilling speed. The research results have opened up new directions for the vibration reduction and acceleration technology of 10 000-meter deep wells and provided technical support for accelerating the exploration and development of deep oil and gas resources.

  • 图  1   井底钻柱动力学模拟试验装置

    Figure  1.   Dynamic simulation test device for downhole drill string

    图  2   实际钻压随时间的波动幅度

    Figure  2.   Fluctuation of actual weight on bit with time

    图  3   井底钻柱减振增能提速装置结构示意

    1. 工具上接头;2. 芯轴;3. 上部密封总成压盖;4. 上部密封总成;5. 花键外筒;6. 限位体;7. 外部保护筒;8. 弹簧;9. 工具中心接头;10. 下部密封总成;11. 柱塞头;12. 滑动密封总成;13. 控制单向阀;14. 柱塞外套;15. 柱塞缸套;16. 钻头

    Figure  3.   Structure of vibration reduction, energy enhancement, and acceleration device for downhole drilling string

    图  4   不同井深条件下振动能量转换后的压力、流量曲线对比

    Figure  4.   Comparison of pressure and flow rate curves after vibration energy conversion under different well depths

    图  5   不同井深条件下井底水力能量变化规律

    Figure  5.   Variation law of downhole hydraulic energy with well depth conditions

    图  6   井底钻柱减振增能提速装置在NT1H井现场试验情况

    Figure  6.   On-site test of vibration reduction, energy enhancement, and acceleration tool for downhole drilling string in Well NT 1

    图  7   NT1H井使用井底钻柱减振增能提速装置钻进井段振动监测结果

    Figure  7.   Drilling vibration monitoring results of Well Ningtan 1H using vibration reduction, energy enhancement, and acceleration tool for downhole drilling string

    图  8   M502-H2井二开井段钻头使用情况(从左到右依次为1#~5#刀翼)

    Figure  8.   Application of drill bits in second section of Well M502-H2 (Blade 1~5 from left to right)

    图  9   邻井二开井段钻头使用情况(从左到右依次为1#~5#刀翼)

    Figure  9.   Application of drill bits in second section of adjacent well (Blade 1~5 from left to right)

    表  1   BX1井钻至不同井深时的水力参数

    Table  1   Hydraulic parameters during drilling at different depths of Well BX1

    井深/
    m
    钻井液排量/
    (L·s−1
    钻井液密度/
    (kg·L−1
    钻头压降/
    MPa
    井口泵压/
    MPa
    4 500 25 1.66 1.20 19.5
    5 000 24 1.71 1.08 19.4
    5 500 22 1.79 0.78 20.0
    6 000 19 1.83 0.45 19.8
    下载: 导出CSV

    表  2   使用与未使用井底钻柱减振增能提速装置的机械钻速对比

    Table  2   Comparison of ROP with and without vibration reduction, energy enhancement, and acceleration tools for downhole drilling string

    井类型 井名 井段/m 平均机械钻速/
    (m·h−1
    试验井 M502-H2井 1 500~4 024 21.1
    对比井 M502井 1 498~4 110 11.8
    M502-H4井 1 502~4 070 12.6
    M502-H6井 1 500~4 250 12.2
    下载: 导出CSV
  • [1] 陈国庆,郑瑞强,刘文鹏,等. 钻井提速工具设计与井下安全的探讨[J]. 西部探矿工程,2022,34(8):51–53. doi: 10.3969/j.issn.1004-5716.2022.08.017

    CHEN Guoqing, ZHENG Ruiqiang, LIU Wenpeng, et al. Exploration of design of drilling acceleration tools and underground safety[J]. West-China Exploration Engineering, 2022, 34(8): 51–53. doi: 10.3969/j.issn.1004-5716.2022.08.017

    [2] 甘心. 钻井提速用振动冲击工具研究进展[J]. 钻探工程,2021,48(2):85–93. doi: 10.12143/j.ztgc.2021.02.012

    GAN Xin. Advances in vibration impactors for drilling accelera-tion[J]. Drilling Engineering, 2021, 48(2): 85–93. doi: 10.12143/j.ztgc.2021.02.012

    [3] 穆总结,李根生,黄中伟,等. 振动冲击钻井提速技术现状及发展趋势[J]. 石油钻采工艺,2020,42(3):253–260.

