Calculation of Optimal Distance Between Electrode and Probe in Relief Well Magnetic Ranging
-
摘要:
测距精度是影响救援井与事故井连通的关键因素。为提高基于注入电流主动磁测距系统的测量精度,分析了各介质中的电场分布情况,建立了事故井套管电流密度分布模型;通过分析事故井套管电流密度的分布规律,建立了基于测点处磁感应强度最大原则的电极与探管最优距离计算模型,并且通过与试验结果对比验证了模型的有效性。实例计算表明,电极与探管的最优距离不仅与电极到事故井的距离有关,也与相对井斜角有关,但与注入电流的强度无关;事故井套管电流密度的峰值点距事故井坐标点的距离,近似等于电极到事故井探管的距离;电极与探管的最优距离,近似等于电极到事故井距离与相对井斜角余割的乘积。研究结果表明,合理设计电极到探管的距离,有利于提高基于注入电流主动磁测距系统的测量精度。
Abstract:Ranging accuracy is a key factor affecting the successful connection between relief wells and accident wells. In order to improve the measurement accuracy of the active magnetic ranging system based on injected current, the electric field distribution in each medium was analyzed, and the current density distribution model of the accident well casing was established. By analyzing the current density distribution law of accident well casing, the calculation model of the optimal distance between the electrode and the probe based on the principle of the maximum magnetic induction intensity at the measuring point was established and the effectiveness of the model was verified by comparison test results. Calculations with examples show that the optimal distance between the electrode and the probe is related to not only the distance between the electrode and the accident well but also the relative well inclination angle. In addition, it has nothing to do with the injected current intensity. The distance between the peak point of the casing current density of the accident well and the coordinate point of the accident well is approximately equal to that between the electrode and the probe in the accident well. The optimal distance between the electrode and the probe is approximately equal to the product of the distance between the electrode and the accident well and the cosecant of the relative inclination angle. According to the calculation results of the optimal distance, a reasonable design of the distance between the electrode and the probe can contribute to the improvement measurement accuracy of the active magnetic ranging system based on injected current.
-
-
-
[1] FLORES V, DAILEY P, TODD D, et al. Relief well planning[R]. SPE 168029, 2014.
[2] 车阳,乔磊,王建国,等. X 井精准治理技术研究与应用[J]. 断块油气田,2023,30(2):347–352. CHE Yang, QIAO Lei, WANG Jianguo, et al. Research and application of precise treatment technology for well X[J]. Fault-Block Oil & Gas Field, 2023, 30(2): 347–352.
[3] 刁斌斌,高德利,唐海雄,等. 救援井与事故井邻井距离探测技术[C]//第十六届全国探矿工程(岩土钻掘工程)技术学术交流年会论文集. 北京:地质出版社,2011:201-205. DIAO Binbin, GAO Deli, TANG Haixiong, et al. The distance detection technology between rescue wells and accident wells [C]//Proceedings of the 16th National Academic Exchange Conference on Exploration Engineering (Rock and Soil Drilling Engineering) Technology. Beijing: Geological Publishing House, 2011: 201-205.
[4] WOLFF C J M, DE WARDT J P. Borehole position uncertainty-analysis of measuring methods and derivation of systematic error model[J]. Journal of Petroleum Technology, 1981, 33(12): 2338–2350. doi: 10.2118/9223-PA
[5] WILLIAMSON H S. Accuracy prediction for directional measurement while drilling[J]. SPE Drilling & Completion, 2000, 15(4): 221–233.
[6] TORKILDSEN T, HÅVARDSTEIN S T, WESTON J, et al. Prediction of wellbore position accuracy when surveyed with gyroscopic tools[J]. SPE Drilling & Completion, 2008, 23(1): 5–12.
[7] DIAO Binbin, GAO Deli. Study on a ranging system based on dual solenoid assemblies, for determining the relative position of two adjacent wells[J]. Computer Modeling in Engineering & Sciences, 2013, 90(1): 77–90.
[8] KUCKES A F, HAY R T, MCMAHON J, et al. New electromagnetic surveying/ranging method for drilling parallel horizontal twin wells[J]. SPE Drilling & Completion, 1996, 11(2): 85–90.
[9] 高德利,刁斌斌. 复杂结构井磁导向钻井技术进展[J]. 石油钻探技术,2016,44(5):1–9. GAO Deli, DIAO Binbin. Development of the magnetic guidance drilling technique in complex well engineering[J]. Petroleum Drilling Techniques, 2016, 44(5): 1–9.
[10] 李翠,高德利,刘庆龙,等. 邻井随钻电磁测距防碰计算方法研究[J]. 石油钻探技术,2016,44(5):52–59. LI Cui, GAO Deli, LIU Qinglong, et al. A method of calculating of avoiding collisions with adjacent wells using electromagnetic ranging surveying while drilling tools[J]. Petroleum Drilling Technique, 2016, 44(5): 52–59.
