Optimization of In-Stage Multi-Cluster Temporary Plugging Scheme Based on Optical Fiber Monitoring
-
摘要:
为了实现段内簇间均匀改造,需要对优势进液簇进行暂堵。目前主要根据室内暂堵试验制定暂堵方案,但室内暂堵试验条件与实际压裂工况有一定差距,导致暂堵效果不理想。为给段内多簇压裂暂堵方案优化提供依据,优选新疆油田一口水平井(A井),针对5个压裂段设计了12套暂堵方案,利用管外光纤监测技术监测段内各射孔簇在暂堵前后进液量的变化,据此判断暂堵效果。A井实施12套暂堵方案后,未监测到簇间转向分流现象,说明暂堵无效。分析导致暂堵无效的原因为:暂堵球直径与孔眼直径不匹配;孔眼朝向具有随机性,高边孔眼难以封堵;为避免射孔刺断光纤,选用了圆形通孔的破裂盘,但对暂堵球封堵孔眼不利。为此,提出了暂堵方案改进措施:采用直径与孔眼直径相同的暂堵球封堵孔眼,并添加纤维和小粒径暂堵剂或采用绳结暂堵剂;进行定向射孔,射低边孔;采用锥形孔的破裂盘。
Abstract:It is necessary to temporarily plug the dominant fluid inlet cluster to achieve uniform transformation between clusters in stages. The current temporary plugging schemes are mainly developed based on the indoor temporary plugging test. However, there is a certain gap between the indoor temporary plugging test conditions and the actual fracturing conditions, resulting in an unsatisfactory temporary plugging effect. In order to provide a basis for optimizing in-stage multi-cluster fracturing temporary plugging schemes, a horizontal well of the Carboniferous system in Xinjiang Oilfield was selected, and 12 sets of temporary plugging schemes were designed for five fracturing stages to plug holes or fracture. The out-of-pipe optical fiber monitoring technology was used to monitor the changes in fluid intake of each perforation cluster in stages before and after temporary plugging, and the temporary plugging effect was judged accordingly. After the implementation of 12 sets of temporary plugging schemes in Well A, no diversion between clusters was detected, indicating the ineffectiveness of temporary plugging. The inefficiency is attributed to factors such as the mismatched diameter of the plugging ball with the hole and the random hole orientation, making it challenging to block high-edge holes. In order to avoid perforating the optical fiber, the ruptured disc is a circular through-hole structure, which is not conducive to blocking the hole with the temporary plugging ball. Therefore, improvement measures of temporary plugging schemes were proposed: applying temporary plugging balls with a diameter the same as the hole to block the hole; adding fibers and temporary plugging agents with small particles or using rope temporary plugging agents; making low-edge holes shot through directional perforation; utilizing a tapered hole structure for the ruptured disc.
-
Keywords:
- in-stage multi-cluster /
- temporary plugging /
- optical fiber monitoring /
- field test
-
-
表 1 A井整体暂堵方案
Table 1 Overall temporary plugging scheme for Well A
级次 暂堵序号 孔眼直径/mm 暂堵剂 暂堵剂用量 暂堵对象 第2级 1 13.0 ϕ15.0 mm暂堵球 12颗 孔眼 2 13.0 ϕ15.0 mm暂堵球 24颗 孔眼 ϕ3.0 mm低温颗粒暂堵剂 60 kg 低温粉末暂堵剂 60 kg 第3级 1 11.2 ϕ13.0、ϕ15.0 mm暂堵球 48颗 孔眼 ϕ3.0 mm低温颗粒暂堵剂 60 kg 低温粉末暂堵剂 60 kg 2 11.2 ϕ3.0 mm低温颗粒暂堵剂 15 kg 缝口 ϕ5.0~ϕ8.0 mm低温颗粒暂堵剂 15 kg 低温粉末暂堵剂 60 kg 3 11.2 ϕ3.0 mm低温颗粒暂堵剂 30 kg 缝口 ϕ5.0~ϕ8.0 mm低温颗粒暂堵剂 60 kg 低温粉末暂堵剂 30 kg 4 11.2 ϕ20.0 mm高温暂堵球 12颗 孔眼+缝口 ϕ3.0 mm高温颗粒暂堵剂 60 kg ϕ5.0~ϕ8.0 mm高温颗粒暂堵剂 30 kg 低温粉末暂堵剂 60 kg 5 11.2 ϕ20.0 mm高温暂堵球 24颗 孔眼+缝口 ϕ3.0 mm高温颗粒暂堵剂 80 kg ϕ5.0~ϕ8.0 mm高温颗粒暂堵剂 40 kg 高温粉末暂堵剂 60 kg 第4级 1 10.2 ϕ15.0 mm暂堵球 24颗 孔眼+缝口 ϕ22.0 mm暂堵球 12颗 ϕ3.0 mm低温颗粒暂堵剂 40 kg ϕ5.0~ϕ10.0 mm低温颗粒暂堵剂 40 kg 20/60目低温粉末暂堵剂 40 kg 2 10.2 ϕ15.0 mm暂堵球 60颗 孔眼 3 10.2 绳结暂堵剂 20颗 孔眼+缝口 ϕ3.0 mm低温颗粒暂堵剂 30 kg 20/60目低温粉末暂堵剂 25 kg 第5级 1 9.1 ϕ3.0 mm低温颗粒暂堵剂 140 kg 缝口 ϕ5.0~ϕ10.0 mm低温颗粒暂堵剂 40 kg 20/60目低温粉末暂堵剂 180 kg 第6级 1 11.2 绳结暂堵剂 24颗 孔眼 ϕ15.0 mm暂堵球 65颗 20/60目低温粉末暂堵剂 40 kg -
[1] 赵金洲,陈曦宇,李勇明,等. 水平井分段多簇压裂模拟分析及射孔优化[J]. 石油勘探与开发,2017,44(1):117–124. ZHAO Jinzhou, CHEN Xiyu, LI Yongming, et al. Numerical simulation of multi-stage fracturing and optimization of perforation in a horizontal well[J]. Petroleum Exploration and Development, 2017, 44(1): 117–124.
