深层页岩巴西劈裂破坏力学行为数值模拟研究

崔壮, 侯冰

崔壮,侯冰. 深层页岩巴西劈裂破坏力学行为数值模拟研究[J]. 石油钻探技术,2024, 52(2):218-228. DOI: 10.11911/syztjs.2024032
引用本文: 崔壮,侯冰. 深层页岩巴西劈裂破坏力学行为数值模拟研究[J]. 石油钻探技术,2024, 52(2):218-228. DOI: 10.11911/syztjs.2024032
CUI Zhuang, HOU Bing. A numerical simulation for damage mechanical behavior of Brazilian splitting test of deep shales [J]. Petroleum Drilling Techniques,2024, 52(2):218-228. DOI: 10.11911/syztjs.2024032
Citation: CUI Zhuang, HOU Bing. A numerical simulation for damage mechanical behavior of Brazilian splitting test of deep shales [J]. Petroleum Drilling Techniques,2024, 52(2):218-228. DOI: 10.11911/syztjs.2024032

深层页岩巴西劈裂破坏力学行为数值模拟研究

基金项目: 国家重点研究发展计划项目“深部含煤岩系超临界CO2穿层压裂-驱替-封存评价技术研究”(编号:2022YFE0129800)资助。
详细信息
    作者简介:

    崔壮(1998—),男,山西朔州人,2020年毕业于中国石油大学(北京)石油工程专业,中国石油大学(北京)在读博士研究生,主要从事石油工程岩石力学、水力压裂方面的研究。E-mail: cupb_cz@163.com

  • 中图分类号: TE311+.2

A Numerical Simulation for Damage Mechanical Behavior of Brazilian Splitting Test of Deep Shales

  • 摘要:

    为揭示页岩纹理特征与破坏强度之间的作用机理,利用黏聚力单元法建立了巴西劈裂三维数值模型,研究了纹理角度和纹理强度对页岩破坏模式和抗拉强度的影响,并利用声发射分布特征精确分析了裂纹演化过程。研究结果表明:巴西劈裂数值模拟结果与试验结果基本一致,利用黏聚力单元法可以准则预测页岩破坏行为;纹理角度和纹理强度耦合作用下页岩试样破坏模式分为6种;中心破坏的页岩试样,声发射能量–位移曲线以单峰值分布型为主,拉伸剪切复合破坏的页岩试样,声发射能量–位移曲线以多峰值分布型为主;页岩试样抗拉强度各向异性显著,相同纹理角度下,纹理强度越高,主裂纹越接近加载直径方向,试样抗拉强度越大。研究结果进一步揭示了深层页岩破坏机制,为页岩储层压裂设计提供了理论依据。

    Abstract:

    In order to investigate the mechanism between shale texture characteristics and tensile strength, a three-dimensional Brazilian splitting test numerical model was established by the cohesive element method. The effects of texture angle and strength on damage modes and tensile strength were studied, and the crack growth behavior was accurately analyzed using acoustic emission distribution characteristics. The results indicate that the numerical simulation outcomes of the Brazilian splitting test were basically in accordance with the experimental results. The cohesive element method can be used to predict the shale’s damage behavior. The damage modes of shale specimens are classified into six categories under the coupling of texture angle and strength. For shale specimens with central damage, the acoustic emission (AE) energy-displacement curves are dominated by a single-peak distribution type. For shale specimens with tension-shear mixed damage, the AE energy-displacement curves are dominated by a multiple-peak distribution type. The tensile strength of shale specimens is significantly anisotropic. As the texture strength increases, and the primary crack approaches the loading diameter direction, the tensile strength of the specimens gets higher under the same texture angle. The results of the study also reveal the damage mechanisms in deep shales and provide theoretical basis for the fracturing design for shale reservoirs.

