页岩油储层压裂–提采一体化研究进展与面临的挑战

张衍君, 王鲁瑀, 刘娅菲, 张佳亮, 周德胜, 葛洪魁

张衍君,王鲁瑀,刘娅菲,等. 页岩油储层压裂–提采一体化研究进展与面临的挑战[J]. 石油钻探技术,2024, 52(1):84-95. DOI: 10.11911/syztjs.2024012
引用本文: 张衍君,王鲁瑀,刘娅菲,等. 页岩油储层压裂–提采一体化研究进展与面临的挑战[J]. 石油钻探技术,2024, 52(1):84-95. DOI: 10.11911/syztjs.2024012
ZHANG Yanjun, WANG Luyu, LIU Yafei, et al. Advances and challenges of integration of fracturing and enhanced oil recovery in shale oil reservoirs [J]. Petroleum Drilling Techniques,2024, 52(1):84-95. DOI: 10.11911/syztjs.2024012
Citation: ZHANG Yanjun, WANG Luyu, LIU Yafei, et al. Advances and challenges of integration of fracturing and enhanced oil recovery in shale oil reservoirs [J]. Petroleum Drilling Techniques,2024, 52(1):84-95. DOI: 10.11911/syztjs.2024012

页岩油储层压裂–提采一体化研究进展与面临的挑战

基金项目: 国家自然科学基金青年项目“压裂井间干扰条件下页岩油储层井间裂缝连通机理及调控方法”(编号:52304039)、国家自然科学基金面上项目“微流控可控构建功能性微纳颗粒及其提高采收率机理研究”(编号:52174028)、国家自然科学基金联合项目“超深储层水力压裂改造裂缝轨迹延伸机理与控制方法研究”(编号:U23B2089)共同资助。
详细信息
    作者简介:

    张衍君(1992—),男,山东邹城人,2015年毕业于西安石油大学石油工程专业,2021年获中国石油大学(北京)油气井工程专业博士学位,讲师,主要从事非常规储层压裂井间干扰机理及控制方法、压裂–提采一体化、压后液体滞留机理及排采制度优化等方面的研究工作。E-mail:15010058869@163.com

  • 中图分类号: TE357

Advances and Challenges of Integration of Fracturing and Enhanced Oil Recovery in Shale Oil Reservoirs

  • 摘要:

    页岩油储层压裂开发中,以远超地层吸收能力的注入速率向储层注入包含各类添加剂的工作液,基本完成了压裂介质一次注入、油井开发全生命周期受益的使命。其中,2个问题尤为关键:1)如何形成均匀展布的裂缝网络,增大裂缝和储层的接触面积、提高液体流动效率?2)在形成高效传压传质缝网的基础上,存地压裂液如何提高储层中原油的可动性?压裂和提采一体化是解决上述问题的重要思路。为此,阐述了页岩油储层压裂–提采一体化的内涵,归纳了实现压裂–提采一体化的模拟和试验技术;明确了页岩油储层压裂–提采一体化的科学问题:均衡应力压裂形成均匀展布的缝网,提高均布缝网中流体流动与传输的效率,强化基质孔隙中油气的动用。同时,指出了压裂–提采一体化面临的挑战:明确裂缝非均匀扩展导致的压裂井间干扰机理并建立控制方法,形成裂缝中高压流体高效作用于基质孔隙的途径,揭示压裂液–储层–原油相互作用提高原油可动性机理。研究结果表明:形成均布的裂缝网络是控制裂缝–基质传压传质及流体流动的基础,通过强化压裂液–储层–原油之间的相互作用动用赋存于微–纳米孔隙中的原油是核心,将压裂–提采一体化应用于页岩油储层开发是实现经济最大化的有效途径。贯彻和落实压裂–提采一体化的理念,对页岩油储层的高效开发具有重要意义。

    Abstract:

    During the process of fracturing development of shale oil reservoirs, fracturing fluids containing various additives are injected into the reservoir at an injection rate that far exceeds the absorption capacity of the formation, basically completing the mission of one-time injection of fracturing media to benefit the entire life of oil well development. Specifically, two issues are particularly critical: 1) How to create a uniformly distributed fracture network, enhance the contact area between fractures and reservoirs, and improve the fluid flow efficiency? 2) On the basis of forming a fracture network for efficient pressure and mass transfer, how can stored fracturing fluid improve the mobility of crude oil in the reservoir? The integration of fracturing and enhanced oil recovery (EOR) is an important way to solve these problems. Therefore, the connotation of shale oil reservoir fracturing and EOR integration technology was described, and the simulation and experimental techniques for achieving fracturing and EOR integration were summarized; the scientific issue of the fracturing and EOR integration of shale oil reservoir was clarified: balanced stress fracturing forms a uniformly distributed fracture network, improves the efficiency of fluid flow and transmission in the uniformly distributed fracture network, and strengthens the utilization of oil and gas in matrix pores. In addition, the challenges facing the fracturing and EOR integration were pointed out, including clarifying the mechanism of interwell interference caused by non-uniform fracture propagation and establishing control methods, forming the way of high-pressure fluid acting on matrix pores in fracture, and revealing the mechanism of fracturing fluid-reservoir-crude oil interaction to improve the mobility of crude oil. The results show that the formation of a uniformly distributed fracture network is the foundation for controlling fracture-matrix pressure and mass transfer, as well as fluid flow. Utilizing crude oil stored in micro and nano pores by strengthening the interaction among fracturing fluid, reservoir, and crude oil is the core. The application of fracturing and EOR integration in shale oil reservoir development is an effective way to achieve economic maximization. It is of great significance for the efficient development of shale oil reservoirs to implement the idea of fracturing and EOR integration.