[2] 赵金洲,许文俊,李勇明,等. 低渗透油气藏水平井分段多簇压裂簇间距优化新方法[J]. 天然气工业,2016,36(10):63–69. ZHAO Jinzhou, XU Wenjun, LI Yongming, et al. A new method for cluster spacing optimization of multi-cluster staged fracturing in horizontal wells of low-permeability oil and gas reservoirs[J]. Natural Gas Industry, 2016, 36(10): 63–69.
[3] 马俊修,石胜男,陈进,等. 基于机器学习的玛湖地区水平井压裂设计优化[J]. 深圳大学学报(理工版),2021,38(6):621–627. MA Junxiu, SHI Shengnan, CHEN Jin, et al. Optimization of fracture design for horizontal wells in Mahu Region based on machine learning[J]. Journal of Shenzhen University(Science & Engineering), 2021, 38(6): 621–627.
[4] 李婷婷,许文俊,王雷,等. 水平井分段多簇压裂暂堵球运移封堵规律[J]. 断块油气田,2023,30(1):168–176. LI Tingting, XU Wenjun, WANG Lei, et al. Temporary plugging ball migration and plugging law of staged multi-cluster fracturing in horizontal wells[J]. Fault-Block Oil & Gas Field, 2023, 30(1): 168–176.
[5] 承宁,郭旭洋,魏璞,等. 水平井分段分簇压裂缝间干扰和段间干扰建模:以昌吉油田吉7井区八道湾组油藏为例[J]. 新疆石油地质,2021,42(4):437–443. CHENG Ning, GUO Xuyang, WEI Pu, et al. Inter-fracture and inter-section interference modeling for staged and clustered fracturing stimulation in horizontal wells: A case study on reservoirs of Badaowan formation in Well Block Ji 7 in Changji Oilfield[J]. Xinjiang Petroleum Geology, 2021, 42(4): 437–443.
[6] 肖月. 基于微地震解释的压裂裂缝形态评价方法[D]. 北京:中国石油大学(北京),2020. XIAO Yue. Fracture morphology evaluation method based on microseismic interpretation[D]. Beijing: China University of Petroleum(Beijing), 2020.
[7] 白华,陈杉沁,王小明,等. SECTT产出剖面动态监测技术在碳酸岩气井暂堵酸化评价中的应用[J]. 新疆石油天然气,2020,16(3):46–50. BAI Hua, CHEN Shanqin, WANG Xiaoming, et al. Application of SECTT production profile dynamic monitoring technology in evaluation of temporary plugging and acidizing of carbonate gas wells[J]. Xinjiang Oil & Gas, 2020, 16(3): 46–50.
[8] 侯冰,张其星,陈勉. 页岩储层压裂物理模拟技术进展及发展趋势[J]. 石油钻探技术,2023,51(5):66–77. HOU Bing, ZHANG Qixing, CHEN Mian. Status and tendency of physical simulation technology for hydraulic fracturing of shale reservoirs[J]. Xinjiang Oil & Gas, 2023, 51(5): 66–77.
[9] 隋微波,温长云,孙文常,等. 水力压裂分布式光纤传感联合监测技术研究进展[J]. 天然气工业,2023,43(2):87–103. SUI Weibo, WEN Changyun, SUN Wenchang, et al. Joint application of distributed optical fiber sensing technologies for hydraulic fracturing monitoring[J]. Natural Gas Industry, 2023, 43(2): 87–103.
[10] MILLER C, WATERS G, RYLANDER E. Evaluation of production log data from horizontal wells drilled in organic shales[R]. SPE 144326, 2011.
[11] WHEATON B, HAUSTVEIT K, DEEG W, et al. A case study of completion effectiveness in the Eagle Ford shale using DAS/DTS observations and hydraulic fracture modeling[R]. SPE 179149, 2016.