  • 图  1   巴西劈裂数值模型及加载条件示意

    Figure  1.   Numerical model and loading conditions for Brazilian splitting test

    图  2   数值模型输入参数标定流程

    Figure  2.   Workflow of numerical model input parameter calibration

    图  3   纹理角度0°试样巴西劈裂试验和数值模拟结果对比

    Figure  3.   Comparison of Brazilian splitting test and numerical simulation results for specimens with 0° texture angle

    图  4   页岩试样破坏形态

    Figure  4.   Damage pattern of shale specimens

    图  5   页岩试样典型破坏机制

    Figure  5.   Typical damage mechanism of shale specimens

    图  6   纹理角度0°试样在不同纹理强度下的轴向应力–位移和AE能量–位移曲线

    Figure  6.   Axial stress-displacement and AE energy-displacement curves for shale specimens with 0° texture angle under different texture strengths

    图  7   不同纹理角度下页岩试样轴向应力–位移和AE能量–位移曲线

    Figure  7.   Axial stress-displacement and AE energy-displacement curves of shale specimens under different texture angles

    图  8   不同γ下页岩试样抗拉强度和损伤值变化规律

    Figure  8.   Variation law of tensile strength and damage values of shale specimens under differentγ

    图  9   不同纹理角度下页岩试样抗拉强度和损伤值变化规律

    Figure  9.   Variation law of tensile strength and damage values of shale specimens under different texture angles

    图  10   圆盘试样裂纹形态分布特征

    Figure  10.   Crack morphology distribution characteristics of disk specimen

    图  11   不同γ和纹理角度下页岩试样主裂纹偏移距离

    Figure  11.   Deflection distance of primary crack of shale specimens under different texture angles and γ

    图  12   不同γ下页岩试样主裂纹和次级裂纹长度变化规律

    Figure  12.   Length variation law of primary crack and secondary crack of shale specimens under different γ

    图  13   页岩试样破坏行为综合图版

    Figure  13.   Plates of damage behavior of shale specimens

    表  1   巴西劈裂数值模型输入参数

    Table  1   Numerical model input parameters of Brazilian splitting test

    页岩类型 弹性模量/
    GPa
    泊松比 刚度/(N·mm−3 应力/MPa 断裂能/(mJ·mm−1
    法向 第一切向 第二切向 法向 第一切向 第二切向 法向 切向
    基质 28.55 0.23 1 500 1 500 1 500 4.00 8.00 8.00 0.004 0.040
    纹理 28.55 0.23 1 000 1 000 1 000 1.40 2.00 2.00 0.002 0.020
    下载: 导出CSV
  • [1] 蒋廷学,肖博,沈子齐,等. 陆相页岩油气水平井穿层体积压裂技术[J]. 石油钻探技术,2023,51(5):8–14.

    JIANG Tingxue, XIAO Bo, SHEN Ziqi, et al. Vertical penetration of network fracturing technology for horizontal wells in continental shale oil and gas[J]. Petroleum Drilling Techniques, 2023, 51(5): 8–14.

    [2] 朱海燕,焦子曦,刘惠民,等. 济阳坳陷陆相页岩油气藏组合缝网高导流压裂关键技术[J]. 天然气工业,2023,43(11):120–130.

    ZHU Haiyan, JIAO Zixi, LIU Huimin, et al. A new high-conductivity combined network fracturing technology for continental shale oil and gas reservoirs in the Jiyang Depression[J]. Natural Gas Industry, 2023, 43(11): 120–130.

    [3] 付金华,郭雯,李士祥,等. 鄂尔多斯盆地长7段多类型页岩油特征及勘探潜力[J]. 天然气地球科学,2021,32(12):1749–1761.

    FU Jinhua, GUO Wen, LI Shixiang, et al. Characteristics and exploration potential of muti-type shale oil in the 7th Member of Yanchang Formation, Ordos Basin[J]. Natural Gas Geoscience, 2021, 32(12): 1749–1761.

    [4] 雷群,翁定为,管保山,等. 中美页岩油气开采工程技术对比及发展建议[J]. 石油勘探与开发,2023,50(4):824–831.

    LEI Qun, WENG Dingwei, GUAN Baoshan, et al. Shale oil and gas exploitation in China: Technical comparison with US and development suggestions[J]. Petroleum Exploration and Development, 2023, 50(4): 824–831.

