Development and Performance Evaluation of Emulsion Polymer with Temperature Resistance and Salt Resistance Used in Offshore Oilfield Development
-
摘要:
为满足海上油田开发对聚合物溶解速度、抗温和抗盐性能的要求,使用自制的高效聚合物乳化剂和热稳定剂,采用低温复合引发体系多段引发,制备了超高相对分子质量的速溶抗温抗盐型乳液聚合物,分析了制备工艺,助溶剂、功能单体和热稳定剂加量对聚合物性能的影响。结果表明,通过工艺优化可制备得到相对分子质量2 200万~2 400万的聚合物,尿素和硫酸钠可显著提高超高相对分子质量抗温抗盐乳液聚合物的溶解速度;聚合时添加N,N-二甲基丙烯酰胺、自制热稳定剂和2-丙烯酰胺-2-甲基丙磺酸钠,可显著提高聚合物的抗温抗盐性能。采用电镜、激光粒度仪、GPC和TGA等方法,评价了超高相对分子质量抗温抗盐型乳液聚合物的结构及性能,结果表明,制备的聚合物乳胶粒粒径分布均匀、相对分子质量分布窄和耐温性能好,在矿化度
35000 mg/L、温度75 ℃条件下,乳液聚合物30 d的黏度保留率大于90%。研究表明,超高相对分子质量抗温抗盐型乳液聚合物具有速溶、相对分子质量高和抗温抗盐性能好的特点,可以用于海上油田驱油开发。Abstract:In order to meet the demand for rapid dissolution, temperature resistance, and salt resistance of polymers in offshore oilfield development, the emulsion polymer with ultra-high relative molecular weight, rapid dissolution, temperature resistance, and salt resistance was prepared by low-temperature composite initiation system using self-made high efficient polymer emulsifier and heat stabilizer. In addition, the effects of the preparation process, cosolvent amount, functional monomer amount, and heat stabilizer amount on the performance of polymers were studied. The results show that the polymers with a relative molecular weight of 22–24 million can be obtained through process optimization. Urea and sodium sulfate can significantly improve the dissolution rate of the emulsion polymer with ultra-high relative molecular weight, temperature resistance, and salt resistance. Adding N,N-dimethylacrylamide, self-made heat stabilizer, and sodium 2-acrylamide-2-methylpropane sulfonate during polymerization can significantly improve the temperature resistance and salt resistance of the polymer. The structure and properties of the emulsion polymer with ultra-high relative molecular weight, temperature resistance, and salt resistance were characterized by electron microscopy, laser particle analyzer, gel permeation chromatography (GPC), and thermogravimetry (TGA). The results indicated that the prepared polymer has uniform emulsion particle distribution, narrow relative molecular weight distribution, and good temperature resistance. The viscosity retention rate of the emulsion polymer within 30 days was more than 90% at a salinity of 35 000 mg/L and temperature of 75 °C. The results reveal that the emulsion polymer with ultra-high relative molecular weight, temperature resistance, and salt resistance has the characteristics of rapid dissolution, high relative molecular weight, and good temperature resistance and salt resistance and can be widely used in offshore oilfield development by oil displacement.
