基于自然语言处理与大数据分析的漏失分析与诊断

曾义金, 李大奇, 陈曾伟, 张杜杰, 崔亚辉, 张菲菲

曾义金,李大奇,陈曾伟,等. 基于自然语言处理与大数据分析的漏失分析与诊断[J]. 石油钻探技术,2023, 51(6):1-11. DOI: 10.11911/syztjs.2023108
引用本文: 曾义金,李大奇,陈曾伟,等. 基于自然语言处理与大数据分析的漏失分析与诊断[J]. 石油钻探技术,2023, 51(6):1-11. DOI: 10.11911/syztjs.2023108
ZENG Yijin, LI Daqi, CHEN Zengwei, et al. Loss analysis and diagnosis based on natural language processing and big data analysis [J]. Petroleum Drilling Techniques,2023, 51(6):1-11. DOI: 10.11911/syztjs.2023108
Citation: ZENG Yijin, LI Daqi, CHEN Zengwei, et al. Loss analysis and diagnosis based on natural language processing and big data analysis [J]. Petroleum Drilling Techniques,2023, 51(6):1-11. DOI: 10.11911/syztjs.2023108

基于自然语言处理与大数据分析的漏失分析与诊断

基金项目: 国家重点研发计划项目“井筒稳定性闭环响应机制与智能调控方法”(编号:2019YFA0708303)和中国石化科技攻关项目“井筒安全风险智能诊断与调控技术研究”(编号:P21065-5)部分研究内容。
详细信息
    作者简介:

    曾义金(1964—),男,江西吉水人,1985年毕业于江汉石油学院钻井工程专业,2003年获石油大学(北京)油气井工程专业博士学位,正高级工程师,博士生导师,中国石化集团公司首席专家,主要从事深层超深层钻完井基础理论研究及关键技术研发与应用工作。系本刊编委会副主任。E-mail:zengyj.sripe@sinopec.com

    通讯作者:

    李大奇,lidq.sripe@sinopec.com

  • 中图分类号: TE28+3

Loss Analysis and Diagnosis Based on Natural Language Processing and Big Data Analysis

  • 摘要:

    塔里木盆地西部A区块以溶蚀孔洞型、裂缝性储层为主,18条断裂带发育,断裂带附近天然裂缝分布复杂,地层承压能力低,容易发生井漏。为准确规避井漏风险,优化井漏处理技术措施,利用自然语言处理技术,提取了A区块全部完钻井的钻井资料和井漏信息,基于大数据分析汇总了易漏地层实际地层压力和实际破裂压力当量密度不确定性的分布情况,计算出了易漏地层的裂缝发育程度、裂缝宽度不确定性范围和井漏风险系数,建立了钻前井漏风险诊断方法。实例分析表明,利用所建立的钻前井漏风险诊断方法,可以在钻前诊断井漏风险,为钻完井过程中规避井漏风险和制定井漏处理技术措施提供依据。

    Abstract:

    The Block A in the western part of the Tarim Basin are mainly karst-vuggy and fractured reservoirs. Eighteen fault zones are developed in the block. The natural fractures located near the fault zones have complex distribution and low bearing capacity of the formation, which are prone to lost circulation. In order to accurately avoid the risk of lost circulation and optimize the technical measures to deal with the lost circulation, natural language processing technology was used to extract all the drilling and completion data and lost circulation information of Block A. Based on big data analysis, the uncertainty distribution of the equivalent density of the actual formation pressure and the actual fracture pressure in the leaky formation was summarized. The uncertainty range of fracture development and fracture width, as well as the lost circulation risk coefficient of the leaky formation were calculated, and the pre-drilling lost circulation risk diagnosis method was established. The case analysis showed that the proposed method could be used to diagnose the risk of lost circulation before drilling, which can provide a basis for avoiding the risk of lost circulation and developing the technical measures for lost circulation treatment during drilling and completion.

  • 图  1   A区块各地层井漏次数统计

    Figure  1.   Statistics of the lost circulation of each layer in Block A

    图  2   信息提取

    Figure  2.   Information extraction

    图  3   破裂压力、地层压力、井筒压力与漏失量的相关性

    Figure  3.   Correlation among fracture pressure, formation pressure, wellbore pressure, and leakage

    图  4   地层压力当量密度分布

    Figure  4.   Equivalent density distribution of the formation pressure

    图  5   破裂压力当量密度分布

    Figure  5.   Equivalent density distribution of the fracture pressure

    图  6   各地层压力当量密度不确定性分布

    Figure  6.   Uncertainty distribution of equivalent density of the formation pressure in each layer