[11] WEST C L, KUCKES A F, RITCH H J. Successful ELREC logging for casing proximity in an offshore Louisiana blowout[R]. SPE 11996, 1983.
[12] KUCKES A F, LAUTZENHISER T, NEKUT A G, et al. An electromagnetic survey method for directionally drilling a relief well into a blown out oil or gas well[J]. SPE Journal, 1984, 24(3): 269–274.
[13] 李翠,高丽萍,李佳,等. 邻井随钻电磁测距防碰工具模拟试验研究[J]. 石油钻探技术,2017,45(6):110–115. LI Cui, GAO Liping, LI Jia, et al. Experiment research on an electromagnetic anti-collision detection tool while drilling adjacent wells[J]. Petroleum Drilling Techniques, 2017, 45(6): 110–115.
[14] DIAO Binbin, GAO Deli, LI Genkui. Development of static magnetic detection anti-collision system while drilling[C]//Proceedings of the 2016 International Conference on Artificial Intelligence and Engineering Applications. Amsterdam: Atlantis Press, 2016: 543-551.
[15] WU Zhiyong, GAO Deli, DIAO Binbin. An investigation of electromagnetic anti-collision real-time measurement for drilling cluster wells[J]. Journal of Natural Gas Science and Engineering, 2015, 23: 346–355. doi: 10.1016/j.jngse.2015.02.016
[16] 刁斌斌,高德利. 邻井定向分离系数计算方法[J]. 石油钻探技术,2012,40(1):22–27. doi: 10.3969/j.issn.1001-0890.2012.01.005 DIAO Binbin, GAO Deli. Calculation method of adjacent well oriented separation factors[J]. Petroleum Drilling Techniques, 2012, 40(1): 22–27. doi: 10.3969/j.issn.1001-0890.2012.01.005
[17] DOU Xinyu, LIANG Huaqing, LIU Yang. Anticollision method of active magnetic guidance ranging for cluster wells[J]. Mathematical Problems in Engineering, 2018, 2018: 7583425.
[18] INGRAM S R, LAHMAN M, PERSAC S. Methods improve stimulation efficiency of perforation clusters in completions[J]. Journal of Petroleum Technology, 2014, 66(4): 32–36. doi: 10.2118/0414-0032-JPT
[19] 李翠,高德利. 救援井与事故井连通探测方法初步研究[J]. 石油钻探技术,2013,41(3):56–61. LI Cui, GAO Deli. Preliminary research on detection method for connecting relief well to blowout well[J]. Petroleum Drilling Techniques, 2013, 41(3): 56–61.
[20] LI Cui, GAO Deli, WU Zhiyong, et al. A method for the detection of the distance & orientation of the relief well to a blowout well in offshore drilling[J]. Computer Modeling in Engineering and Sciences, 2012, 89(1): 39–56.
[21] ZHANG Sen, DIAO Binbin, GAO Deli. A new method of anti-collision while drilling based on radial gradient measurement[R]. ARMA-2019-0114, 2019.
[22] ZHANG Sen, DIAO Binbin, GAO Deli. Numerical simulation and sensitivity analysis of accurate ranging of adjacent wells while drilling[J]. Journal of Petroleum Science and Engineering, 2020, 195: 107536. doi: 10.1016/j.petrol.2020.107536
-
期刊类型引用(9)
1. 王彬,李琼玉,吕喜林,梁池,程晓伟,杨永朋. 无水改性乙二醇基速溶压裂液研制及应用. 油气井测试. 2024(05): 34-41 . 百度学术
2. 凃宏俊,周明,李彤彤. 自修复水凝胶的研究进展及油气田应用. 西南石油大学学报(自然科学版). 2023(01): 71-80 . 百度学术
3. 李源流,高兴军,侯浩,王延,弓虎军. 低碳烃无水压裂液体系构建及性能评价. 钻采工艺. 2023(01): 126-131 . 百度学术
4. 匡立新. 新型铝离子无水压裂液的制备及其性能. 石油地质与工程. 2022(01): 81-86 . 百度学术
5. 魏志毅,张金泽,公证,刘崧达,刘佳音,李家豪,范海明. 双烷基脲稠化烃基压裂液的制备及其流变特性. 中国石油大学学报(自然科学版). 2022(04): 123-129 . 百度学术
6. 蒋廷学,左罗,黄静. 少水压裂技术及展望. 石油钻探技术. 2020(05): 1-8 . 本站查看
7. 王满学,何静,王永炜. 国内烃基无水压裂液技术研究与应用进展. 钻井液与完井液. 2018(06): 1-7 . 百度学术
8. 刘晨,王凯,耿艳宏,王泰超,周文胜,邱凌. 清洁压裂液破胶液驱油体系实验研究. 断块油气田. 2017(01): 96-100 . 百度学术
9. 王满学,何静,王永炜. 耐高温低碳烃无水压裂液室内研究. 石油钻探技术. 2017(04): 93-96 . 本站查看
其他类型引用(2)