  • 西湖凹陷位于东海陆架盆地浙东坳陷东部,面积约5.9×104 km2,新生代地层最大沉积厚度超过1.0×104 m,主要目的层为古近系平湖组和花港组地层。储层岩性以长石砂岩和岩屑砂岩为主,埋深一般大于3 500.00 m,受压实成岩作用影响,储层物性一般偏低,孔隙度多在15%以下,渗透率一般小于10 mD。低孔低渗储层的流体性质识别一直是西湖凹陷油气勘探开发中的难题之一[13],原因是储层束缚水含量高、电阻率对比度低,同时受储层孔隙结构影响,水层的电阻率往往也较高,通过电性判别难度较大[46];另外,低孔低渗储层毛细管水含量高,当生产压差增大到一定数值后,一部分束缚水往往会转化为可动水,导致生产出水,影响油气产量,特别是气层一旦出水将严重影响最终的采收率,降低油气田开发的经济性[710]。针对上述问题,笔者利用油基钻井液的高侵特性,基于时移测井理念[1112],提出时移电阻率测井对比识别法,即通过对比随钻实时电阻率与复测电阻率的差异快速识别流体性质,并在西湖凹陷低孔低渗储层进行了现场应用,验证了其可行性和有效性。

    西湖凹陷低孔低渗储层钻井使用的油基钻井液主要成分为白油,根据实际需要,其含量约占钻井液总体积的70%~85%,其余成分为水和各种添加剂,主要起乳化、降滤失和封堵作用。虽然油基钻井液比水基钻井液具有更好的井壁稳定和储层保护作用,但仍具有一定的侵入特性。为了分析油基钻井液的滤失特征,利用具有低孔低渗特征的人造岩心进行了滤失性试验,岩心参数见表1

    表  1  油基钻井液滤失性试验所用岩心的主要参数
    Table  1.  Core parameters of oil-based drilling fluid filtration test
    编号长度/cm直径/cm渗透率/mD钻井液密度/(kg·L–1
    17.392.491991.18
    27.342.531981.32
    下载: 导出CSV 
    | 显示表格

    将岩心放入夹持器内,逐渐加压至13 MPa,并持续24 h,测量滤失量、滤饼厚度和滤液侵入深度。试验结果为:1号岩心滤饼厚4.0 mm,滤液侵入深度为 3.5 cm;2号岩心滤饼厚5.0 mm;滤液侵入深度为6.5 cm;滤失量与侵入时间的关系如图1所示。

    图  1  油基钻井液滤失量与侵入时间的关系
    Figure  1.  Relationship between fluid loss and intrusion time of oil-based drilling fluid

    从图1可以看出,油基钻井液存在一定的滤失性,滤液能够侵入岩心,滤失量与岩心物性、压差和时间都有一定的关系。这是因为,油基钻井液滤液侵入地层后,会对储层中原有流体产生一定的驱替作用,导致储层电性特征变化,所以可通过对比储层电性特征变化情况分析判断储层流体的性质。

    地层刚钻开时,油基钻井液滤液侵入量小,滤饼薄,冲洗带和过渡带较窄;钻开一段时间后,滤饼增厚,冲洗带和过渡带宽度增大[13],如图2所示。所以,刚钻开地层进行随钻电阻率测井时,该电阻率一般可以代表地层真电阻率,即原状地层电阻率Rt;地层钻开一段时间后复测电阻率时,电阻率特别是探测深度较浅的电阻率(Rs)会包含冲洗带和过渡带的流体性质变化信息。对于水基钻井液,Rs相对于Rt增大或减小,取决于钻井液滤液矿化度和地层水矿化度的相对大小关系;但对于油基钻井液,由于钻井液滤液不导电,当地层水被驱替后,复测时电阻率Rs会变大,即复测Rs大于随钻测量Rs。时移电阻率测井对比识别法就是利用含有不同性质流体的储层被油基钻井液滤液驱替后、表现出不同的电性变化特征进行流体识别。

    图  2  地层刚钻开和钻开一段时间后的井筒环境
    Figure  2.  Wellbore environments after penetrating the formation soon and drilling for a while

    为了进一步说明时移电阻率测井对比识别法的技术原理,分别分析了探测深度与被探测地层电阻率的关系,以及油基钻井液滤液侵入不同地层后的电阻率变化特征。

    首先用Schlumberger公司的ARC随钻电阻率测井仪(以下简称ARC测井仪)分析探测深度与被探测地层电阻率的关系。该仪器有5个源距(406.4,558.8,711.2,863.6和1 016.0 mm)的发射器,采用2种发射频率(400 kHz和2 MHz),所以可以获得20条电阻率曲线(10条相位电阻率和10条衰减电阻率)。其中,发射频率为2 MHz时,ARC测井仪探测深度与地层相位电阻率的关系曲线如图3所示。

    图  3  P16H探测深度与被探测地层电阻率的关系曲线
    Figure  3.  Relationship curve between P16H detection depth and the resistivity of measured formation

    图3可知,P16H(源距为406.4 mm,频率为2 MHz的相位电阻率)探测深度最小,但其探测深度与地层电阻率相关,电阻率越高,探测深度越大。由于油基钻井液滤液侵入深度小,所以可以利用P16H电阻率的变化率分析侵入深度。