-
-
表 1 单体质量分数对乳液聚合物相对分子质量的影响
Table 1 Influence of monomer concentration on relative molecular weight of emulsion polymer
单体质量分数,% 阴离子度,% 最大温升速率/(℃·min−1) 起始温度/℃ 交联剂质量浓度/ (mg·L−1) 助溶剂加量,% 相对分子质量/104 22 25 6.0 6.0 0.1 1.0 1 838 24 25 6.0 6.0 0.1 1.0 1 924 26 25 6.0 6.0 0.1 1.0 2 122 28 25 6.0 6.0 0.1 1.0 2 265 30 25 6.0 6.0 0.1 1.0 2 278 32 25 6.0 6.0 0.1 1.0 2 131 34 25 6.0 6.0 0.1 1.0 2 018 36 25 6.0 6.0 0.1 1.0 1 893 注:单体质量分数是单体与总乳液质量的比,下同;交联剂和助溶剂加量是其与单体总质量的比,下同。 表 2 阴离子度对乳液聚合物相对分子质量的影响
Table 2 Influence of anionic degree on relative molecular weight of emulsion polymer
阴离子度,% 单体质量分数,% 最大温升速率(℃·min-1) 起始温度/℃ 交联剂质量浓度/(mg·L−1) 助溶剂加量,% 相对分子质量/104 5 30 6.0 6.0 0.1 1.0 1 722 10 30 6.0 6.0 0.1 1.0 1 968 15 30 6.0 6.0 0.1 1.0 2 053 20 30 6.0 6.0 0.1 1.0 2 174 25 30 6.0 6.0 0.1 1.0 2 238 30 30 6.0 6.0 0.1 1.0 2 287 35 30 6.0 6.0 0.1 1.0 2 312 40 30 6.0 6.0 0.1 1.0 2 337 45 30 6.0 6.0 0.1 1.0 2 353 表 3 最大升温速率对乳液聚合物相对分子质量的影响
Table 3 Influence of maximum temperature rise rate on relative molecular weight of emulsion polymer
最大温升速率/(℃·min−1) 单体质量分数,% 阴离子度,% 起始温度/℃ 交联剂质量浓度/ (mg·L−1) 助溶剂加量,% 相对分子质量/104 2.5 30 30 6.0 0.1 1.0 2 156 3.5 30 30 6.0 0.1 1.0 2 278 4.5 30 30 6.0 0.1 1.0 2 332 5.5 30 30 6.0 0.1 1.0 2 285 6.5 30 30 6.0 0.1 1.0 2 132 7.5 30 30 6.0 0.1 1.0 2 026 8.5 30 30 6.0 0.1 1.0 1 978 9.5 30 30 6.0 0.1 1.0 1 916 10.5 30 30 6.0 0.1 1.0 1 834 表 4 起始温度对乳液聚合物相对分子质量的影响
Table 4 Influence of initial temperature on relative molecular weight of emulsion polymer
起始温度/℃ 阴离子度,% 最大温升速率/(℃·min−1) 单体质量分数,% 交联剂质量浓度/ (mg·L−1) 助溶剂加量,% 相对分子质量/104 5 30 4.5 30 0.1 1.0 2 332 6 30 4.5 30 0.1 1.0 2 386 7 30 4.5 30 0.1 1.0 2 319 8 30 4.5 30 0.1 1.0 2 256 9 30 4.5 30 0.1 1.0 2 235 10 30 4.5 30 0.1 1.0 2 176 11 30 4.5 30 0.1 1.0 1 982 12 30 4.5 30 0.1 1.0 1 915 13 30 4.5 30 0.1 1.0 1 876 14 30 4.5 30 0.1 1.0 1 856 15 30 4.5 30 0.1 1.0 1 789 表 5 交联剂用量对乳液聚合物相对分子质量的影响
Table 5 Influence of amount of crosslinking agent on relative molecular weight of emulsion polymer
交联剂质量浓度/(mg·L−1) 阴离子度, % 单体质量分数,% 最大温升速率/(℃·min−1) 起始温度/℃ 助溶剂加量,% 相对分子质量/104 0 30 30 4.5 8.0 1.0 2 358 0.1 30 30 4.5 8.0 1.0 2 385 0.2 30 30 4.5 8.0 1.0 2 433 0.3 30 30 4.5 8.0 1.0 2 362 0.4 30 30 4.5 8.0 1.0 2 354 0.5 30 30 4.5 8.0 1.0 2 228 0.6 30 30 4.5 8.0 1.0 2 073 0.7 30 30 4.5 8.0 1.0 1 838 0.8 30 30 4.5 8.0 1.0 1 669 0.9 30 30 4.5 8.0 1.0 1 438 表 6 助溶剂复合使用对乳液聚合物溶解性能的影响
