测井仪被动式热管理系统室温冷却研究

田志宾, 彭嘉乐, 鄢星宇, 魏赞庆, 杨庚佳, 罗小兵

田志宾,彭嘉乐,鄢星宇,等. 测井仪被动式热管理系统室温冷却研究[J]. 石油钻探技术,2024, 52(1):146-154. DOI: 10.11911/syztjs.2023116
引用本文: 田志宾,彭嘉乐,鄢星宇,等. 测井仪被动式热管理系统室温冷却研究[J]. 石油钻探技术,2024, 52(1):146-154. DOI: 10.11911/syztjs.2023116
TIAN Zhibin, PENG Jiale, YAN Xingyu, et al. Study on room temperature cooling of passive thermal management system for logging tool [J]. Petroleum Drilling Techniques,2024, 52(1):146-154. DOI: 10.11911/syztjs.2023116
Citation: TIAN Zhibin, PENG Jiale, YAN Xingyu, et al. Study on room temperature cooling of passive thermal management system for logging tool [J]. Petroleum Drilling Techniques,2024, 52(1):146-154. DOI: 10.11911/syztjs.2023116

测井仪被动式热管理系统室温冷却研究

基金项目: 中国海洋石油集团公司重大科技项目“测录试关键技术与装备”(编号:KJGG-2022-1401)资助。
详细信息
    作者简介:

    田志宾(1978—),男,河南鄢陵人,2001年毕业于华北水利水电大学机械设计及制造专业,2006年获华中科技大学机械电子工程专业硕士学位,高级工程师,主要从事石油勘探设备的研制工作。E-mail:tianzhb@cosl.com.cn

    通讯作者:

    罗小兵,luoxb@hust.edu.cn

  • 中图分类号: TE927

Study on Room Temperature Cooling of Passive Thermal Management System for Logging Tool

  • 摘要:

    被动式热管理系统能使测井仪内部电子器件的温度在工作时间内不超过耐温指标,然而热管理系统优异的隔热性能导致测井仪需要较长时间冷却,才能投入下一次工作。为此,提出了一种针对测井仪的室温冷却方案。通过将电路骨架从保温瓶内抽出置于空气中实现快速冷却,同时设置芯片保护壳避免内部电子器件与空气直接接触,能够避免较高温差所产生的热应力及水蒸气液化对内部电子器件的损坏,实现快速冷却。模拟和试验验证了该方案的可行性,同时模拟探究了不同因素对冷却方案效果的影响,确定了最佳的冷却方案。研究结果表明,所提出的室温冷却方案可以解决测井仪被动式热管理系统冷却散热的问题,提高测井工作的效率。

    Abstract:

    Passive thermal management systems can prevent the temperature of electron devices inside the logging tool from exceeding the tolerance during operating hours. The excellent insulation performance of thermal management systems makes the logging tool take relative long time to cool down for the next operation. Therefore, a room-temperature cooling solution for the logging tool was proposed, achieving rapid cooling by withdrawing the circuit skeleton from the thermos bottle and releasing it into the air. A chip protective shell was set up to avoid direct contact between the internal electron devices and the air, and thus the logging tool could achieve rapid cooling while avoiding the thermal stress caused by the high-temperature difference and the damage to the internal electron devices by water vapor liquefaction. The simulation and experiment verified the feasibility of the scheme. At the same time, the influence of different factors on the effect of cooling schemes was simulated, and the best cooling scheme was determined. The results demonstrate that the proposed room temperature cooling scheme effectively addresses the cooling and heat dissipation challenges in passive thermal management systems for logging tools, thereby enhancing working efficiency.