    然后分析油基钻井液滤液分别侵入油气层、水层、含油气水层和干层后,冲洗带电阻率的变化情况。对于油气层,油气和油基钻井液滤液都是不导电的流体介质,油基滤液侵入地层后,地层电阻率基本不变;对于水层、含油气水层或同层,油基钻井液滤液侵入后会减小导电流体(水)的体积,导致储层的电阻率升高。实际复测时,同时测量砂岩储层及上下泥质围岩的电阻率,由于泥岩为非渗透性层,所以随钻实时电阻率和复测电阻率保持一致,通过使围岩电阻率重合,就可以确定砂岩储层电阻率的变化。钻井液滤液的侵入深度与储层物性、井筒过平衡压差、侵入时间及钻井液特性都有关系。例如,西湖凹陷某区域的典型低孔低渗储层,孔隙度为9%~18%,渗透率为1~50 mD,在较大正压差和较长完钻时间下的侵入深度一般较大。而致密层由于储层物性太差,滤液基本无侵入,所以地层电阻率基本不变。不同地层的具体变化特征见表2(其中,P16H实时,指P16H随钻实时电阻率;P16H复测,指P16H复测电阻率)。

    表  2  油基钻井液滤液侵入不同地层后的电阻率变化特征
    Table  2.  Characteristics of resistivity change after oil-based drilling fluid filtrate invaded different formations
    地层类型钻井液滤液侵入情况电阻率变化情况ARC测井仪测量结果
    油气层一定压差下侵入不变P16H实时≈P16H复测
    水层一定压差下侵入升高P16H实时<P16H复测
    含油气水层或同层一定压差下侵入升高P16H实时<P16H复测
    致密层基本无侵入不变P16H实时≈P16H复测
    下载: 导出CSV 
    | 显示表格

    时移电阻率测井对比识别法在西湖凹陷X1井和X2井进行了应用,均取得了成功,证明该方法可行且有效。

    X1井4 450.00~4 475.00 m井段钻遇油气显示层,电阻率最高50 Ω·m,气测全量Tg最高12.0%,岩性为长石细砂岩,孔隙度为9%~11%,渗透率为1~5 mD,参照邻井信息,初步判断该层为气层。对该层进行了随钻电阻率复测,结果如图4所示。图4中,第五道“电阻率对比”指P16H随钻实时电阻率(P16H实时)与P16H复测电阻率(P16H 复测)的对比;P16H复测值大于P16H实时值(对应部分进行了蓝色充填),表明该层为非纯气层,存在一定量的可动水,或者说在该井钻井液过平衡压差约6.9 MPa的条件下,储层孔隙中的部分水可以流动。

    图  4  X1井随钻电阻率实时值与复测值的对比
    Figure  4.  Comparison on the resistivity while drilling real-time measurement and the re-tested value in Well X1

    X1井完钻后,在井深4 471.50 m处进行了电缆地层测试泵抽取样(MDT仪器),泵抽至45 min时,通过井下流体识别仪IFA开始观察到地层天然气流体,流线中的成分主要为天然气和油基钻井液;泵抽至160 min时,泵抽压差增大至4.13 MPa,流线出现了明显的地层水信号,说明在该压差下一部分毛细管水开始流动,转变为可动水。泵抽结束时,流线中水的体积比约为17%,该结果与电阻率复测分析结果完全一致(如图5所示)。这说明该层有一部分毛细管水在压差大于4.13 MPa时是可以流动的,可以称这部分水为弱束缚水;后续进行地层测试或开发时,生产压差应小于4.13 MPa,否则会导致地层出水,影响天然气产能。

    图  5  X1井井深4 471.50 m MDT泵抽流体性质综合识别
    Figure  5.  Comprehensive identification of 4 471.50 m MDT pumping fluids properties in Well X1

    X2井与X1井处于同一构造带,应用油基钻井液钻进。该井4 317.00~4 336.00 m井段钻遇油气显示层,岩性为长石细砂岩,孔隙度为10%~15%,渗透率为1~10 mD。储层上部电阻率约24 Ω·m,气测全量Tg最高约6.0%;储层下部电阻率为13 Ω·m,气测全量Tg约为2.8%。与邻区同层位油气层相比,该层整体电阻率较低,认为该层未达到纯油气层的标准,为此进行了电阻率随钻与复测对比,结果如图6所示。该井钻井液过平衡压差为7.13 MPa。图6中,第五道为P16H实时值和复测值的对比结果,可以看出井深4 330.00 m以浅的P16H实时值与P16H复测值一致,说明该层不含可动水,为纯油气层;井深4 330.00 m以深的P16H复测值明显大于P16H实时值,说明该层含可动水,推测为气水同层。

    图  6  X2井随钻电阻率实时值与复测值的对比
    Figure  6.  Comparison on the resistivity while drilling real-time measurement and the re-tested value in Well X2

    完钻后,X2井在井深4 321.20和4 333.00 m处分别进行了MDT泵抽取样。井深4 321.20 m处泵抽压差约13.8 MPa,泵抽时间为115 min,证实为纯轻质油层,不含水;井深4 333.00 m处泵抽压差为18.3 MPa,泵抽时间为120 min,后期含水率为60%,证实为油水同层,流体性质识别具体情况如图7所示。该井的泵抽结果与电阻率复测对比分析结果完全一致,再次证明了该方法的可行性和有效性。

    图  7  X2井井深4 321.20和4 333.00 m MDT泵抽流体性质综合识别
    Figure  7.  Comprehensive identification of MDT pumping fluid properties at 4 321.20 and 4 333.00 m in Well X2

    1)油基钻井液滤液侵入地层后,对储层中原有流体有一定驱替作用,从而引起储层电性特征的变化,通过对比该变化情况,就能够对储层中原有流体性质进行分析判断。

    2)低孔低渗储层岩性和孔隙结构复杂,仅仅依靠对比电阻率的高低或者邻区经验识别流体的性质很难得到准确的结果。油基钻井液条件下利用时移电阻率测井对比识别法,可以快速识别低孔低渗储层的流体性质,现场应用也验证了该方法具有较高的准确性。