Table 6 Influence of composite use of cosolvent on dissolvability of emulsion polymer
助溶剂加量,% 单体质量分数,
%阴离子度,
%最大温升速率/
(℃·min−1)起始温度/
℃交联剂质量浓度/
(mg·L−1)相对分子质量/
104溶解时间/
sA B C 30 30 4.5 8.0 0.2 2 156 25 1 30 30 4.5 8.0 0.2 2 177 21 2 30 30 4.5 8.0 0.2 2 213 19 3 30 30 4.5 8.0 0.2 2 339 18 1 30 30 4.5 8.0 0.2 2 307 19 2 30 30 4.5 8.0 0.2 2 368 17 3 30 30 4.5 8.0 0.2 2 329 16 1 30 30 4.5 8.0 0.2 2 284 22 2 28 25 4.5 8.0 0.2 2 245 20 3 28 25 4.5 8.0 0.2 2 216 19 1 2 28 25 4.5 8.0 0.2 2 432 15 2 1 28 25 4.5 8.0 0.2 2 376 16 1 2 28 25 4.5 8.0 0.2 2 328 19 2 1 28 25 4.5 8.0 0.2 2 361 18 1 2 28 25 4.5 8.0 0.2 2 348 18 2 1 28 25 4.5 8.0 0.2 2 319 17 注:助溶剂A,B和C分别为尿素、Na2SO4和Na3PO5,其加量为与单体总质量的比;溶解时间为搅拌速度300 r/min下乳液聚合物溶解过程中漩涡消失的时间。 表 7 乳液聚合物抗温抗盐性能测试结果
Table 7 Test results of temperature resistance and salt resistance of emulsion polymer
N99加量,
%热稳定剂
加量,%AMPS-Na
加量,%乳液聚合物黏度
保留率,%相对分子
质量/10410 d 20 d 30 d 0 0 0 90.1 74.1 56.7 2 357 1 1 1 94.3 86.5 80.3 2 265 2 2 2 95.1 87.4 80.9 2 213 2 2 3 96.7 88.1 81.4 2 179 2 2 4 97.5 89.4 81.6 2 158 2 2 5 97.4 89.6 81.7 2 165 2 2 6 97.5 89.5 81.8 2 082 2 2 7 97.4 89.7 82.0 2 023 3 3 5 97.5 89.7 82.5 1 963 4 4 5 97.8 90.3 83.3 1 753 注:盐水矿化度为30 800 mg/L,黏度测试条件为:0#转子,转速6 r/min,温度75 ℃,乳液聚合物溶液质量浓度2 000 mg/L。 表 8 引发剂不同补加量下乳液聚合物残余单体的含量
Table 8 Residual monomer content of emulsion polymer under different amounts of initiator
引发剂加量/
mL引发剂补加量/
mL保温时间/
h残余单体含量,
%10 1.0 0.5 0.325 10 1.5 0.5 0.252 10 2.0 0.5 0.158 10 2.5 0.5 0.117 10 3.0 0.5 0.093 10 4.0 0.5 0.091 10 3.0 1.0 0.065 10 3.0 1.5 0.043 10 3.0 2.0 0.032 10 3.0 2.5 0.023 10 3.0 3.0 0.021 注:补加引发剂的质量分数为3%,保温温度为65 ℃。 -
[1] 孙凤林,陈岩,王锦林,等. 储层矿物对渤海油田化学驱影响的探讨[J]. 精细与专用化学品,2023,31(3):10–13. SUN Fenglin, CHEN Yan, WANG Jinlin, et al. Discussion on the influence of clay mineral content on chemical flooding in Bohai Oilfield[J]. Fine and Specialty Chemicals, 2023, 31(3): 10–13.
[2] 徐长贵,赖维成,张新涛,等. 中国海油油气勘探新进展与未来勘探思考[J]. 中国海上油气,2023,35(2):1–12. XU Changgui, LAI Weicheng, ZHANG Xintao, et al. New progress and future exploration thinking of CNOOC oil and gas explo-ration[J]. China Offshore Oil and Gas, 2023, 35(2): 1–12.
[3] 孙福街. 中国海上油田高效开发与提高采收率技术现状及展望[J]. 中国海上油气,2023,35(5):91–99. SUN Fujie. Status and prospects of efficient development and EOR technologies in China offshore oilfields[J]. China Offshore Oil and Gas, 2023, 35(5): 91–99.