    MU Zongjie, LI Gensheng, HUANG Zhongwei, et al. Status and development trend of vibration-impact ROP improvement technologies[J]. Oil Drilling & Production Technology, 2020, 42(3): 253–260.

    [4] 罗恒荣,崔晓杰,谭勇,等. 液力扭转冲击器配合液力加压器的钻井提速技术研究与现场试验[J]. 石油钻探技术,2020,48(3):58–62. doi: 10.11911/syztjs.2020037

    LUO Hengrong, CUI Xiaojie, TAN Yong, et al. Research and field test on drilling acceleration technology with hydraulic torsional impactor combined with hydraulic boosters[J]. Petroleum Drilling Techniques, 2020, 48(3): 58–62. doi: 10.11911/syztjs.2020037

    [5] 尹浩,梁健,李宽,等. 万米科学钻探关键机具优化措施研究[J]. 钻探工程,2023,50(4):16–24.

    YIN Hao, LIANG Jian, LI Kuan, et al. Research on optimization measures of key instrument for myriametric scientific drilling[J]. Drilling Engineering, 2023, 50(4): 16–24.

    [6] 尹浩,梁健,孙建华,等. 万米科学钻探钻杆柱的优化配置发展趋势[J]. 科技导报,2023,41(6):108–120.

    YIN Hao, LIANG Jian, SUN Jianhua, et al. Development trend of drill string optimal configuration in myriametre scientific drilling[J]. Science & Technology Review, 2023, 41(6): 108–120.

    [7] 刘永旺,管志川,张洪宁,等. 基于钻柱振动的井下提速技术研究现状及展望[J]. 中国海上油气,2017,29(4):131–137.

    LIU Yongwang, GUAN Zhichuan, ZHANG Hongning, et al. Research status and prospect of ROP-enhancing technology based on drill string vibration[J]. China Offshore Oil and Gas, 2017, 29(4): 131–137.

    [8] 高明帅,王瑜,王志乔,等. 基于磁流变液的井下钻具主动减振技术[J]. 石油机械,2013,41(9):7–11. doi: 10.3969/j.issn.1001-4578.2013.09.002

    GAO Mingshuai, WANG Yu, WANG Zhiqiao, et al. MRF-based downhole tool active vibration damper technology[J]. China Petroleum Machinery, 2013, 41(9): 7–11. doi: 10.3969/j.issn.1001-4578.2013.09.002

    [9] 汤楠,汪跃龙,霍爱清,等. 基于信号相似性的导向钻井下传信号处理方法[J]. 石油勘探与开发,2012,39(1):111–117.

    TANG Nan, WANG Yuelong, HUO Aiqing, et al. A downward signal processing method for rotary steerable drilling system based on signal similarity[J]. Petroleum Exploration and Development, 2012, 39(1): 111–117.

    [10] 左欢欢. 相似性原理的应用探究[J]. 产业与科技论坛,2016,15(20):73. doi: 10.3969/j.issn.1673-5641.2016.20.039

    ZUO Huanhuan. Exploration of the application of similarity principle[J]. Industrial & Science Tribune, 2016, 15(20): 73. doi: 10.3969/j.issn.1673-5641.2016.20.039

    [11] 魏文忠,管志川,刘永旺,等. 直井眼钟摆钻具纵向振动特性的实验研究[J]. 中国石油大学学报(自然科学版),2007,31(2):64–68. doi: 10.3321/j.issn:1000-5870.2007.02.013

