Study on Room Temperature Cooling of Passive Thermal Management System for Logging Tool
-
摘要:
被动式热管理系统能使测井仪内部电子器件的温度在工作时间内不超过耐温指标,然而热管理系统优异的隔热性能导致测井仪需要较长时间冷却,才能投入下一次工作。为此,提出了一种针对测井仪的室温冷却方案。通过将电路骨架从保温瓶内抽出置于空气中实现快速冷却,同时设置芯片保护壳避免内部电子器件与空气直接接触,能够避免较高温差所产生的热应力及水蒸气液化对内部电子器件的损坏,实现快速冷却。模拟和试验验证了该方案的可行性,同时模拟探究了不同因素对冷却方案效果的影响,确定了最佳的冷却方案。研究结果表明,所提出的室温冷却方案可以解决测井仪被动式热管理系统冷却散热的问题,提高测井工作的效率。
Abstract:Passive thermal management systems can prevent the temperature of electron devices inside the logging tool from exceeding the tolerance during operating hours. The excellent insulation performance of thermal management systems makes the logging tool take relative long time to cool down for the next operation. Therefore, a room-temperature cooling solution for the logging tool was proposed, achieving rapid cooling by withdrawing the circuit skeleton from the thermos bottle and releasing it into the air. A chip protective shell was set up to avoid direct contact between the internal electron devices and the air, and thus the logging tool could achieve rapid cooling while avoiding the thermal stress caused by the high-temperature difference and the damage to the internal electron devices by water vapor liquefaction. The simulation and experiment verified the feasibility of the scheme. At the same time, the influence of different factors on the effect of cooling schemes was simulated, and the best cooling scheme was determined. The results demonstrate that the proposed room temperature cooling scheme effectively addresses the cooling and heat dissipation challenges in passive thermal management systems for logging tools, thereby enhancing working efficiency.
-
Keywords:
- logging tools /
- room temperature /
- passive thermal management /
- protective shell /
- cooling rate
-
-
表 1 测井仪被动式热管理系统各部分的物性参数
Table 1 Material property parameters of each part of passive thermal management system of logging tool
测井仪部位 材料 导热系数/
(W·(m·K)−1)密度/
(kg·m−3)比定压热容/
(J·(kg·K)−1)真空层 铝箔+间隔物 0.0002 200 1200.0 骨架 铝合金6061 167.0000 2 710 896.0 热源 陶瓷 30.0000 3960 850.0 导热硅胶垫 硅胶 1.0000 1810 923.0 隔热塞 PEEK 0.2000 2710 880.0 绝热棉 硅铝酸棉 0.0350 400 794.2 相变材料 伍德合金 18.8000 9580 146.0/181.0 吸热壳体 铝合金6061 167.0000 2710 896.0 表 2 网格数量无关性的验证
Table 2 Verification of grid quantity independence
网格数 热源最终温度/℃ 与上一情况的相对误差,% 34819 97.398 58554 94.671 2.8 129406 93.819 0.9 620744 93.444 0.4 4252614 93.164 0.3 -
[1] PENG Jiale, DENG Chao, WEI Fulong, et al. A hybrid thermal management system combining liquid cooling and phase change material for downhole electronics[J]. Journal of Energy Storage, 2023, 72(Part D): 108610.
[2] 魏赞庆,彭嘉乐,蓝威,等. 高温井下低熔点合金储热模块封装及试验[J]. 石油机械,2022,50(11):9–15. WEI Zanqing, PENG Jiale, LAN Wei, et al. Package and test of low-melting alloy heat storage module in high-temperature wellbore[J]. China Petroleum Machinery, 2022, 50(11): 9–15.
[3] 魏赞庆,田志宾,杨庚佳,等. 高温液压旋转井壁取心仪的研制与应用[J]. 石油钻探技术,2023,51(3):73–82. WEI Zanqing, TIAN Zhibin, YANG Gengjia, et al. Design and application of a hydraulic rotary sidewall coring tool at high temperatures[J]. Petroleum Drilling Techniques, 2023, 51(3): 73–82.