[4] 张玉,王凤,魏丽敏,等. 国内外化学驱技术标准对比[J]. 油田化学,2021,38(4):727–731. ZHANG Yu, WANG Feng, WEI Limin, et al. Comparison of domestic and international standards for chemical flooding[J]. Oilfield Chemistry, 2021, 38(4): 727–731.
[5] 刘学伟. 耐温抗盐型高效聚合物驱油剂的研制及应用[J]. 断块油气田,2020,27(4):474–477. LIU Xuewei. Development and application of high efficiency polymer flooding agent with temperature and salt resistance[J]. Fault-Block Oil & Gas Field, 2020, 27(4): 474–477.
[6] 王丽莉,梁严,李文宏,等. 离子组成对中低分子量聚合物抗盐行为的影响[J]. 西南石油大学学报(自然科学版),2023,45(4):174–184. WANG Lili, LIANG Yan, LI Wenhong, et al. Effect of ion composition on the salt-tolerance behavior of medium-low molecular weight polymers[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2023, 45(4): 174–184.
[7] 周泉,张世东,周万富. 聚合物−表面活性剂二元抗盐体系注入性能评价[J]. 特种油气藏,2023,30(1):120–125. doi: 10.3969/j.issn.1006-6535.2023.01.017 ZHOU Quan, ZHANG Shidong, ZHOU Wanfu. Evaluation and study of injection performance of binary system of anti-salt polymer and surfactant[J]. Special Oil & Gas Reservoirs, 2023, 30(1): 120–125. doi: 10.3969/j.issn.1006-6535.2023.01.017
[8] 刘建坤,蒋廷学,黄静,等. 纳米材料改善压裂液性能及驱油机理研究[J]. 石油钻探技术,2022,50(1):103–111. doi: 10.11911/syztjs.2021118 LIU Jiankun, JIANG Tingxue, HUANG Jing, et al. Study on mechanism of the fracturing fluid performance improvement and oil displacement using nanomaterials[J]. Petroleum Drilling Techniques, 2022, 50(1): 103–111. doi: 10.11911/syztjs.2021118
[9] 陶光辉,束华东,刘斌. 古城油田B125区块稠油油藏超高分子量聚合物驱技术[J]. 石油钻探技术,2020,48(1):66–71. doi: 10.11911/syztjs.2019127 TAO Guanghui, SHU Huadong, LIU Bin. Ultra-high molecular weight polymer flooding technology for heavy oil reservoirs in Block B125 of the Gucheng Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(1): 66–71. doi: 10.11911/syztjs.2019127
[10] 贾志伟,程长坤,朱秀雨,等. 青海油田尕斯N1-N21超高盐油藏复合驱提高采收率技术[J]. 石油钻探技术,2021,49(5):81–87. doi: 10.11911/syztjs.2021121 JIA Zhiwei, CHENG Changkun, ZHU Xiuyu, et al. Oil recovery enhancement by composite flooding technology for Gasi N1-N21 ultra-high-salinity reservoir in Qinghai Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(5): 81–87. doi: 10.11911/syztjs.2021121
[11] 姜维东,张健,吕鑫. 渤海油田新型驱油剂驱油效果研究[J]. 石油地质与工程,2012,26(3):109–112. doi: 10.3969/j.issn.1673-8217.2012.03.034 JIANG Weidong, ZHANG Jian, LYU Xin. Study on displacement efficiency of new flooding agent in Bohai Oilfield[J]. Petroleum Geology and Engineering, 2012, 26(3): 109–112. doi: 10.3969/j.issn.1673-8217.2012.03.034
[12] 山金城,李保振,张延旭,等. 海上油田化学驱技术研究与应用进展[J]. 科技导报,2020,38(17):127–133. SHAN Jincheng, LI Baozhen, ZHANG Yanxu, et al. Review of the development and field application of worldwide offshore chemical EOR technology[J]. Science & Technology Review, 2020, 38(17): 127–133.