    3)时移电阻率测井对比识别法具有较好的通用性,只要使用随钻电阻率和油基钻井液均可进行借鉴,特别是对于一些新区探井,该方法能够快速识别流体性质,为后续作业选择提供指导,提高作业效率并节省成本。

  • 图  1   压裂–提采一体化软件工作流程[10]

    Figure  1.   Flow chart of fracturing and EOR integration software[10]

    图  2   微流控平台监测不同矿化度下液体–岩石–原油的三相相互作用[41]

    Figure  2.   Three-phase interaction of liquid, rock, and crude oil monitored by microfluidic platform under different salinity[41]

    图  3   模拟得到的均衡应力压裂条件下均匀展布的裂缝网络[47]

    Figure  3.   Simulation of uniformly distributed fracture network formed under balanced stress fracturing[47]

    图  4   毛细管力渗吸驱替过程示意[60]

    Figure  4.   Capillary force imbibition displacement process[60]

    图  5   化学渗透压机理示意[60]

    Figure  5.   Chemical osmotic pressure mechanism [60]

  • [1] 金之钧,朱如凯,梁新平,等. 当前陆相页岩油勘探开发值得关注的几个问题[J]. 石油勘探与开发,2021,48(6):1276–1287.

    JIN Zhijun, ZHU Rukai, LIANG Xinping, et al. Several issues worthy of attention in current lacustrine shale oil exploration and development[J]. Petroleum Exploration and Development, 2021, 48(6): 1276–1287.

    [2] 杨雷,金之钧. 全球页岩油发展及展望[J]. 中国石油勘探,2019,24(5):553–559.

    YANG Lei, JIN Zhijun. Global shale oil development and prospects[J]. China Petroleum Exploration, 2019, 24(5): 553–559.

    [3] 邹才能,马锋,潘松圻,等. 全球页岩油形成分布潜力及中国陆相页岩油理论技术进展[J]. 地学前缘,2023,30(1):128–142.

    ZOU Caineng, MA Feng, PAN Songqi, et al. Formation and distribution potential of global shale oil and the developments of continental shale oil theory and technology in China[J]. Earth Science Frontiers, 2023, 30(1): 128–142.

    [4] 何文渊,柳波,张金友,等. 松辽盆地古龙页岩油地质特征及关键科学问题探索[J]. 地球科学,2023,48(1):49–62.

    HE Wenyuan, LIU Bo, ZHANG Jinyou, et al. Geological characteristics and key scientific and technological problems of Gulong shale oil in Songliao Basin[J]. Earth Science, 2023, 48(1): 49–62.

    [5] 张衍君,曾会,陶秀娟,等. 致密储层体积压裂裂缝漏失及控制综述[J]. 科学技术与工程,2022,22(26):11277–11286.

    ZHANG Yanjun, ZENG Hui, TAO Xiujuan, et al. Review of fracturing fluid leakage and prevention during volume fracturing in tight reservoirs[J]. Science Technology and Engineering, 2022, 22(26): 11277–11286.

    [6]

    SHENG J J. Critical review of field EOR projects in shale and tight reservoirs[J]. Journal of Petroleum Science and Engineering, 2017, 159: 654–665. doi: 10.1016/j.petrol.2017.09.022

    [7] 叶亮,邹雨时,赵倩云,等. 致密砂岩储层CO2压裂裂缝扩展实验研究[J]. 石油钻采工艺,2018,40(3):361–368.

    YE Liang, ZOU Yushi, ZHAO Qianyun, et al. Experiment research on the CO2 fracturing fracture propagation laws of tight sandstone[J]. Oil Drilling & Production Technology, 2018, 40(3): 361–368.

    [8] 袁士义,王强,李军诗,等. 注气提高采收率技术进展及前景展望[J]. 石油学报,2020,41(12):1623–1632.

    YUAN Shiyi, WANG Qiang, LI Junshi, et al. Technology progress and prospects of enhanced oil recovery by gas injection[J]. Acta Petrolei Sinica, 2020, 41(12): 1623–1632.

    [9]

    ZHANG Yanjun, GE Hongkui, ZHAO Kai, et al. Simulation of pressure response resulted from non-uniform fracture network communication and its application to interwell-fracturing interference in shale oil reservoirs[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2022, 8(4): 114. doi: 10.1007/s40948-022-00422-1

    [10]

    ALTMAN R, PEDERIVA D, MEHRANFAR R, et al. Understanding production drivers in the Vaca Muerta shale using an integrated reservoir simulation approach[R]. URTEC-2902306-MS, 2018.

    [11] 赵福豪,黄维安,雍锐,等. 地质工程一体化研究与应用现状[J]. 石油钻采工艺,2021,43(2):131–138.

    ZHAO Fuhao, HUANG Weian, YONG Rui, et al. Research and application status of geology-engineering integration[J]. Oil Drilling & Production Technology, 2021, 43(2): 131–138.

    [12] 雷群,翁定为,管保山,等. 基于缝控压裂优化设计的致密油储集层改造方法[J]. 石油勘探与开发,2020,47(3):592–599.

    LEI Qun, WENG Dingwei, GUAN Baoshan, et al. A novel approach of tight oil reservoirs stimulation based on fracture controlling optimization and design[J]. Petroleum Exploration and Development, 2020, 47(3): 592–599.

    [13]

    BEHRMANN L A, NOLTE K G. Perforating requirements for fracture stimulations[J]. SPE Drilling & Completion, 1999, 14(4): 228–234.