    WEI Wenzhong, GUAN Zhichuan, LIU Yongwang, et al. Experimental study on longitudinal vibration characteristics of pendulum assembly in straight hole[J]. Journal of China University of Petroleum (Edition of Natural Science), 2007, 31(2): 64–68. doi: 10.3321/j.issn:1000-5870.2007.02.013

    [12] 刘永旺,管志川,魏文忠,等. 井底钟摆类钻具转动规律的实验研究[J]. 钻采工艺,2008,31(5):27–29. doi: 10.3969/j.issn.1006-768X.2008.05.008

    LIU Yongwang, GUAN Zhichuan, WEI Wenzhong, et al. Experimental study on rotary characteristics of bottom pendulum assembly[J]. Drilling & Production Technology, 2008, 31(5): 27–29. doi: 10.3969/j.issn.1006-768X.2008.05.008

    [13] 魏文忠. 底部钻柱振动特性及减振增压装置设计研究[D]. 青岛:中国石油大学(华东),2007.

    WEI Wenzhong. Study on vibration characteristic of bottom drilling string and design of drilling string shock absorption & down hole hydraulic pressurizing system[D]. Qingdao: China University of Petroleum(East China), 2007.

    [14] 崔金栋. 减振冲击钻井系统设计研究[D]. 青岛:中国石油大学(华东),2008.

    CUI Jindong. Design research on drilling string shock absorption & percussion system[D]. Qingdao: China University of Petroleum(East China), 2008.

    [15] 史怀忠,李根生,王学杰,等. 水力脉冲空化射流欠平衡钻井提高钻速技术[J]. 石油勘探与开发,2010,37(1):111–115.

    SHI Huaizhong, LI Gensheng, WANG Xuejie, et al. Improving the rate of penetration by hydraulic pulsating-cavitating water jet under-balance pressure drilling[J]. Petroleum Exploration and Development, 2010, 37(1): 111–115.

    [16] 李根生,史怀忠,沈忠厚,等. 水力脉冲空化射流钻井机理与试验[J]. 石油勘探与开发,2008,35(2):239–243. doi: 10.3321/j.issn:1000-0747.2008.02.018

    LI Gensheng, SHI Huaizhong, SHEN Zhonghou, et al. Mechanisms and tests for hydraulic pulsed cavitating jet assisted drilling[J]. Petroleum Exploration and Development, 2008, 35(2): 239–243. doi: 10.3321/j.issn:1000-0747.2008.02.018

    [17] 王智锋. 负压脉冲钻井技术理论及方法[J]. 石油钻采工艺,2005,27(6):13–15. doi: 10.3969/j.issn.1000-7393.2005.06.005

    WANG Zhifeng. Discussion on theory & methodology of suction-pulse drilling technique[J]. Oil Drilling & Production Technology, 2005, 27(6): 13–15. doi: 10.3969/j.issn.1000-7393.2005.06.005

    [18]

    LIU Yongwang, GUAN Zhichuan. Discussion on the energy sources of down-hole accelerate ROP tool in the process of drilling deep or ultra-deep well[C]//The International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE 2012). Nanjing: IEEE, 2012: 886-890.

    [19] 刘永旺. 井下减振增压装置设计研究[D]. 青岛:中国石油大学(华东),2007.

    LIU Yongwang. Design research on drill string absorption & down hole hydraulic pressurizing system[D]. Qingdao: China University of Petroleum(East China), 2007.

    [20] 刘永旺,管志川,史玉才,等. 井底光钻铤钻具组合旋转及钻压波动规律模拟研究[J]. 石油矿场机械,2012,41(5):52–56. doi: 10.3969/j.issn.1001-3482.2012.05.013

    LIU Yongwang, GUAN Zhichuan, SHI Yucai, et al. Experiment on rotation and longitudinal vibration regularity of slick bottom hole assembly in bottom hole[J]. Oil Field Equipment, 2012, 41(5): 52–56. doi: 10.3969/j.issn.1001-3482.2012.05.013

    [21]

