A Lithology Identification Method for Buried Hills in the Lishui-Jiaojiang Sag Based on Correspondence Analysis
-
摘要:
随着丽水–椒江凹陷油气勘探扩展至潜山油藏,钻井揭示花岗岩、片麻岩、灰岩等岩性地层;加之应用了钻井新工艺,录井岩屑细小、混杂,现场准确识别岩性难度较大。为了解决此问题,基于XRD衍射和XRF元素录井资料,利用ReliefF算法筛选了对潜山及上覆地层敏感的8种元素和4种矿物,将筛选出的元素、矿物作为原始数据集的特征参数进行对应分析,构建了花岗岩、片麻岩、灰岩等岩石岩性的H1与H2函数,并建立了复杂岩性的识别图版。其中,花岗岩的H1和H2分别为–3.0~1.0和1.0~3.0,片麻岩的H1和H2分别为–4.0~0和–2.5~1.0,灰岩的H1和H2分别为0.5~2.5和–9.0~–3.0,砂砾岩的H1和H2分别为2.5~10.0和–1.0~2.5,泥岩的H1和H2分别为–1.0~3.5和–1.0~0.5。丽水–椒江凹陷潜山油气区6口井应用了基于对应分析的岩性识别方法,识别复杂岩性的准确率达90.7%,可为钻井施工安全及潜山储层综合评价提供技术支持。
Abstract:As oil and gas exploration in the Lishui-Jiaojiang Sag moves towards buried hills, drilling has encountered many lithology formations such as granite, gneiss, and limestone. In addition, with the application of new drilling technology, the cuttings for logging are fine and usually mixed together, and it is difficult to identify the lithology accurately on the well site. In order to solve this problem, based on X-ray diffraction (XRD) and X-ray fluorescence (XRF) element logging data, firstly, the ReliefF algorithm was used to identify eight elements and four minerals sensitive to buried hills and overlying strata, and then the selected elements and minerals were used as the characteristic parameters of the original data set for corresponding analysis. The H1and H2 functions of granite, gneiss, limestone, and other complex lithologies were established, and the complex lithology identification chart was drawn. Specifically, the H1and H2 of granite were −3.0~1.0 and 1.0~3.0, and those of gneiss were −4.0~0 and −2.5~1.0. The H1and H2 of limestone were 0.5~2.5 and −9.0~−3.0, and those of sandstone were 2.5~10.0 and −1.0~2.5. In addition, the H1and H2 of mudstone were −1.0~3.5 and −1.0~0.5. The lithology identification method based on corresponding analysis was applied to six wells in the oil and gas area of the Lishui-Jiaojiang Sag, and the identification accuracy of complex lithology reached 90.7%, which can provide technical support for drilling operation safety and comprehensive evaluation of buried hill reservoirs.
-
-
表 1 对应分析因子载荷
Table 1 Factor load for correspondence analysis
元素/矿物 H1载荷得分 H2载荷得分 铝 –0.155 0.049 钙 –0.081 –0.436 铁 –0.149 –0.028 镁 –0.125 –0.04 硅 0.126 0.525 钠 –0.061 –0.005 石英 1.808 0.373 长石 –1.076 0.802 方解石 0.139 –0.784 黏土 –0.425 –0.456 -
[1] 王长势,朱伟林,陈春峰,等. 东海丽水–椒江新生代凹陷基底的岩性及分布[J]. 同济大学学报(自然科学版),2014,42(4):636–644. WANG Zhangshi, ZHU Weilin, CHEN Chunfeng, et al. Basement lithology and distribution of Lishui-Jiaojiang Cenozoic Sag in East China Sea[J]. Journal of Tongji University(Natural Science), 2014, 42(4): 636–644.
[2] 夏斌,张敏强,万志峰,等. 东海丽水-椒江凹陷构造样式与含油气远景[J]. 华南地震,2007,27(3):1–8. XIA Bin, ZHANG Minqiang, WAN Zhifeng, et al. Structural styles and hydrocarbon prospects in the Lishui-Jiaojiang Sag, the East China Sea[J]. South China Journal of Seismology, 2007, 27(3): 1–8.
[3] 张建培,张田,唐贤君. 东海陆架盆地类型及其形成的动力学环境[J]. 地质学报,2014,88(11):2033–2043. ZHANG Jianpei, ZHANG Tian, TANG Xianjun. Basin type and dynamic environment in the East China Sea shelf basin[J]. Acta Geologica Sinica, 2014, 88(11): 2033–2043.