[4] 蓝威,彭嘉乐,马一鸣,等. 高温井下测井仪分布式储热系统仿真[J]. 工程热物理学报,2021,42(9):2361–2366. LAN Wei, PENG Jiale, MA Yiming, et al. Numerical simulation of distributed heat storage system for logging tools in high-temperature downhole[J]. Journal of Engineering Thermophysics, 2021, 42(9): 2361–2366.
[5] 陈宗琦,刘湘华,白彬珍,等. 顺北油气田特深井钻井完井技术进展与发展思考[J]. 石油钻探技术,2022,50(4):1–10. doi: 10.11911/syztjs.2022069 CHEN Zongqi, LIU Xianghua, BAI Binzhen, et al. Technical progress and development consideration of drilling and completion engineering for ultra-deep wells in the Shunbei Oil & Gas Field[J]. Petroleum Drilling Techniques, 2022, 50(4): 1–10. doi: 10.11911/syztjs.2022069
[6] 李飞. PDC钻头切削深度对抑制黏滑振动和提高钻进速度的影响[J]. 石油钻采工艺,2021,43(5):566–573. LI Fei. Effect of depth-of-cut control (DOC) of PDC bits on stick-slip suppression and rate of penetration improvement[J]. Oil Drilling & Production Technology, 2021, 43(5): 566–573.
[7] PENG Jiale, LAN Wei, WEI Fulong, et al. A numerical model coupling multiple heat transfer modes to develop a passive thermal management system for logging tool[J]. Applied Thermal Engineering, 2023, 223: 120011. doi: 10.1016/j.applthermaleng.2023.120011
[8] 田志宾,蓝威,魏赞庆,等. 导热凝胶在测井仪热管理中的应用[J]. 测井技术,2021,45(5):488–491. TIAN Zhibin, LAN Wei, WEI Zanqing, et al. Application of thermal gel in the thermal management of logging tools[J]. Well Logging Technology, 2021, 45(5): 488–491.
[9] PENG Jiale, WANG Yujun, DING Siqi, et al. Rapid detection of the vacuum failure of logging tools based on the variation in equivalent thermal conductivity[J]. International Journal of Thermal Sciences, 2023, 188: 108245. doi: 10.1016/j.ijthermalsci.2023.108245
[10] 魏赞庆,彭嘉乐,田志宾,等. 旋转井壁取心仪热管理系统设计及应用[J]. 测井技术,2022,46(3):251–256. WEI Zanqing, PENG Jiale, TIAN Zhibin, et al. Design and application of thermal management system for rotary sidewall coring tool[J]. Well Logging Technology, 2022, 46(3): 251–256.
[11] 刘辉,马辉运,曾立新,等. 高温高压井下工具试验系统的研制与应用[J]. 石油机械,2019,47(12):100–105. LIU Hui, MA Huiyun, ZENG Lixin, et al. High temperature and high pressure downhole tool test system[J]. China Petroleum Machinery, 2019, 47(12): 100–105.
[12] 王轲,刘彪,张俊,等. 高温高压气井井筒温度场计算与分析[J]. 石油机械,2019,47(1):8–13. WANG Ke, LIU Biao, ZHANG Jun, et al. Calculation and analysis of wellbore temperature field in HTHP gas wells[J]. China Petroleum Machinery, 2019, 47(1): 8–13.
[13] 罗鸣,冯永存,桂云,等. 高温高压钻井关键技术发展现状及展望[J]. 石油科学通报,2021,6(2):228–244. LUO Ming, FENG Yongcun, GUI Yun, et al. Development status and prospect of key technologies for high temperature and high pressure drilling[J]. Petroleum Science Bulletin, 2021, 6(2): 228–244.
[14] 张雄辉,游畅,华远飞. 超高温高压井测井技术及应用探讨[J]. 石化技术,2021,28(4):65–66. ZHANG Xionghui, YOU Chang, HUA Yuanfei. Discussion on logging technology and application of ultra high temperature and high pressure well[J]. Petrochemical Industry Technology, 2021, 28(4): 65–66.