    [14]

    LEI Xin, ZHANG Shicheng, XU Guoqing, et al. Impact of perforation on hydraulic fracture initiation and extension in tight natural gas reservoirs[J]. Energy Technology, 2015, 3(6): 618–624. doi: 10.1002/ente.201402206

    [15]

    CHUPRAKOV D. Hydraulic fracture crossing or deflection at natural discontinuities[C]//American Geophysical Union, Fall Meeting 2011. Washington, D. C.: American Geophysical Union, 2011: H21B-1086.

    [16]

    DEHGHAN A N, GOSHTASBI K, AHANGARI K, et al. The effect of natural fracture dip and strike on hydraulic fracture propagation[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 75: 210–215. doi: 10.1016/j.ijrmms.2015.02.001

    [17] 张士诚,郭天魁,周彤,等. 天然页岩压裂裂缝扩展机理试验[J]. 石油学报,2014,35(3):496–503.

    ZHANG Shicheng, GUO Tiankui, ZHOU Tong, et al. Fracture propagation mechanism experiment of hydraulic fracturing in natural shale[J]. Acta Petrolei Sinica, 2014, 35(3): 496–503.

    [18] 侯冰,程万,陈勉,等. 裂缝性页岩储层水力裂缝非平面扩展实验[J]. 天然气工业,2014,34(12):81–86.

    HOU Bing, CHENG Wan, CHEN Mian, et al. Experiments on the non-planar extension of hydraulic fractures in fractured shale gas reservoirs[J]. Natural Gas Industry, 2014, 34(12): 81–86.

    [19] 郭印同,杨春和,贾长贵,等. 页岩水力压裂物理模拟与裂缝表征方法研究[J]. 岩石力学与工程学报,2014,33(1):52–59.

    GUO Yintong, YANG Chunhe, JIA Changgui, et al. Research on hydraulic fracturing physical simulation of shale and fracture characterization methods[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(1): 52–59.

    [20]

    KOVSCEK A R, TANG G Q, VEGA B. Experimental investigation of oil recovery from siliceous shale by CO2 injection[R]. SPE 115679, 2008.

    [21]

    ALHARTHY N, TEKLU T, KAZEMI H, et al. Enhanced oil recovery in liquid–rich shale reservoirs: Laboratory to field[J]. SPE Reservoir Evaluation & Engineering, 2018, 21(1): 137–159.

    [22]

    GAMADI T D, SHENG J J, SOLIMAN M Y. An experimental study of cyclic gas injection to improve shale oil recovery[R]. SPE 166334, 2013.

    [23]

    HAWTHORNE S B, GORECKI C D, SORENSEN J A, et al. Hydrocarbon mobilization mechanisms from upper, middle, and Lower Bakken reservoir rocks exposed to CO2[R]. SPE 167200, 2013.

    [24]

    YU Wei, AL-SHALABI E W, SEPEHRNOORI K. A sensitivity study of potential CO2 injection for enhanced gas recovery in Barnett shale reservoirs[R]. SPE 169012, 2014.

    [25]

    ZHANG Yanjun, GE Hongkui, SHEN Yinghao, et al. Evaluating the potential for oil recovery by imbibition and time-delay effect in tight reservoirs during shut-in[J]. Journal of Petroleum Science and Engineering, 2020, 184: 106557. doi: 10.1016/j.petrol.2019.106557

    [26]

    ZHANG Yanjun, GE Hongkui, SHEN Yinghao, et al. The retention and flowback of fracturing fluid of branch fractures in tight reservoirs[J]. Journal of Petroleum Science and Engineering, 2021, 198: 108228. doi: 10.1016/j.petrol.2020.108228

    [27]

    LIU Yafei, BLOCK E, SQUIER J, et al. Investigating low salinity waterflooding via glass micromodels with triangular pore-throat architectures[J]. Fuel, 2021, 283: 119264. doi: 10.1016/j.fuel.2020.119264

    [28]

    LIU Yafei, KASZUBA J, OAKEY J. Microfluidic investigations of crude oil-brine interface elasticity modifications via brine chemistry to enhance oil recovery[J]. Fuel, 2019, 239: 338–346. doi: 10.1016/j.fuel.2018.11.040

    [29]

    LI Wen, ZHANG Liyuan, GE Xuehui, et al. Microfluidic fabrication of microparticles for biomedical applications[J]. Chemical Society Reviews, 2018, 47(15): 5646–5683. doi: 10.1039/C7CS00263G

    [30]

    DING Yun, HOWES P D, DEMELLO A J. Recent advances in droplet microfluidics[J]. Analytical Chemistry, 2020, 92(1): 132–149. doi: 10.1021/acs.analchem.9b05047

    [31]

    MATTAX C C, KYTE J R. Ever see a water flood[J]. Oil & Gas Journal, 1961, 59(42): 115–128.

    [32]

    SUN Yu, KHARAGHANI A, TSOTSAS E. Micro-model experiments and pore network simulations of liquid imbibition in porous media[J]. Chemical Engineering Science, 2016, 150: 41–53. doi: 10.1016/j.ces.2016.04.055

    [33]

    NGUYEN P, FADAEI H, SINTON D. Pore-scale assessment of nanoparticle-stabilized CO2 foam for enhanced oil recovery[J]. Energy & Fuels, 2014, 28(10): 6221–6227.

    [34]

    SU Yuliang, ZHANG Xue, LI Lei, et al. Experimental study on microscopic mechanisms and displacement efficiency of N2 flooding in deep-buried clastic reservoirs[J]. Journal of Petroleum Science and Engineering, 2022, 208(Part E): 109789.