  • 图  1   测井仪被动式热管理系统室温冷却方案模型

    Figure  1.   Model of room temperature cooling scheme for passive thermal management system of logging tool

    图  2   相变材料DSC的热流–温度曲线

    Figure  2.   Heat flow and temperature curve of phase change material DSC

    图  3   升温和冷却过程中的传热示意

    Figure  3.   Heat transfer during heating and cooling

    图  4   不同导热系数下热源温度随时间的变化曲线

    Figure  4.   Variation curve of heat source temperature with time under different thermal conductivity

    图  5   热源前1 min降温速率随导热系数的变化曲线

    Figure  5.   Variation curve of heat source cooling rate with thermal conductivity in the first one minute

    图  6   不同厚度保护壳条件下热源温度随时间的变化曲线

    Figure  6.   Variation curve of heat source temperature with time under different thicknesses of protective shell

    图  7   不同厚度保护壳条件下热源在前1 min降温速率随厚度的变化曲线

    Figure  7.   Variation curve of heat source cooling rate with thickness of protective shell in the first one minute

    图  8   本文方案与方案a和b冷却曲线的对比

    Figure  8.   Comparison of cooling curves for proposed scheme and schemes a and b

    图  9   测井仪被动式热管理系统室温冷却试验样机结构与原理

    Figure  9.   Structure and principle of room temperature cooling experiment prototype of passive thermal management system of logging tool

    图  10   室温冷却方案试验流程

    Figure  10.   Experimental process of room temperature cooling scheme

    图  11   试验过程中温度随时间的变化曲线

    Figure  11.   Variation curve of temperature with time during experiment

    图  12   试验与模拟所得热源降温曲线的对比

    Figure  12.   Comparison of heat source cooling curve between experimental and simulation results

    表  1   测井仪被动式热管理系统各部分的物性参数

    Table  1   Material property parameters of each part of passive thermal management system of logging tool

    测井仪部位材料导热系数/
    (W·(m·K)−1
    密度/
    (kg·m−3
    比定压热容/
    (J·(kg·K)−1
    真空层铝箔+间隔物0.00022001200.0
    骨架铝合金6061167.00002 710896.0
    热源陶瓷30.00003960850.0
    导热硅胶垫硅胶1.00001810923.0
    隔热塞PEEK0.20002710880.0
    绝热棉硅铝酸棉0.0350400794.2
    相变材料伍德合金18.80009580146.0/181.0
    吸热壳体铝合金6061167.00002710896.0
    下载: 导出CSV

    表  2   网格数量无关性的验证

    Table  2   Verification of grid quantity independence

    网格数热源最终温度/℃与上一情况的相对误差,%
    3481997.398
    5855494.6712.8
    12940693.8190.9
    62074493.4440.4
    425261493.1640.3
    下载: 导出CSV
  • [1]

    PENG Jiale, DENG Chao, WEI Fulong, et al. A hybrid thermal management system combining liquid cooling and phase change material for downhole electronics[J]. Journal of Energy Storage, 2023, 72(Part D): 108610.

    [2] 魏赞庆,彭嘉乐,蓝威,等. 高温井下低熔点合金储热模块封装及试验[J]. 石油机械,2022,50(11):9–15.

    WEI Zanqing, PENG Jiale, LAN Wei, et al. Package and test of low-melting alloy heat storage module in high-temperature wellbore[J]. China Petroleum Machinery, 2022, 50(11): 9–15.

    [3] 魏赞庆,田志宾,杨庚佳,等. 高温液压旋转井壁取心仪的研制与应用[J]. 石油钻探技术,2023,51(3):73–82.

    WEI Zanqing, TIAN Zhibin, YANG Gengjia, et al. Design and application of a hydraulic rotary sidewall coring tool at high temperatures[J]. Petroleum Drilling Techniques, 2023, 51(3): 73–82.

    [4] 蓝威,彭嘉乐,马一鸣,等. 高温井下测井仪分布式储热系统仿真[J]. 工程热物理学报,2021,42(9):2361–2366.

    LAN Wei, PENG Jiale, MA Yiming, et al. Numerical simulation of distributed heat storage system for logging tools in high-temperature downhole[J]. Journal of Engineering Thermophysics, 2021, 42(9): 2361–2366.

    [5] 陈宗琦,刘湘华,白彬珍,等. 顺北油气田特深井钻井完井技术进展与发展思考[J]. 石油钻探技术,2022,50(4):1–10. doi: 10.11911/syztjs.2022069

    CHEN Zongqi, LIU Xianghua, BAI Binzhen, et al. Technical progress and development consideration of drilling and completion engineering for ultra-deep wells in the Shunbei Oil & Gas Field[J]. Petroleum Drilling Techniques, 2022, 50(4): 1–10. doi: 10.11911/syztjs.2022069

    [6] 李飞. PDC钻头切削深度对抑制黏滑振动和提高钻进速度的影响[J]. 石油钻采工艺,2021,43(5):566–573.