[13] 张凤久,姜伟,孙福街,等. 海上稠油聚合物驱关键技术研究与矿场试验[J]. 中国工程科学,2011,13(5):28–33. doi: 10.3969/j.issn.1009-1742.2011.05.005 ZHANG Fengjiu, JIANG Wei, SUN Fujie, et al. Key technology research and field test of offshore viscous polymer flooding[J]. Strategic Study of CAE, 2011, 13(5): 28–33. doi: 10.3969/j.issn.1009-1742.2011.05.005
[14] YEE H V, BT HALIM N H, BT SALLEH I K, et al. Managing chemical EOR (ASP) effects on formation damage and flow assurance in Malay Basin, Malaysia[R]. IPTC 16777, 2013.
[15] 李晓风,肖传敏,郭斐,等. 中低渗高凝油藏用聚合物的相对分子质量设计与应用[J]. 油田化学,2023,40(3):467–472. LI Xiaofeng, XIAO Chuanmin, GUO Fei, et al. Design and application of molecular weight of polymer in medium-low permeability and high pour point reservoirs[J]. Oilfield Chemistry, 2023, 40(3): 467–472.
[16] 朱振坤,李海成,高光磊,等. 大庆油田化学驱分层注入技术现状与发展趋势[J]. 石油钻采工艺,2022,44(5):642–647. ZHU Zhenkun, LI Haicheng, GAO Guanglei, et al. Status and trend of chemical flooding and layered injection technology in Daqing Oilfield[J]. Oil Drilling & Production Technology, 2022, 44(5): 642–647.
[17] GB/T 17514—2017 水处理剂:阴离子和非离子型聚丙烯酰胺[S]. GB/T 17514—2017 Water treatment chemicals: Anionic and non-ionic polyacrylamides[S].
[18] TAMSILIAN Y, RAMAZANI S A A, SHABAN M, et al. High molecular weight polyacrylamide nanoparticles prepared by inverse emulsion polymerization: reaction conditions-properties relationships[J]. Colloid and Polymer Science, 2016, 294(3): 513–525. doi: 10.1007/s00396-015-3803-5
[19] YAO Chuanjin, LEI Guanglun, GAO Xuemei, et al. Controllable preparation, rheology, and plugging property of micron-grade polyacrylamide microspheres as a novel profile control and flooding agent[J]. Journal of Applied Polymer Science, 2013, 130(2): 1124–1130. doi: 10.1002/app.39283
[20] POURJAVADI A, BASSAMPOUR Z, GHASEMZADEH H, et al. Porous carrageenan-g-polyacrylamide/bentonite superabsorbent co-mposites: swelling and dye adsorption behavior[J]. Journal of Polymer Research, 2016, 23(3): 60. doi: 10.1007/s10965-016-0955-z
[21] TAMSILIAN Y, RAMAZANI S A A, SHABAN M, et al. Nanostructured particles for controlled polymer release in enhanced oil recovery[J]. Energy Technology, 2016, 4(9): 1035–1046. doi: 10.1002/ente.201600036
[22] ZHENG Huaili, SUN Yongjun, ZHU Chuanjun, et al. UV-initiated polymerization of hydrophobically associating cationic flocculants: synthesis, characterization, and dewatering properties[J]. Chemical Engineering Journal, 2013, 234: 318–326. doi: 10.1016/j.cej.2013.08.098
[23] MA Jiangya, SHI Jun, DING Lei, et al. Removal of emulsified oil from water using hydrophobic modified cationic polyacrylamide flocculants synthesized from low-pressure UV initiation[J]. Separation and Purification Technology, 2018, 197: 407–417. doi: 10.1016/j.seppur.2018.01.036
[24] ZHONG J X, CLEGG J R, ANDER E W, et al. Tunable poly(methacrylic acid-co-acrylamide) nanoparticles through inverse emulsion polymerization[J]. Journal of Biomedical Materials Research Part A, 2018, 106(6): 1677–1686. doi: 10.1002/jbm.a.36371
[25] LIU Ya, LYU Cuicui, DING Jian, et al. Characterization of a hybrid polyacrylamide and its flocculation properties in cyanide tailing suspensions[J]. Water Science and Technology, 2017, 76(9): 2482–2493. doi: 10.2166/wst.2017.422