    [35]

    GONG Houjian, LI Yajun, DONG Mingzhe, et al. Effect of wettability alteration on enhanced heavy oil recovery by alkaline flooding[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 488: 28–35.

    [36]

    BUCHGRABER M, CLEMENS T, CASTANIER L M, et al. A microvisual study of the displacement of viscous oil by polymer solutions[J]. SPE Reservoir Evaluation & Engineering, 2011, 14(3): 269–280.

    [37]

    YANG Weipeng, LU Jun, WEI Bing, et al. Micromodel studies of surfactant flooding for enhanced oil recovery: a review[J]. ACS Omega, 2021, 6(9): 6064–6069. doi: 10.1021/acsomega.0c05750

    [38]

    YUN W, ROSS C M, ROMAN S, et al. Creation of a dual-porosity and dual-depth micromodel for the study of multiphase flow in complex porous media[J]. Lab on a Chip, 2017, 17(8): 1462–1474. doi: 10.1039/C6LC01343K

    [39]

    LIU Yafei, HANSEN A, BLOCK E, et al. Two-phase displacements in microchannels of triangular cross-section[J]. Journal of Colloid and Interface Science, 2017, 507: 234–241. doi: 10.1016/j.jcis.2017.08.006

    [40]

    ALZAHID Y A, MOSTAGHIMI P, GERAMI A, et al. Functionalisation of polydimethylsiloxane (PDMS)- microfluidic devices coated with rock minerals[J]. Scientific Reports, 2018, 8(1): 15518. doi: 10.1038/s41598-018-33495-8

    [41]

    SONG Wen, DE HAAS T W, FADAEI H, et al. Chip-off-the-old-rock: the study of reservoir-relevant geological processes with real-rock micromodels[J]. Lab on a Chip, 2014, 14(22): 4382–4390. doi: 10.1039/C4LC00608A

    [42] 赵金洲,任岚,蒋廷学,等. 中国页岩气压裂十年:回顾与展望[J]. 天然气工业,2021,41(8):121–142. doi: 10.3787/j.issn.1000-0976.2021.08.012

    ZHAO Jinzhou, REN Lan, JIANG Tingxue, et al. Ten years of gas shale fracturing in China: Review and prospect[J]. Natural Gas Industry, 2021, 41(8): 121–142. doi: 10.3787/j.issn.1000-0976.2021.08.012

    [43] 刘传喜,方文超,秦学杰. 非常规油气藏压裂水平井动态缝网模拟方法及应用[J]. 石油与天然气地质,2022,43(3):696–702.

    LIU Chuanxi, FANG Wenchao, QIN Xuejie. Simulation of dynamic fracture network in fractured horizontal well for unconventional reservoirs: Theory and application[J]. Oil & Gas Geology, 2022, 43(3): 696–702.

    [44] 李传亮,庞彦明,周永炳,等. 地层产生体积压裂缝网的条件分析[J]. 断块油气田,2022,29(1):101–106.

    LI Chuanliang, PANG Yanming, ZHOU Yongbing, et al. Analysis on forming conditions of fracture network in volume fracturing of formation[J]. Fault-Block Oil & Gas Field, 2022, 29(1): 101–106.

    [45] 翁定为,雷群,李东旭,等. 缝网压裂施工工艺的现场探索[J]. 石油钻采工艺,2013,35(1):59–62.

    WENG Dingwei, LEI Qun, LI Dongxu, et al. Network fracturing field test[J]. Oil Drilling & Production Technology, 2013, 35(1): 59–62.

    [46] 翁定为,雷群,胥云,等. 缝网压裂技术及其现场应用[J]. 石油学报,2011,32(2):280–284.

    WENG Dingwei, LEI Qun, XU Yun, et al. Network fracturing techniques and its application in the field[J]. Acta Petrolei Sinica, 2011, 32(2): 280–284.

    [47]

    MENG Hu, WANG Xiaoqiong, GE Hongkui, et al. Balanced stress fracturing theory and its application in platform well fracturing during unconventional oil and gas development[J]. Energy Reports, 2022, 8: 10705–10727. doi: 10.1016/j.egyr.2022.08.214

    [48] 蒋廷学.非常规油气藏新一代体积压裂技术的几个关键问题探讨[J].石油钻探技术,2023,51(4):184-191. doi: 10.11911/syztjs.2023023

    JIANG Tingxue. Discussion on several key issues of the new-generation network fracturing technologies for unconventional reservoirs[J].Petroleum Drilling Techniques, 2023, 51(4):184-191. doi: 10.11911/syztjs.2023023

    [49]

    BEHRMANN L A, ELBEL J L. Effect of perforations on fracture initiation[J]. Journal of Petroleum Technology, 1991, 43(5): 608–615. doi: 10.2118/20661-PA

    [50]

    ZHU H Y, DENG J G, LIU S J, et al. Hydraulic fracturing experiments of highly deviated well with oriented perforation technique[J]. Geomechanics and Engineering, 2014, 6(2): 153–172. doi: 10.12989/gae.2014.6.2.153

    [51]

    HUANG Jian, MA Xiaodan, SAFARI R, et al. Hydraulic fracture design optimization for infill wells: An integrated geomechanics workflow[R]. ARMA-2015-074, 2015.

    [52] 夏阳,邓英豪,金衍. 裂缝性储层流体流动数值模拟研究进展[J]. 中国科学基金,2021,35(6):964–972.

    XIA Yang, DENG Yinghao, JIN Yan. Advances in numerical simulation of fluid flow in fractured reservoirs[J]. Bulletin of National Natural Science Foundation of China, 2021, 35(6): 964–972.