    LI Fei. Effect of depth-of-cut control (DOC) of PDC bits on stick-slip suppression and rate of penetration improvement[J]. Oil Drilling & Production Technology, 2021, 43(5): 566–573.

    [7]

    PENG Jiale, LAN Wei, WEI Fulong, et al. A numerical model coupling multiple heat transfer modes to develop a passive thermal management system for logging tool[J]. Applied Thermal Engineering, 2023, 223: 120011. doi: 10.1016/j.applthermaleng.2023.120011

    [8] 田志宾,蓝威,魏赞庆,等. 导热凝胶在测井仪热管理中的应用[J]. 测井技术,2021,45(5):488–491.

    TIAN Zhibin, LAN Wei, WEI Zanqing, et al. Application of thermal gel in the thermal management of logging tools[J]. Well Logging Technology, 2021, 45(5): 488–491.

    [9]

    PENG Jiale, WANG Yujun, DING Siqi, et al. Rapid detection of the vacuum failure of logging tools based on the variation in equivalent thermal conductivity[J]. International Journal of Thermal Sciences, 2023, 188: 108245. doi: 10.1016/j.ijthermalsci.2023.108245

    [10] 魏赞庆,彭嘉乐,田志宾,等. 旋转井壁取心仪热管理系统设计及应用[J]. 测井技术,2022,46(3):251–256.

    WEI Zanqing, PENG Jiale, TIAN Zhibin, et al. Design and application of thermal management system for rotary sidewall coring tool[J]. Well Logging Technology, 2022, 46(3): 251–256.

    [11] 刘辉,马辉运,曾立新,等. 高温高压井下工具试验系统的研制与应用[J]. 石油机械,2019,47(12):100–105.

    LIU Hui, MA Huiyun, ZENG Lixin, et al. High temperature and high pressure downhole tool test system[J]. China Petroleum Machinery, 2019, 47(12): 100–105.

    [12] 王轲,刘彪,张俊,等. 高温高压气井井筒温度场计算与分析[J]. 石油机械,2019,47(1):8–13.

    WANG Ke, LIU Biao, ZHANG Jun, et al. Calculation and analysis of wellbore temperature field in HTHP gas wells[J]. China Petroleum Machinery, 2019, 47(1): 8–13.

    [13] 罗鸣,冯永存,桂云,等. 高温高压钻井关键技术发展现状及展望[J]. 石油科学通报,2021,6(2):228–244.

    LUO Ming, FENG Yongcun, GUI Yun, et al. Development status and prospect of key technologies for high temperature and high pressure drilling[J]. Petroleum Science Bulletin, 2021, 6(2): 228–244.

    [14] 张雄辉,游畅,华远飞. 超高温高压井测井技术及应用探讨[J]. 石化技术,2021,28(4):65–66.

    ZHANG Xionghui, YOU Chang, HUA Yuanfei. Discussion on logging technology and application of ultra high temperature and high pressure well[J]. Petrochemical Industry Technology, 2021, 28(4): 65–66.

    [15] 严德,张玉山,宋玲安,等. 深水高温高压井钻井技术探索与实践[J]. 中国石油和化工标准与质量,2021,41(13):193–194. doi: 10.3969/j.issn.1673-4076.2021.13.093

    YAN De, ZHANG Yushan, SONG Ling’an, et al. Exploration and practice of deepwater high-temperature and high-pressure well drilling technology[J]. China Petroleum and Chemical Standard and Quality, 2021, 41(13): 193–194. doi: 10.3969/j.issn.1673-4076.2021.13.093

    [16]

    HYNE N J. Nontechnical guide to petroleum geology, exploration, drilling & production[J]. 3rd ed. Tulsa: PennWell Corporation, 2012.