[4] 张胜利,夏斌. 丽水–椒江凹陷构造演化特征与油气聚集[J]. 天然气地球科学,2005,16(3):324–328. ZHANG Shengli, XIA Bin. Characters of tectonic evolution of the Lishui-jiaojiang sag and oil accumulation[J]. Natural Gas Geo-science, 2005, 16(3): 324–328.
[5] 郭明宇,李战奎,徐鲲,等. 渤中26-6构造太古界潜山储层含水识别方法[J]. 石油钻探技术,2023,51(3):137–143. GUO Mingyu, LI Zhankui, XU Kun, et al. Method of identifying water content in the Archaean buried hill reservoir of BZ 26-6 Structure[J]. Petroleum Drilling Techniques, 2023, 51(3): 137–143.
[6] 赵彦泽,李战奎,苑仁国,等. 太古界潜山界面卡取方法及应用[J]. 石油钻采工艺,2018,40(增刊1):55–57. ZHAO Yanze, LI Zhankui, YUAN Renguo, et al. Method and application of Archaean buried hill interface identification[J]. Oil Drilling & Production Technology, 2018, 40(supplement 1): 55–57.
[7] 王茂桢,王冰洁,杨传超,等. 辽东湾坳陷斜坡型太古界潜山储层特征及主控因素:以锦州25-A构造为例[J]. 断块油气田,2023,30(4):624–631. WANG Maozhen, WANG Bingjie, YANG Chuanchao, et al. Reservoir characteristics and main controlling factors of slope-type Archean buried hill in Liaodongwan Depression: A case study of Jinzhou 25-A Structure[J]. Fault-Block Oil & Gas Field, 2023, 30(4): 624–631.
[8] 程建,周卓明,段铁军,等. 梨树断陷基岩潜山油气成藏主控因素分析与勘探前景[J]. 特种油气藏,2020,27(4):26–32. CHENG Jian, ZHOU Zhuoming, DUAN Tiejun, et al. Main-controlling factor analysis of hydrocarbon accumulation in the bedrock buried hill of Lishu Fault Depression and its exploration prospect[J]. Special Oil & Gas Reservoirs, 2020, 27(4): 26–32.
[9] 周心怀,王清斌,冯冲,等. 渤海海域大型太古界潜山储层形成条件及地质意义[J]. 地球科学,2022,47(5):1534–1548. ZHOU Xinhuai, WANG Qingbin, FENG Chong, et al. Formation conditions and geological significance of large Archean buried hill reservoirs in Bohai Sea[J]. Earth Science, 2022, 47(5): 1534–1548.
[10] 刘杰,徐国盛,温华华,等. 珠江口盆地惠州26-6构造古潜山—古近系油气成藏主控因素[J]. 天然气工业,2021,41(11):54–63. LIU Jie, XU Guosheng, WEN Huahua, et al. Main factors controlling the formation of buried hill-Paleogene reservoirs in 26-6 Structure of Huizhou, Pearl River Mouth Basin[J]. Natural Gas Industry, 2021, 41(11): 54–63.
[11] 胡安文,牛成民,王德英,等. 渤海湾盆地渤中凹陷渤中19-6构造凝析油气特征与形成机制[J]. 石油学报,2020,41(4):403–411. HU Anwen, NIU Chengmin, WANG Deying, et al. The characteristics and formation mechanism of condensate oil and gas in Bozhong 19-6 Structure, Bozhong Sag, Bohai Bay Basin[J]. Acta Petrolei Sinica, 2020, 41(4): 403–411.
[12] 高德利,刘维,万绪新,等. PDC钻头钻井提速关键影响因素研究[J]. 石油钻探技术,2023,51(4):20–34. doi: 10.11911/syztjs.2023022 GAO Deli, LIU Wei, WAN Xuxin, et al. Study on key factors influencing the ROP improvement of PDC bits[J]. Petroleum Drilling Techniques, 2023, 51(4): 20–34. doi: 10.11911/syztjs.2023022
[13] 王亚萍,况雨春,杨高. 基于MATLAB的PDC钻头几何学仿真模型[J]. 西南石油大学学报,2007,29(增刊2):116–118. WANG Yaping, KUANG Yuchun, YANG Gao. The geometry emulation model of PDC bit by using MATLAB[J]. Journal of Southwest Petroleum University, 2007, 29(supplement 2): 116–118.
[14] 冯定. 涡轮钻具防斜打快钻井理论与技术研究[J]. 石油钻探技术,2007,35(3):9–11. FENG Ding. Theoretical and technical study of deviation control and fast drilling in turbodrill[J]. Petroleum Drilling Techniques, 2007, 35(3): 9–11.