    [53] 糜利栋,姜汉桥,李涛,等. 基于离散裂缝模型的页岩气动态特征分析[J]. 中国石油大学学报(自然科学版),2015,39(3):126–131. doi: 10.3969/j.issn.1673-5005.2015.03.017

    MI Lidong, JIANG Hanqiao, LI Tao, et al. Characterization and dynamic analysis of shale gas production based on discrete fracture model[J]. Journal of China University of Petroleum (Edition of Natural Science), 2015, 39(3): 126–131. doi: 10.3969/j.issn.1673-5005.2015.03.017

    [54] 孙静静,黄朝琴,姚军,等. 基于离散裂缝模型的低渗透油藏开发数值模拟[J]. 计算物理,2015,32(2):177–185.

    SUN Jingjing, HUANG Chaoqin, YAO Jun, et al. Numerical simulation of water flooding development in low permeability reservoirs with a discrete fracture model[J]. Chinese Journal of Computational Physics, 2015, 32(2): 177–185.

    [55]

    HOTEIT H, FIROOZABADI A. An efficient numerical model for incompressible two-phase flow in fractured media[J]. Advances in Water Resources, 2008, 31(6): 891–905. doi: 10.1016/j.advwatres.2008.02.004

    [56]

    LIU Lijun, HUANG Zhaoqin, YAO Jun, et al. Simulating two-phase flow and geomechanical deformation in fractured karst reservoirs based on a coupled hydro-mechanical model[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 137: 104543. doi: 10.1016/j.ijrmms.2020.104543

    [57]

    FLEMISCH B, BERRE I, BOON W, et al. Benchmarks for single-phase flow in fractured porous media[J]. Advances in Water Resources, 2018, 111: 239–258. doi: 10.1016/j.advwatres.2017.10.036

    [58] 王高峰,胡永乐,李治平,等. 油气藏能量方程与一种新的配产理论初探[J]. 西南石油大学学报,2007,29(5):57–59.

    WANG Gaofeng, HU Yongle, LI Zhiping, et al. Oil/gas reservoir energy equation and a new theory of optimal production allocation[J]. Journal of Southwest Petroleum University, 2007, 29(5): 57–59.

    [59] 王娟. M区块凝析油气藏提高采收率方法研究[D]. 大庆:东北石油大学,2022.

    WANG Juan. Study on EOR method of condensate reservoir in M Block[D]. Daqing: Northeast Petroleum University, 2022.

    [60]

    ZHANG Yanjun, ZOU Yi, ZHANG Yang, et al. Experimental study on characteristics and mechanisms of matrix pressure transmission near the fracture surface during post-fracturing shut-in in tight oil reservoirs[J]. Journal of Petroleum Science and Engineering, 2022, 219: 111133. doi: 10.1016/j.petrol.2022.111133

    [61] 张衍君,徐树参,刘娅菲,等. 吉木萨尔页岩油压裂开发压后闷井时间优化[J]. 新疆石油天然气,2023,19(1):1–7. doi: 10.12388/j.issn.1673-2677.2023.01.001

    ZHANG Yanjun, XU Shucan, LIU Yafei, et al. Optimization of well shut-in time after fracturing in Jimusar shale oil reservoirs[J]. Xinjiang Oil & Gas, 2023, 19(1): 1–7. doi: 10.12388/j.issn.1673-2677.2023.01.001

    [62] 葛洪魁,陈玉琨,滕卫卫,等. 吉木萨尔页岩油微观产出机理与提高采收率方法探讨[J]. 新疆石油天然气,2021,17(3):84–90.

    GE Hongkui, CHEN Yukun, TENG Weiwei, et al. Micro-mechanism of production and method of enhanced oil recovery for Jimusar shale oil[J]. Xinjiang Oil & Gas, 2021, 17(3): 84–90.

    [63]

    TIWARI P, DEO M, LIN C L, et al. Characterization of oil shale pore structure before and after pyrolysis by using X-ray micro CT[J]. Fuel, 2013, 107: 547–554. doi: 10.1016/j.fuel.2013.01.006

    [64] 闫伟超,孙建孟. 微观剩余油研究现状分析[J]. 地球物理学进展,2016,31(5):2198–2211.

    YAN Weichao, SUN Jianmeng. Analysis of research present situation of microscopic remaining oil[J]. Progress in Geophysics, 2016, 31(5): 2198–2211.

    [65] 范竞存,余昊,陈杰,等. 非常规油气开采中的微纳米力学问题研究进展[J]. 中国科学技术大学学报,2017,47(2):142–154.

    FAN Jingcun, YU Hao, CHEN Jie, et al. Research progress of micro/nano mechanical problems in unconventional oil and gas exploitation[J]. Journal of University of Science and Technology of China, 2017, 47(2): 142–154.

    [66]

    WANG Fengchao, WU Hengan. Enhanced oil droplet detachment from solid surfaces in charged nanoparticle suspensions[J]. Soft Matter, 2013, 9(33): 7974–7980. doi: 10.1039/c3sm51425k

    [67]

    GUO X, WU K, KILLOUGH J, et al. Understanding the mechanism of interwell fracturing interference with reservoir/geomechanics/fracturing modeling in Eagle Ford shale[J]. SPE Reservoir Evaluation & Engineering, 2019, 22(3): 842–860.

    [68]

    RANGRIZ SHOKRI A, CHALATURNYK R J, BEARINGER D. Deployment of pressure hit catalogues to optimize multi-stage hydraulic stimulation treatments and future re-fracturing designs of horizontal wells in Horn River Shale Basin[R]. SPE 196221, 2019.