    ZHANG Yuying, LIU Yongwang, XU Yiji, et al. Drilling characteristics of combinations of different high pressure jet nozzles[J]. Journal of Hydrodynamics, 2011, 23(3): 384–390. doi: 10.1016/S1001-6058(10)60127-8

    [22] 管志川,张洪宁,张伟,等. 吸振式井下液压脉冲发生装置[J]. 石油勘探与开发,2014,41(5):618–622. doi: 10.11698/PED.2014.05.15

    GUAN Zhichuan, ZHANG Hongning, ZHANG Wei, et al. Equipment and technique for improving penetration rate by the transformation of drill string vibration to hydraulic pulsating jet[J]. Petroleum Exploration and Development, 2014, 41(5): 618–622. doi: 10.11698/PED.2014.05.15

    [23] 张德彪. 井下减振增压钻井提速技术及其现场应用分析[J]. 中国石油和化工标准与质量,2021,41(16):183–184. doi: 10.3969/j.issn.1673-4076.2021.16.090

    ZHANG Debiao. Analysis of downhole vibration reduction and pressure boosting drilling speed increasing technology and its on-site application[J]. China Petroleum and Chemical Standard and Quality, 2021, 41(16): 183–184. doi: 10.3969/j.issn.1673-4076.2021.16.090

    [24] 管志川,刘永旺,魏文忠,等. 井下钻柱减振增压装置工作原理及提速效果分析[J]. 石油钻探技术,2012,40(2):8–13. doi: 10.3969/j.issn.1001-0890.2012.02.002

    GUAN Zhichuan, LIU Yongwang, WEI Wenzhong, et al. Downhole drill string absorption & hydraulic supercharging device’ working principle and analysis of speed-increasing effect[J]. Petroleum Drilling Techniques, 2012, 40(2): 8–13. doi: 10.3969/j.issn.1001-0890.2012.02.002

    [25] 张洪宁. 直井井底钻压波动特性及吸振式脉冲发生装置设计与应用[D]. 青岛:中国石油大学(华东),2016.

    ZHANG Hongning. Design and application of hydraulic pulsed jet generator based on the research of fluctuation of weight on bit in vertical well[D]. Qingdao: China University of Petroleum(East China), 2016.

  • 期刊类型引用(25)