    [17]

    BOYES J. The eyes of the oil industry[J]. Electronics and Power, 1981, 27(6): 484–488. doi: 10.1049/ep.1981.0231

    [18] LALL P, PECHT M G, HAKIM E B. 温度对微电子和系统可靠性的影响[M]. 贾颖, 张德骏, 刘汝军, 译. 北京: 国防工业出版社, 2008: 20-160.

    LALL P, PECHT M G, HAKIM E B. Influence of temperature on microelectronics and system reliability[M]. JIA Ying, ZHANG Dejun, LIU Rujun, translated. Beijing: National Defense University Press, 2008: 20-160.

    [19]

    MA Yupu, SHANG Bofeng, HU Run, et al. Thermal management of downhole electronics cooling in oil & gas well logging at high temperature[C]//2016 17th International Conference on Electronic Packaging Technology (ICEPT). Wuhan: IEEE, 2016: 623−627.

    [20]

    SHANG Bofeng, MA Yupu, HU Run, et al. Passive thermal management system for downhole electronics in harsh thermal environments[J]. Applied Thermal Engineering, 2017, 118: 593–599. doi: 10.1016/j.applthermaleng.2017.01.118

    [21]

    LAN Wei, ZHANG Jiawei, PENG Jiale, et al. Distributed thermal management system for downhole electronics at high tempera-ture[J]. Applied Thermal Engineering, 2020, 180: 115853. doi: 10.1016/j.applthermaleng.2020.115853

    [22]

    PENG Jiale, LAN Wei, WANG Yujun, et al. Thermal management of the high-power electronics in high temperature downhole environment[C]//2020 IEEE 22nd Electronics Packaging Technology Conference (EPTC). Singapore: IEEE, 2020: 369−375.

    [23] 梁东成,陈东东,张欣,等. 温度冲击下多器件组装PCB板热应力及寿命分析[J]. 有色金属工程,2022,12(2):14–23. doi: 10.3969/j.issn.2095-1744.2022.02.003

    LIANG Dongcheng, CHEN Dongdong, ZHANG Xin, et al. Thermal stress and life analysis of multi-device assembly PCB board under temperature shock[J]. Nonferrous Metals Engineering, 2022, 12(2): 14–23. doi: 10.3969/j.issn.2095-1744.2022.02.003

    [24] 赵新新. 典型封装器件热应力分析及焊点疲劳寿命预测[D]. 西安: 西安电子科技大学, 2015.

    ZHAO Xinxin. Thermal stress analysis and solder joints fatigue life prediction of typical package[D]. Xi’an: Xidian University, 2015.

    [25]

    WATSON J, CASTRO G. High-temperature electronics pose design and reliability challenges[J]. Analog Dialogue, 2012, 46: 1–7.

  • 期刊类型引用(6)

    1. 邱春阳,王重重,姜春丽,王俊,秦涛,杨倩云. 陕西榆林废弃钻井液固液分离技术研究. 精细石油化工. 2024(02): 48-51 . 百度学术
    2. 葛罗. 大庆油田萨北区块中渗透砂岩油藏凝胶调剖剂运移吸附试验研究. 石油钻探技术. 2023(03): 119-125 . 本站查看
    3. 王景. 临兴–神府井区废弃钻井液处理技术. 石油钻探技术. 2022(01): 60-64 . 本站查看
    4. 景岷嘉,李武泉,蒋官澄. 油基钻井液劣质固相絮凝剂双十六烷基二甲基氯化铵. 钻井液与完井液. 2021(02): 164-169 . 百度学术
    5. 王翔,郭继香,陈金梅. 油田深部调剖技术及其应用研究进展. 油田化学. 2020(04): 738-744 . 百度学术
    6. 韩来聚,李公让. 胜利油田钻井环保技术进展及发展方向. 石油钻探技术. 2019(03): 89-94 . 本站查看

    其他类型引用(3)

图(12)  /  表(2)
计量
  • 文章访问数:  125
  • HTML全文浏览量:  46
  • PDF下载量:  53
  • 被引次数: 9
出版历程
  • 收稿日期:  2022-08-29
  • 修回日期:  2023-10-17
  • 网络出版日期:  2023-11-19
  • 刊出日期:  2024-01-24

目录

    /

    返回文章
    返回