[15] 王宏波,姚军,李双文,等. 利用对应分析法校正火成岩岩性识别图版:以黄骅凹陷为例[J]. 天然气地球科学,2013,24(4):719–724. WANG Hongbo, YAO Jun, LI Shuangwen, et al. The correction of correspondence analysis to the lithologic identification plate of igneous rocks in Huanghua Depression[J]. Natural Gas Geoscience, 2013, 24(4): 719–724.
[16] 吴欣松,吴胜和,聂昌谋,等. 对应分析方法在储集层评价中的应用[J]. 石油勘探与开发,1999,26(2):90–92. WU Xinsong, WU Shenghe, NIE Changmou, et al. Application of correspondence analysis in the evaluation of reservoir beds[J]. Petroleum Exploration and Development, 1999, 26(2): 90–92.
[17] 孙宁. 对应分析法在储层定量分类评价中的应用:以子长油田安定区长6储层为例[J]. 中国石油和化工标准与质量,2019,39(1):107–108. doi: 10.3969/j.issn.1673-4076.2019.01.053 SUN Ning. Application of correspondence analysis method in quantitative classification and evaluation of reservoir: A case study of Chang 6 Reservoir in Anding Area of Zichang Oilfield[J]. China Petroleum and Chemical Standard and Quality, 2019, 39(1): 107–108. doi: 10.3969/j.issn.1673-4076.2019.01.053
[18] 刘绍平,汤军,许晓宏. 数学地质方法及应用[M]. 北京:石油工业出版社,2011. LIU Shaoping, TANG Jun, XU Xiaohong. The methods and applications on mathematical geology[M]. Beijing: Petroleum Industry Press, 2011.
[19] 刘冬梅. 对应分析在航空安全事件研究中的应用[D]. 天津:中国民航大学,2016. LIU Dongmei. Research of aviation safety incidents based on correspondence analysis[D]. Tianjin: Civil Aviation University of China, 2016.
[20] 谭忠健,邓津辉,张国强,等. 渤海海域变质岩潜山储层有效性录井综合评价技术[J]. 特种油气藏,2023,30(5):11–17. TAN Zhongjian, DENG Jinhui, ZHANG Guoqiang, et al. Comprehensive evaluation technology of metamorphic submarine reservoir effectiveness mud-logging in Bohai Sea Area[J]. Special Oil & Gas Reservoirs, 2023, 30(5): 11–17.
-
期刊类型引用(12)
1. 陈建国,汪伟,都伟超. 渝西大安区块超深层页岩气水平井钻井提速关键技术研究. 钻探工程. 2024(04): 154-162 . 百度学术
2. 龙志平,陈士奎,曹建山,丁锦鹤. 小井眼钻井技术在页岩气井的实践与认识. 石油机械. 2023(04): 30-38 . 百度学术
3. 杨哲,李晓平,万夫磊. 四川长宁页岩气井身结构优化探讨. 钻采工艺. 2021(03): 20-23 . 百度学术
4. 王建龙,于志强,苑卓,冯冠雄,柳鹤,郭云鹏. 四川盆地泸州区块深层页岩气水平井钻井关键技术. 石油钻探技术. 2021(06): 17-22 . 本站查看
5. 石崇东,王万庆,史配铭,杨勇. 盐池区块深层页岩气水平井钻井关键技术研究. 石油钻探技术. 2021(06): 23-28 . 本站查看
6. 郑德帅. 可旋转钻柱定向钻进工具设计及测试. 石油钻探技术. 2021(06): 81-85 . 本站查看
7. 孙焕泉,周德华,蔡勋育,王烽,冯动军,卢婷. 中国石化页岩气发展现状与趋势. 中国石油勘探. 2020(02): 14-26 . 百度学术
8. 史配铭,薛让平,王学枫,王万庆,石崇东,杨勇. 苏里格气田致密气藏水平井优快钻井技术. 石油钻探技术. 2020(05): 27-33 . 本站查看
9. 彭兴,周玉仓,龙志平,张树坤. 南川地区页岩气水平井优快钻井技术进展及发展建议. 石油钻探技术. 2020(05): 15-20 . 本站查看
10. 徐云龙,张居波,席境阳,赵洪山. 焦页XX-HF井近钻头仪器“落鱼”打捞技术. 探矿工程(岩土钻掘工程). 2019(12): 35-39 . 百度学术
11. 刘伟,何龙,胡大梁,李文生,焦少卿. 川南海相深层页岩气钻井关键技术. 石油钻探技术. 2019(06): 9-14 . 本站查看
12. 窦玉玲,唐志军,徐云龙,席镜阳. 涪陵江东区块三维水平井优快钻井技术——以焦页91平台为例. 探矿工程(岩土钻掘工程). 2019(02): 55-59 . 百度学术
其他类型引用(3)