    1. 黄少豪,王军平,王震宇,张卓,于贵健. 塔里木盆地宿探1井大井眼钻井提速技术探讨. 矿业装备. 2025(01): 7-10 . 百度学术
    2. 史配铭,刘召友,荣芳,武宏超,米博超,念富龙. 超深探井荔参1井钻井关键技术. 石油工业技术监督. 2024(02): 50-55 . 百度学术
    3. 蔡明杰,罗鑫,陈力力,贺明敏,彭浩,何兵. 万米深井SDCK1井超大尺寸井眼钻井技术. 石油钻探技术. 2024(02): 87-92 . 本站查看
    4. 王鸿远. 预弯曲动力学防斜打快技术在塔里木盆地台前区应用研究. 当代化工研究. 2024(15): 111-113 . 百度学术
    5. 王建宁,周英操,赵记臣,耿建华,乔建锋. 哈萨克斯坦KOA油田钻井减振提速技术研究. 石油机械. 2023(03): 56-60+67 . 百度学术
    6. 丁红,万教育,徐广飞,张宏阜,李俊胜,易超,赵益书. 满深区块超深水平井轨迹控制与提速技术. 西部探矿工程. 2023(03): 60-63 . 百度学术
    7. 李建军,陈先贵,于兴东. 一种新型聚合物降滤失剂在塔东超深井中的应用. 西部探矿工程. 2023(06): 51-54+59 . 百度学术
    8. 徐鲲,陶林,李文龙,李林波,汤柏松,邸毅峰,王旭. 渤海油田变质岩潜山油藏钻井关键技术. 石油钻探技术. 2023(03): 16-21 . 本站查看
    9. 马英文,杨进,李文龙,徐鲲,谢涛,杨保健. 渤中26-6油田发现井钻井设计与施工. 石油钻探技术. 2023(03): 9-15 . 本站查看
    10. 熊浪豪,巢世伟,柏尚宇,陈君,范乘浪,崔建峰. E Zhanbyrshy-3井钻井实践及技术难点分析. 内蒙古石油化工. 2023(05): 63-66+120 . 百度学术
    11. 路保平,陈会年. 《石油钻探技术》50年与未来发展建议. 石油钻探技术. 2023(04): 3-10 . 本站查看
    12. 田辉,仇恒彬,董广华. 预弯曲钟摆钻具防斜打快技术在柯坪高陡构造地层的应用. 西部探矿工程. 2022(01): 39-43 . 百度学术
    13. 宋先知,裴志君,王潘涛,张宫凌燕,叶山林. 基于支持向量机回归的机械钻速智能预测. 新疆石油天然气. 2022(01): 14-20 . 百度学术
    14. 王文刚,胡大梁,欧彪,房舟,刘磊. 井研–犍为地区缝洞型复杂地层钻井关键技术. 石油钻探技术. 2022(02): 58-63 . 本站查看
    15. 喻化民,薛莉,吴红玲,李海彪,冯丹,杨冀平,鲁娜. 满深区块深井强封堵钻井液技术. 钻井液与完井液. 2022(02): 171-179 . 百度学术
    16. 朱金智,杨学文,刘洪涛,杨成新,张绍俊,罗春芝. 塔河南岸跃满区块三叠系防塌钻井液研究与应用. 钻井液与完井液. 2022(03): 319-326 . 百度学术
    17. 赵向阳,赵聪,王鹏,梁晓阳,杨谋. 超深井井筒温度数值模型与解析模型计算精度对比研究. 石油钻探技术. 2022(04): 69-75 . 本站查看
    18. 王建云,韩涛,赵宽心,张立军,席宝滨,叶翔. 塔深5井超深层钻井关键技术. 石油钻探技术. 2022(05): 27-33 . 本站查看
    19. 王伟吉,高伟,范胜,宣扬,董晓强. 新型非磺化环保低摩阻钻井液. 钻井液与完井液. 2022(04): 459-465 . 百度学术
    20. 潘冠昌,杨斌,张浩,常坤,冯云辉. 超深层碳酸盐岩裂缝面形态与摩擦因数研究. 断块油气田. 2022(06): 794-799 . 百度学术
    21. 韩成福,张建卿,胡祖彪,王清臣,朱明明,王浩. 风险探井驿探1井钻井技术实践. 石油钻采工艺. 2022(06): 678-683 . 百度学术
    22. 吴柏志,张怀兵. 满深1井碳酸盐岩地层自愈合水泥浆固井技术. 石油钻探技术. 2021(01): 67-73 . 本站查看
    23. 钟汉毅,高鑫,邱正松,林永学,金军斌,汤志川,赵欣,李佳. 环保型β-环糊精聚合物微球高温降滤失作用机理. 石油学报. 2021(08): 1091-1102+1112 . 百度学术
    24. 舒义勇,孙俊,曾东,徐思旭,周华安,席云飞. 塔里木油田跃满西区块高温恒流变钻井液研究与现场试验. 石油钻探技术. 2021(05): 39-45 . 本站查看
    25. 王九龙,李翔,董宇,杨斌號. 塔里木盆地大北1401井目的层定向钻完井关键技术. 西部探矿工程. 2021(11): 58-60 . 百度学术

    其他类型引用(3)

图(9)  /  表(2)
计量
  • 文章访问数:  172
  • HTML全文浏览量:  32
  • PDF下载量:  108
  • 被引次数: 28
出版历程
  • 收稿日期:  2024-01-08
  • 修回日期:  2024-02-29
  • 网络出版日期:  2024-04-23
  • 刊出日期:  2024-04-02

目录

    /

    返回文章
    返回