Electrode System Design and Response Simulation of Azimuthal Lateral Resistivity Logging While Drilling
-
摘要:
高阻地层水平井电缆施工风险大,测井数据缺失严重,制约了精准地质导向施工和优质储层钻遇。为此,提出了一种基于非接触耦合原理的新型随钻方位侧向电阻率测井电极系,该电极系具有径向、纵向和周向探测能力。利用三维有限元模拟方法,考察了井眼尺寸、冲洗带电阻率、地层倾角、层厚及围岩电阻率对探测结果的影响,确定了电极系尺寸和探测特性,并建立了环境影响校正模版。模拟结果表明,螺绕环激励式随钻方位侧向电阻率仪器探测深度较浅,总体小于电缆式侧向仪器,但随钻过程中受侵入影响较小,能够满足随钻测井需求,有较好的纵向分层能力,高阻地层条件下也可以分辨0.5 m薄层;借助四方位测量能较好识别高阻、低阻异常体位置并确定地层倾向。研究结果对随钻方位侧向测井仪结构参数设计及高阻储层勘探具有重要的指导意义。
Abstract:Wireline logging in horizontal wells in high resistivity formations faces high risk,and its logging data are subject to serious lackage, which restricts accurate geosteering drilling and high-quality reservoir identification. Therefore, a novel electrode system of azimuthal lateral resistivity logging while drilling based on the non-contact coupling principle was proposed, with radial, longitudinal, and circumferential detection abilities. The effects of wellbore size, flushed zone resistivity, formation inclination, layer thickness, and surrounding rock resistivity on the detection results were investigated by using the three-dimensional finite element simulation method. The electrode system size and detection characteristics were determined, and the ambient impact calibration diagram was established. The simulation results show that the toroidal coil excitation instrument for azimuthal lateral resistivity logging while drilling has a shallow detection depth, which is generally less than that of the cable-type instrument, but it is less affected by intrusion during the drilling process. It can meet the needs of logging while drilling, has good longitudinal zone identification ability, and can define 0.5 m thin layers under the condition of high resistivity formation. With the help of quad azimuthal measurement, the position of high and low resistivity abnormal bodies can be well identified, and the formation inclination can be determined. The research results have important guiding significance for the structural parameter design of instruments for azimuthal lateral logging while drilling and exploring for high resistivity reservoirs.
-
-
-
[1] 李辉,鄢志丹,刘长波,等. 随钻方位电阻率测井仪器响应数值模拟[J]. 中国石油大学学报(自然科学版),2019,43(1):42–52. LI Hui, YAN Zhidan, LIU Changbo, et al. Numerical simulation of azimuthal resistivity LWD instrument responses[J]. Journal of China University of Petroleum(Edition of Natural Science), 2019, 43(1): 42–52.
[2] 陈华,范宜仁,邓少贵,等. 水平井中随钻电阻率实时确定地层界面方法[J]. 吉林大学学报(地球科学版),2011,41(5):1623–1629. CHEN Hua, FAN Yiren, DENG Shaogui, et al. Methods for real-time determination of formation boundary with LWD resistivity logs in horizontal wells[J]. Journal of Jilin University(Earth Science Edition), 2011, 41(5): 1623–1629.
[3] 吴进波,陈鸣,孙殿强,等. 随钻地层测试在大斜度井油基钻井液中的应用[J]. 石油钻采工艺,2022,44(2):178–185. WU Jinbo, CHEN Ming, SUN Dianqiang, et al. Application of formation testing while drilling in highly deviated wells with oil-based drilling fluid[J]. Oil Drilling & Production Technology, 2022, 44(2): 178–185.
[4] 吴柏志,杨震,郭同政,等. 多尺度随钻方位电磁波测井系统响应特征研究[J]. 石油钻探技术,2022,50(6):7–13. WU Baizhi, YANG Zhen, GUO Tongzheng, et al. Response characteristics of logging while drilling system with multi-scale azimuthal electromagnetic waves[J]. Petroleum Drilling Techniques, 2022, 50(6): 7–13.
[5] 朱军,杨善森,刘刚,等. 随钻双侧向电阻率测井响应数值模拟分析[J]. 测井技术,2017,41(2):146–150. ZHU Jun, YANG Shansen, LIU Gang, et al. Numerical analysis of logging responses for dual laterolog resistivity logging-while-drilling tool[J]. Well Logging Technology, 2017, 41(2): 146–150.
[6] 朱祖扬. 随钻声波远探测声波速度成像数值模拟与试验[J]. 石油钻探技术,2022,50(6):35–40. ZHU Zuyang. Numerical simulation and test of velocity imaging for remote detection acoustic logging while drilling[J]. Petroleum Drilling Techniques, 2022, 50(6): 35–40.
[7] 刘天淋,岳喜洲,李国玉,等. 超深探测随钻电磁波测井地质信号特性研究[J]. 石油钻探技术,2022,50(6):41–48. LIU Tianlin, YUE Xizhou, LI Guoyu, et al. Study over the geo-signal properties of ultra-deep electromagnetic wave logging while drilling[J]. Petroleum Drilling Techniques, 2022, 50(6): 41–48.