    [69]

    DANESHY A, AU-YEUNG J, THOMPSON T, et al. Fracture shadowing: A direct method for determination of the reach and propagation pattern of hydraulic fractures in horizontal wells[R]. SPE 151980, 2012.

    [70]

    ANUSARN S, LI Jiawei, WU Kan, et al. Fracture hits analysis for parent-child well development[R]. ARMA-2019-1542, 2019.

    [71]

    PANKAJ P. Decoding positives or negatives of fracture-hits: A geomechanical investigation of fracture-hits and its implications for well productivity and integrity[R]. URTEC-2876100-MS, 2018.

    [72]

    FIALLOS M X, YU Wei, GANJDANESH R, et al. Modeling interwell interference due to complex fracture hits in Eagle Ford using EDFM[R]. IPTC-19468-MS, 2019.

    [73]

    YANG Xi, YU Wei, WU Kan, et al. Assessment of production interference level due to fracture hits using diagnostic charts[J]. SPE Journal, 2020, 25(6): 2837–2852. doi: 10.2118/200485-PA

    [74]

    MANCHANDA R, SHARMA M, RAFIEE M, et al. Overcoming the impact of reservoir depletion to achieve effective parent well refracturing[R]. URTEC-2693373-MS, 2017.

    [75] 段景杰,姚振杰,黄春霞,等. 特低渗透油藏CO2驱流度控制技术[J]. 断块油气田,2017,24(2):190–193.

    DUAN Jingjie, YAO Zhenjie, HUANG Chunxia, et al. Mobility control technology of CO2 flooding in extra-low permeability reservoir[J]. Fault-Block Oil & Gas Field, 2017, 24(2): 190–193.

    [76] 陈涛平,赵斌,贺如. 特低渗透油层CO2与N2驱替方式[J]. 大庆石油地质与开发,2018,37(4):127–132.

    CHEN Taoping, ZHAO Bin, HE Ru. CO2 and N2 flooding methods in ultra-low permeability oil reservoir[J]. Petroleum Geology & Oilfield Development in Daqing, 2018, 37(4): 127–132.

    [77]

    WANG Chunpeng, CUI Weixiang, ZHANG Hewen, et al. High efficient imbibition fracturing for tight oil reservoir[R]. SPE 191274, 2018.

    [78]

    FAKCHAROENPHOL P, TORCUK M, KAZEMI H, et al. Effect of shut-in time on gas flow rate in hydraulic fractured shale reservoirs[J]. Journal of Natural Gas Science and Engineering, 2016, 32: 109–121. doi: 10.1016/j.jngse.2016.03.068

    [79]

    BOSTROM N, CHERTOV M, PAGELS M, et al. The time-dependent permeability damage caused by fracture fluid[R]. SPE 168140, 2014.

    [80]

    GHANBARI E, DEHGHANPOUR H. The fate of fracturing water: A field and simulation study[J]. Fuel, 2016, 163: 282–294. doi: 10.1016/j.fuel.2015.09.040

    [81]

    ROYCHAUDHURI B, TSOTSIS T T, JESSEN K. An experimental investigation of spontaneous imbibition in gas shales[J]. Journal of Petroleum Science and Engineering, 2013, 111: 87–97. doi: 10.1016/j.petrol.2013.10.002

    [82]

    KEIJZER T J S, LOCH J P G. Chemical osmosis in compacted dredging sludge[J]. Soil Science Society of America Journal, 2001, 65(4): 1045–1055. doi: 10.2136/sssaj2001.6541045x

    [83] 刘艳红,万文胜,罗鸿成,等. 吉7井区稠油油藏油水自乳化作用及水驱特征[J]. 新疆石油地质,2021,42(6):696–701.

    LIU Yanhong, WAN Wensheng, LUO Hongcheng, et al. Self-emulsification and waterflooding characteristics of heavy oil reservoirs in Well Block Ji-7[J]. Xinjiang Petroleum Geology, 2021, 42(6): 696–701.

  • 期刊类型引用(6)

    1. 张浩,倪利平,罗刚,王雪亮,王亮. 油基钻井液侵入对核磁共振测井响应影响的实验研究. 科学技术与工程. 2023(12): 5013-5021 . 百度学术
    2. 罗健,张国栋,胡文亮,魏晓晗,何玉春. 低渗储层泥浆侵入特征与时移电阻率测井评价. 海洋石油. 2022(02): 55-60+76 . 百度学术
    3. 吴进波,陈鸣,孙殿强,王锋,周基恒. 随钻地层测试在大斜度井油基钻井液中的应用. 石油钻采工艺. 2022(02): 178-185 . 百度学术
    4. 张志强,王猛,杨杰. 油基泥浆环境下储层电阻率动态剖面反演方法研究及应用. 石化技术. 2021(06): 116-117 . 百度学术
    5. 李新,米金泰,张卫,姚金志,李三国. 井下随钻核磁共振流体分析装置设计与试验验证. 石油钻探技术. 2020(02): 130-134 . 本站查看
    6. 邱小雪,戴家才,陈猛,程伊博. 基于VOF对低产积液气井流动特征的数值模拟. 断块油气田. 2020(05): 619-623 . 百度学术

    其他类型引用(2)

图(5)
计量
  • 文章访问数:  344
  • HTML全文浏览量:  51
  • PDF下载量:  124
  • 被引次数: 8
出版历程
  • 收稿日期:  2023-03-21
  • 修回日期:  2024-01-13
  • 网络出版日期:  2024-01-30
  • 刊出日期:  2024-01-24

目录

/

返回文章
返回