    图  7   各地层破裂压力当量密度不确定性分布

    Figure  7.   Uncertainty distribution of equivalent density of the fracture pressure in each layer

    图  8   裂缝宽度分布

    Figure  8.   Fracture width distribution

    图  9   裂缝宽度不确定性分布

    Figure  9.   Uncertainty distribution of the fracture width

    图  10   井漏风险系数与瞬时漏失速度的相关性

    Figure  10.   Correlation analysis of lost circulation risk coefficient and instantaneous leakage velocity

    图  11   预测压力与实测压力不确定性分布范围对比

    Figure  11.   Comparison of uncertainty distribution ranges of predicted pressure and measured pressure

    表  1   A区块井漏信息统计结果

    Table  1   Information statistics of lost circulation in Block A

    地层漏失次数漏失率,%钻井液密度/(kg·L−1平均漏失量/m3平均损失周期/h最大漏失速度/(m3·h−1平均漏失速度/(m3·h−1
    P24837.291.22~1.42176.94290.63727.11525.818
    S1t6220.341.27~1.40115.67469.35227.09814.952
    S1k3118.641.27~1.44221.714237.36625.20418.590
    O3s3220.341.29~1.87136.86637.01512.3529.411
    O2yj2735.591.16~1.72320.344104.64119.97514.558
    O1-2y2233.901.10~2.00296.999129.6779.16211.416
    下载: 导出CSV

    表  2   各地层实际地层压力当量密度分布统计结果

    Table  2   Statistics of actual equivalent density distribution of the formation pressure in each layer

    地层均值/(kg·L−1标准差/(kg·L−1分布范围下限/(kg·L−1分布范围上限/(kg·L−1
    P21.3116922210.321 164 3050.669 363 6101.954 020 831
    S1t1.151 520 1570.265 860 7170.619 798 7231.683 241 592
    S1k1.279 467 7350.181 530 3730.916 406 9891.642 528 481
    O3s1.224 136 3680.288 242 7680.647 650 8311.800 621 904
    O2yj1.126 302 9600.128 635 8520.869 031 2571.383 574 664
    O1-2y1.076 552 9620.249 590 2640.577 372 4341.575 733 490
    下载: 导出CSV

    表  3   各地层实际破裂压力当量密度分布统计结果

    Table  3   Statistics of actual equivalent density distribution of the fracture pressure in each layer

    地层均值/(kg·L−1标准差/(kg·L−1分布范围下限/(kg·L−1分布范围上限/(kg·L−1
    P21.762 290 6170.083 384 7141.595 521 1891.929 060 044
    S1t1.763 333 3330.099 247 1661.564 839 0011.961 827 666
    S1k1.780 773 8260.127 570 2461.525 633 3352.035 914 317
    O3s1.952 118 0140.220 338 0771.511 441 8602.392 794 168
    O2yj1.900 000 0000.241 660 9191.416 678 1612.383 321 839
    O1-2y1.724 581 8760.115 840 7771.492 900 3231.956 263 429
    下载: 导出CSV

    表  4   裂缝宽度不确定性分布统计

    Table  4   Statistics of uncertainty distribution of fracture width

    地层最大裂缝宽度/m最小裂缝宽度/m裂缝宽度均值/m裂缝宽度标准差/m裂缝宽度上限95%/m
    P20.058 900.001 60.016 700.012 700.042 00
    S1t0.024 300.000 80.006 700.003 900.014 50
    S1k0.020 600.001 30.009 100.006 800.022 70
    O3s0.057 900.000 40.009 800.001 090.031 60
    O2yj0.131 600.001 10.008 300.013 200.034 70
    O1-2y0.005 710.001 20.001 860.014 500.004 75
    下载: 导出CSV

    表  5   A区块8井的预测当量密度

    Table  5   Predicted equivalent density for eight wells in Block A

    层位井深/m预测地层孔隙压力当量
    密度/(kg·L−1
    预测地层破裂压力当量
    密度/(kg·L−1
    设计钻井液密度/(kg·L−1
    P24 507~4 9911.17~1.201.89~1.961.22~1.26
    S1t5 393~6 1611.20~1.241.89~1.961.26~1.30
    S1k6 161~6 5411.20~1.241.89~1.961.26~1.30
    O3s6 541~7 4151.20~1.241.89~1.961.26~1.30
    O2yj7 450~7 5721.15~1.181.65~1.851.21~1.29
    O1-2y7 572~7 8141.15~1.181.65~1.851.21~1.29
    下载: 导出CSV