[8] 孙志峰,仇傲,金亚,等. 随钻多极子声波测井仪接收声系的优化设计与试验[J]. 石油钻探技术,2022,50(4):114–120. SUN Zhifeng, QIU Ao, JIN Ya, et al. Optimal design and experimental study of the receiver sonde in multipole acoustic LWD tools[J]. Petroleum Drilling Techniques, 2022, 50(4): 114–120.
[9] REZMER-COOPER I, BRATTON T, KRABBE H. The use of resistivity-at-the-bit images and annular pressure while drilling in preventing drilling problems[J]. SPE Drilling & Completion, 2001, 16(1): 35–42.
[10] TRIBE I, HOLM G, HARKER S, et al. Optimized horizontal well placement in the Otter Field, North Sea using new formation imaging while drilling technology[R]. SPE 83968, 2003.
[11] ORTENZI L, DUBOURG I, VAN OS R, et al. New azimuthal resistivity and high-resolution imager facilitates formation evaluation and well placement of horizontal slim boreholes[R]. SPWLA-2011-LLL, 2011.
[12] PRAMMER M G, MORYS M, KNIZHNIK S, et al. Field testing of an advanced LWD imaging resistivity tool[R]. SPWLA-2007-AA, 2007.
[13] 张海波,窦修荣,王志国,等. 国外随钻成像技术研究进展及展望[J]. 国外测井技术,2019,40(5):28–32. ZHANG Haibo, DOU Xiurong, WANG Zhiguo, et al. The research progress and prospects of imaging while drilling technology[J]. World Well Logging Technology, 2019, 40(5): 28–32.
[14] 朱军,李安宗,陈鹏,等. GRT随钻侧向电阻率测井响应数值模拟研究[C]//第十八届测井年会论文集. 北京:中国石油学会,2013:61-70. ZHU Jun, LI Anzong, CHENG Peng, et al. Numerical simulation study of GRT lateral resistivity logging response with drilling[C]//Collected Papers of the 18th Annual Well Logging Conference. Beijing: Chinese Petroleum Society, 2013: 61-70.
[15] 李铭宇,柯式镇,康正明,等. 螺绕环激励式随钻侧向测井仪测量强度影响因素及响应特性[J]. 石油钻探技术,2018,46(1):128–134. LI Mingyu, KE Shizhen, KANG Zhengming, et al. Influence factors of measured signal intensity and the response characteristics of the toroidal coil excitation LWD laterolog instrument[J]. Petroleum Drilling Techniques, 2018, 46(1): 128–134.
[16] 李安宗,李启明,朱军,等. 方位侧向电阻率成像随钻测井仪探测特性数值模拟分析[J]. 测井技术,2014,38(4):407–410. doi: 10.3969/j.issn.1004-1338.2014.04.006 LI Anzong, LI Qiming, ZHU Jun, et al. Numerical analysis of logging responses for LWD azimuthal laterolog resistivity imaging tool[J]. Well Logging Technology, 2014, 38(4): 407–410. doi: 10.3969/j.issn.1004-1338.2014.04.006
[17] 李新,倪卫宁,米金泰,等. 一种基于非接触耦合原理的新型随钻微电阻率成像仪器[J]. 中国石油大学学报(自然科学版),2020,44(6):46–52. LI Xin, NI Weining, MI Jintai, et al. A novel high-resolution resistivity imaging while drilling tool based on contactless coupling[J]. Journal of China University of Petroleum (Edition of Natural Science), 2020, 44(6): 46–52.
[18] GIANZERO S, CHEMALI R, LIN Y Y, et al. A new resistivity tool for measurement-while-drilling[R]. SPWLA-1985-A, 1985.
[19] 闫伟,孟祥龙,冯永存,等. 砂砾岩电阻率与岩石力学参数相关性研究[J]. 石油钻采工艺,2022,44(1):9–14. YAN Wei, MENG Xianglong, FENG Yongcun, et al. Study on correlation between glutenite resistivity and rock mechanical parameters[J]. Oil Drilling & Production Technology, 2022, 44(1): 9–14.
[20] 李大潜,郑宋穆,谭永基,等. 有限元素法在电测井中的应用[M]. 北京:石油工业出版社,1980. LI Daqian, ZHENG Songmu, TAN Yongji, et al. Application of finite element method in electrical logging[M]. Beijing: Petroleum Industry Press, 1980.
[21] WANG H M, SHEN L C, ZHANG G J. Dual laterolog response in 3-D environments[R]. SPWLA-1998-X, 1998.
-
期刊类型引用(4)
1. 薛成,谢明英,冯沙沙,涂志勇,陈一鸣,侯凯. 水平井地质导向技术在海上油田薄油层开发中的应用. 录井工程. 2023(04): 42-48 . 百度学术
2. 陆自清. 基于卡尔曼滤波的动态地质模型导向方法. 石油钻探技术. 2021(01): 113-120 . 本站查看
3. 苏洲,刘永福,韩剑发,杨淑雯,刘博,赖鹏,彭鹏,张慧芳,易珍丽. 相控约束下的超深薄层砂体预测技术在塔北隆起玉东区块中的应用. 天然气地球科学. 2020(02): 295-306 . 百度学术
4. 高弘毅,王光,夏竹君,杨坚,程宝庆. 水平井随钻地质导向技术在南海某气田的应用. 石化技术. 2019(11): 164 . 百度学术
其他类型引用(1)