[15] 严德,张玉山,宋玲安,等. 深水高温高压井钻井技术探索与实践[J]. 中国石油和化工标准与质量,2021,41(13):193–194. doi: 10.3969/j.issn.1673-4076.2021.13.093 YAN De, ZHANG Yushan, SONG Ling’an, et al. Exploration and practice of deepwater high-temperature and high-pressure well drilling technology[J]. China Petroleum and Chemical Standard and Quality, 2021, 41(13): 193–194. doi: 10.3969/j.issn.1673-4076.2021.13.093
[16] HYNE N J. Nontechnical guide to petroleum geology, exploration, drilling & production[J]. 3rd ed. Tulsa: PennWell Corporation, 2012.
[17] BOYES J. The eyes of the oil industry[J]. Electronics and Power, 1981, 27(6): 484–488. doi: 10.1049/ep.1981.0231
[18] LALL P, PECHT M G, HAKIM E B. 温度对微电子和系统可靠性的影响[M]. 贾颖, 张德骏, 刘汝军, 译. 北京: 国防工业出版社, 2008: 20-160. LALL P, PECHT M G, HAKIM E B. Influence of temperature on microelectronics and system reliability[M]. JIA Ying, ZHANG Dejun, LIU Rujun, translated. Beijing: National Defense University Press, 2008: 20-160.
[19] MA Yupu, SHANG Bofeng, HU Run, et al. Thermal management of downhole electronics cooling in oil & gas well logging at high temperature[C]//2016 17th International Conference on Electronic Packaging Technology (ICEPT). Wuhan: IEEE, 2016: 623−627.
[20] SHANG Bofeng, MA Yupu, HU Run, et al. Passive thermal management system for downhole electronics in harsh thermal environments[J]. Applied Thermal Engineering, 2017, 118: 593–599. doi: 10.1016/j.applthermaleng.2017.01.118
[21] LAN Wei, ZHANG Jiawei, PENG Jiale, et al. Distributed thermal management system for downhole electronics at high tempera-ture[J]. Applied Thermal Engineering, 2020, 180: 115853. doi: 10.1016/j.applthermaleng.2020.115853
[22] PENG Jiale, LAN Wei, WANG Yujun, et al. Thermal management of the high-power electronics in high temperature downhole environment[C]//2020 IEEE 22nd Electronics Packaging Technology Conference (EPTC). Singapore: IEEE, 2020: 369−375.
[23] 梁东成,陈东东,张欣,等. 温度冲击下多器件组装PCB板热应力及寿命分析[J]. 有色金属工程,2022,12(2):14–23. doi: 10.3969/j.issn.2095-1744.2022.02.003 LIANG Dongcheng, CHEN Dongdong, ZHANG Xin, et al. Thermal stress and life analysis of multi-device assembly PCB board under temperature shock[J]. Nonferrous Metals Engineering, 2022, 12(2): 14–23. doi: 10.3969/j.issn.2095-1744.2022.02.003
[24] 赵新新. 典型封装器件热应力分析及焊点疲劳寿命预测[D]. 西安: 西安电子科技大学, 2015. ZHAO Xinxin. Thermal stress analysis and solder joints fatigue life prediction of typical package[D]. Xi’an: Xidian University, 2015.
[25] WATSON J, CASTRO G. High-temperature electronics pose design and reliability challenges[J]. Analog Dialogue, 2012, 46: 1–7.
-
期刊类型引用(6)
1. 邱春阳,王重重,姜春丽,王俊,秦涛,杨倩云. 陕西榆林废弃钻井液固液分离技术研究. 精细石油化工. 2024(02): 48-51 . 百度学术
2. 葛罗. 大庆油田萨北区块中渗透砂岩油藏凝胶调剖剂运移吸附试验研究. 石油钻探技术. 2023(03): 119-125 . 本站查看
3. 王景. 临兴–神府井区废弃钻井液处理技术. 石油钻探技术. 2022(01): 60-64 . 本站查看
4. 景岷嘉,李武泉,蒋官澄. 油基钻井液劣质固相絮凝剂双十六烷基二甲基氯化铵. 钻井液与完井液. 2021(02): 164-169 . 百度学术
5. 王翔,郭继香,陈金梅. 油田深部调剖技术及其应用研究进展. 油田化学. 2020(04): 738-744 . 百度学术
6. 韩来聚,李公让. 胜利油田钻井环保技术进展及发展方向. 石油钻探技术. 2019(03): 89-94 . 本站查看
其他类型引用(3)