    [5]

    NIANDOU H, SHAO J F, HENRY J P, et al. Laboratory investigation of the mechanical behaviour of Tournemire shale[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(1): 3–16. doi: 10.1016/S1365-1609(97)80029-9

    [6]

    WANG Jun, XIE Lingzhi, XIE Heping, et al. Effect of layer orientation on acoustic emission characteristics of anisotropic shale in Brazilian tests[J]. Journal of Natural Gas Science and Engineering, 2016, 36(Part B): 1120-1129.

    [7]

    VERVOORT A, MIN K B, KONIETZKY H, et al. Failure of transversely isotropic rock under Brazilian test conditions[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 70: 343–352. doi: 10.1016/j.ijrmms.2014.04.006

    [8]

    CHO J W, KIM H, JEON S, et al. Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 50: 158–169. doi: 10.1016/j.ijrmms.2011.12.004

    [9] 杨志鹏,何柏,谢凌志,等. 基于巴西劈裂试验的页岩强度与破坏模式研究[J]. 岩土力学,2015,36(12):3447–3455.

    YANG Zhipeng, HE Bai, XIE Lingzhi, et al. Strength and failure modes of shale based on Brazilian test[J]. Rock and Soil Mechanics, 2015, 36(12): 3447–3455.

    [10] 张树文,鲜学福,周军平,等. 基于巴西劈裂试验的页岩声发射与能量分布特征研究[J]. 煤炭学报,2017,42(增刊2):346-353.

    ZHANG Shuwen, XIAN Xuefu, ZHOU Junping, et al. Acoustic emission characteristics and the energy distribution of the shale in Brazilian splitting testing[J]. Journal of China Coal Society, 2017, 42(supplement 2): 346-353.

    [11] 崔壮,侯冰,付世豪,等. 页岩油致密储层一体化压裂裂缝穿层扩展特征[J]. 断块油气田,2022,29(1):111–117.

    CUI Zhuang, HOU Bing, FU Shihao, et al. Fractures cross-layer propagation characteristics of integrated fracturing in shale oil tight reservoir[J]. Fault-Block Oil & Gas Field, 2022, 29(1): 111–117.

    [12] 张丰收,吴建发,黄浩勇,等. 提高深层页岩裂缝扩展复杂程度的工艺参数优化[J]. 天然气工业,2021,41(1):125–135.

    ZHANG Fengshou, WU Jianfa, HUANG Haoyong, et al. Technological parameter optimization for improving the complexity of hydraulic fractures in deep shale reservoirs[J]. Natural Gas Industry, 2021, 41(1): 125–135.

    [13]

    HOU Bing, CUI Zhuang, DING Jihui, et al. Perforation optimization of layer-penetration fracturing for commingling gas production in coal measure strata[J]. Petroleum Science, 2022, 19(4): 1718–1734. doi: 10.1016/j.petsci.2022.03.014

    [14] 寇园园,陈军斌,聂向荣,等. 基于离散元方法的拉链式压裂效果影响因素分析[J]. 石油钻采工艺,2023,45(2):211–222.

    KOU Yuanyuan, CHEN Junbin, NIE Xiangrong, et al. Analyzing the factors influencing zipper fracturing based on discrete element method[J]. Oil Drilling & Production Technology, 2023, 45(2): 211–222.

    [15] 张军,余前港,李玉伟,等. 夹层型致密储层密切割压裂多裂缝同步扩展机制[J]. 断块油气田,2023,30(3):480–487.

    ZHANG Jun, YU Qiangang, LI Yuwei, et al. Multi-fracture synchronous propagation mechanism of dense cutting fracturing in interlayer tight reservoir[J]. Fault-Block Oil & Gas Field, 2023, 30(3): 480–487.

    [16]

    HOU Bing, CUI Zhuang. Vertical fracture propagation behavior upon supercritical carbon dioxide fracturing of multiple layers[J]. Engineering Fracture Mechanics, 2023, 277: 108913. doi: 10.1016/j.engfracmech.2022.108913

    [17] 王辉,李勇,曹树刚,等. 基于巴西劈裂实验的层状页岩断裂特征试验研究[J]. 采矿与安全工程学报,2020,37(3):604–612.

    WANG Hui, LI Yong, CAO Shugang, et al. Experimental study on fracture characteristics of layered shale under Brazilian splitting tests[J]. Journal of Mining and Safety Engineering, 2020, 37(3): 604–612.