[12] 臧传贞,姜汉桥,石善志,等. 基于射孔成像监测的多簇裂缝均匀起裂程度分析:以准噶尔盆地玛湖凹陷致密砾岩为例[J]. 石油勘探与开发,2022,49(2):394–402. doi: 10.1016/S1876-3804(22)60033-8 ZANG Chuanzhen, JIANG Hanqiao, SHI Shanzhi, et al. An analysis of the uniformity of multi-fracture initiation based on downhole video imaging technology: A case study of Mahu tight conglomerate in Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(2): 394–402. doi: 10.1016/S1876-3804(22)60033-8
[13] 王博,周福建,邹雨时,等. 水平井暂堵分段缝间干扰数值模拟方法[J]. 断块油气田,2018,25(4):506–509. WANG Bo, ZHOU Fujian, ZOU Yushi, et al. Numerical simulation method of fracture interaction during temporary plugging staged fracturing[J]. Fault-Block Oil & Gas Field, 2018, 25(4): 506–509.
[14] WANG Bo, ZHOU Fujian, ZOU Yushi, et al. Quantitative investigation of fracture interaction by evaluating fracture curvature during temporarily plugging staged fracturing[J]. Journal of Petroleum Science and Engineering, 2019, 172: 559–571. doi: 10.1016/j.petrol.2018.08.038
[15] LI Minghui, ZHOU Fujian, LIU Jinjun, et al. Quantitative investigation of multi-fracture morphology during TPDF through true tri-axial fracturing experiments and CT scanning[J]. Petroleum Science, 2022, 19(4): 1700–1717. doi: 10.1016/j.petsci.2022.03.017
[16] YUAN Lishan, ZHOU Fujian, LI Ben, et al. Experimental study on the effect of fracture surface morphology on plugging efficiency during temporary plugging and diverting fracturing[J]. Journal of Natural Gas Science and Engineering, 2020, 81: 103459. doi: 10.1016/j.jngse.2020.103459
[17] 曾毅,王兴文,慈建发,等. 海相裸眼水平井多级暂堵转向酸压技术[J]. 重庆科技学院学报(自然科学版),2015,17(2):69–72. ZENG Yi, WANG Xingwen, CI Jianfa, et al. The multistage temporary plugging acid-fracturing technology for the openhole horizontal wells in the marine reservoir[J]. Journal of Chongqing University of Science and Technology(Natural Sciences Edition), 2015, 17(2): 69–72.
[18] ZHANG Lufeng, ZHOU Fujian, MOU Jianye, et al. Large-scale true tri-axial fracturing experimental investigation on diversion behavior of fiber using 3D printing model of rock formation[J]. Journal of Petroleum Science and Engineering, 2019, 181: 106171. doi: 10.1016/j.petrol.2019.06.035
[19] KANG Yili, ZHOU Hexiang, XU Chengyuan, et al. Experimental study on the effect of fracture surface morphology on plugging zone strength based on 3D printing[J]. Energy, 2023, 262(Part A): 125419.
[20] YANG Chen, ZHOU Fujian, FENG Wei, et al. Plugging mechanism of fibers and particulates in hydraulic fracture[J]. Journal of Petroleum Science and Engineering, 2019, 176: 396–402. doi: 10.1016/j.petrol.2019.01.084
[21] YUAN Lishan, ZHOU Fujian, LI Minghui, et al. Experimental study on diverter transport through perforations in multicluster fracturing of horizontal well[J]. SPE Journal, 2022, 27(2): 971–985. doi: 10.2118/SPE-208606-PA
[22] 吴宝成,周福建,王明星,等. 绳结式暂堵剂运移及封堵规律实验研究[J]. 钻采工艺,2022,45(4):61–66. WU Baocheng, ZHOU Fujian, WANG Mingxing, et al. Experimental study on migration and plugging pattern of knot temporary plugging agent[J]. Drilling & Production Technology, 2022, 45(4): 61–66.
[23] 方裕燕,冯炜,张雄,等. 炮眼暂堵室内实验研究[J]. 钻采工艺,2018,41(6):102–105. FANG Yuyan, FENG Wei, ZHANG Xiong, et al. Experimental study on temporary plugging of perforations[J]. Drilling & Production Technology, 2018, 41(6): 102–105.
-
期刊类型引用(3)
1. 张小佳,刘文红,申昭熙,钱征华,张应红,周海洋. 基于RFID技术的石油钻具管理系统研制. 石油钻探技术. 2022(06): 107-111 . 本站查看
2. 崔龙兵,胡亮,席步祥,阮臣良,程光明,赵建军. 射频识别随钻扩眼器的研制与应用. 钻采工艺. 2020(04): 71-74+10 . 百度学术
3. 高胜,滕向松,张丽巍,刘跃宝,范立华. 井下无线射频识别系统作业环境影响因素分析. 石油机械. 2019(01): 86-92 . 百度学术
其他类型引用(2)