    [18]

    TAVALLALI A, VERVOORT. Effect of layer orientation on the failure of layered sandstone under Brazilian test conditions[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(2): 313–322. doi: 10.1016/j.ijrmms.2010.01.001

    [19]

    CLAESSON J, BOHLOLI B. Brazilian test: Stress field and tensile strength of anisotropic rocks using an analytical solution[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(8): 991–1004. doi: 10.1016/S1365-1609(02)00099-0

    [20]

    ZHOU Junping, TIAN Shifeng, ZHOU Lei, et al. Effect of sub-/super-critical CO2 and brine exposure on the mechanical and acoustic emission characteristics of shale[J]. Journal of Natural Gas Science and Engineering, 2021, 90: 103921. doi: 10.1016/j.jngse.2021.103921

    [21]

    WANG Chenyu, GENG Jiabo, ZHANG Dongming, et al. Investigation on damage evolution law of anisotropic shale at different hydraulic pressures[J]. Energy, 2023, 282: 128944. doi: 10.1016/j.energy.2023.128944

    [22] 位云生,林铁军,于浩,等. 基于嵌入黏聚单元法的页岩储层压裂缝网扩展规律[J]. 天然气工业,2022,42(10):74–83.

    WEI Yunsheng, LIN Tiejun, YU Hao, et al. Propagation law of fracture network in shale reservoirs based on the embeded cohesive unit method[J]. Natural Gas Industry, 2022, 42(10): 74–83.

  • 期刊类型引用(11)

    1. 简旭,李皋,王军,王浩,王松涛,王华平. 气体钻井近钻头超前探测声源评价与优选. 石油钻探技术. 2025(01): 41-48 . 本站查看
    2. 郝小龙,高国寅,谭海峰,杨诚,李岳桓. 基于自适应差分脉码调制的远探测声波测井数据井下压缩算法. 石油钻探技术. 2024(06): 148-155 . 本站查看
    3. 喻著成,许期聪,邱儒义,雷鸣,周箩鱼. 随钻声波井下全景成像技术现状及展望. 钻采工艺. 2023(03): 171-175 . 百度学术
    4. 王伟,郝小龙,周静,杨诚,高国寅. 随钻声波测井井下算法测试系统数据交换接口设计. 西安石油大学学报(自然科学版). 2023(06): 118-123+132 . 百度学术
    5. 李辉,谭忠健,耿长喜,邓津辉,张志虎,张立刚,李文元,李浩. 基于随钻录井工程参数的变质岩潜山储层物性预测方法及应用. 特种油气藏. 2023(06): 10-15 . 百度学术
    6. 刘西恩,赵腾,车小花. 基于声波垂直入射于井壁的随钻远探测方法及初步数值模拟. 测井技术. 2023(05): 542-550+577 . 百度学术
    7. 简旭,李皋,王军,韩旭,黄兵,王松涛. 气体钻井声波超前测距方法与数值模拟. 石油钻探技术. 2022(03): 132-138 . 本站查看
    8. 刘西恩,孙志峰,仇傲,李杰,罗博,彭凯旋,罗瑜林. 随钻四极子声波测井仪的设计及试验. 石油钻探技术. 2022(03): 125-131 . 本站查看
    9. 郝小龙,高国寅,王伟,杨诚. 声波测井井下处理算法开发的上位机软件设计. 石油化工应用. 2022(09): 101-104 . 百度学术
    10. 李皋,黎洪志,简旭,王军,王松涛. 气体钻井超前探测震源工具设计及力学性能模拟研究. 石油钻探技术. 2022(06): 14-20 . 本站查看
    11. 孙志峰,卢华涛,李国梁. 随钻声波测井关键技术研究进展. 科学技术与工程. 2022(36): 15849-15859 . 百度学术

    其他类型引用(2)

图(13)  /  表(1)
计量
  • 文章访问数:  181
  • HTML全文浏览量:  49
  • PDF下载量:  91
  • 被引次数: 13
出版历程
  • 收稿日期:  2024-01-04
  • 修回日期:  2024-02-15
  • 网络出版日期:  2024-03-19
  • 刊出日期:  2024-04-02

目录

    /

    返回文章
    返回