    表  6   A区块8井的预测压力

    Table  6   Predicted pressure for eight wells in Block A

    层位井深/m预测地层孔隙压力/MPa预测地层破裂压力/MPa设计井筒压力/MPa
    P24 507~4 99151.677~58.69483.479~95.86753.886~61.628
    S1t5 393~6 16163.422~74.86899.889~118.34066.592~78.491
    S1k6 161~6 54172.453~79.486114.114~125.63976.076~83.332
    O3s6 541~7 41576.922~90.107121.152~142.42780.768~94.467
    O2yj7 450~7 57283.962~87.563120.466~137.28088.342~95.725
    O1-2y7 572~7 81485.336~90.361122.439~141.66889.789~98.785
    下载: 导出CSV

    表  7   钻前井漏风险诊断结果

    Table  7   Pre-drilling lost circulation risk diagnosis

    地层厚度/m井漏风险系数预测漏失速度/(m3·s−1
    P24840.245 0~0.475 826.464~51.390
    S1t7680.000 2~0.000 30.020~0.029
    S1k3800.004 3~0.004 40.463~0.470
    O3s8740.011 51.242~1.246
    O2yj1220~0.000 10.006~0.012
    O1-2y2400.001 0~0.001 10.114
    下载: 导出CSV
  • [1] 汪蓬勃. 基于巨厚盐膏层以及碳酸盐储层的钻井技术研究[D]. 成都: 西南石油大学, 2015.

    WANG Pengbo. Research on the drilling technique based on the layer of thick salt paste and carbonate reservoir[D]. Chengdu: Southwest Petroleum University, 2015.

    [2] 房超,张辉,陈朝伟,等. 地质工程一体化漏失机理与预防措施:以塔里木库车山前古近系复合盐层为例[J]. 石油钻采工艺,2022,44(6):684–692. doi: 10.13639/j.odpt.2022.06.004

    FANG Chao, ZHANG Hui, CHEN Zhaowei,et al. Geology-engineering integrated investigation of leakoff mechanisms and prevention measures: a case study of the Palaeogene composite salt layer in the Kuqa piedmont zone, Tarim Basin[J]. Oil Drilling & Production Technology, 2022, 44(6): 684–692. doi: 10.13639/j.odpt.2022.06.004

    [3] 马磊,袁学强,张万栋,等. 乌石17-2油田强封堵合成基钻井液体系[J]. 钻井液与完井液,2022,39(5):558–564. doi: 10.12358/j.issn.1001-5620.2022.05.005

    MA Lei, YUAN Xueqiang, ZHANG Wandong, et al. A synthetic based drilling fluid with strong plugging capacity for Block Wushi17-2[J]. Drilling Fluid & Completion Fluid, 2022, 39(5): 558–564. doi: 10.12358/j.issn.1001-5620.2022.05.005

    [4]

    AL MENHALI S, KASHWANI G, SAHWANI A. Safety engineering controls of lost circulation during cementing in onshore oil construction projects[J]. International Journal of Materials Engineering, 2015, 5(3): 46-49.

    [5]

    AL-HAMEEDI A T, ALKINANI H H, DUNN-NORMAN S, et al. Mud losses estimation using partial least squares algorithm[R]. SPE 193266, 2018.

    [6]

    WIBOWO H B, JULIANTO C, BUNTORO A, et al. Mud weight evaluation based on safe mud window in drilling Well “X-1” to overcome caving and partial loss problems in the oil field[J]. IOP Conference Series: Earth and Environmental Science, 2021, 830: 012074.

    [7] 李双贵,罗江,于洋,等. 顺北5号断裂带南部压力剖面建立及井身结构优化[J]. 石油钻探技术,2023,51(1):9–15. doi: 10.11911/syztjs.2022037

    LI Shuanggui, LUO Jiang, YU Yang, et al. Establishing pressure profiles and casing program optimization in the Southern Shunbei No.5 Fault Zone[J]. Petroleum Drilling Techniques, 2023, 51(1): 9–15. doi: 10.11911/syztjs.2022037

    [8] 何成江,姜应兵,文欢,等. 塔河油田缝洞型油藏 “一井多控”高效开发关键技术[J]. 石油钻探技术,2022,50(4):37–44.

    HE Chengjiang, JIANG Yingbing, WEN Huan, et al. Key technologies for high-efficiency one-well multi-control development of fractured-vuggy reservoirs in Tahe Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(4): 37–44.

    [9] 马永生,蔡勋育,云露,等. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J]. 石油勘探与开发,2022,49(1):1–17.

    MA Yongsheng, CAI Xunyu, YUN Lu, et al. Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas field, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(1): 1–17.

    [10] 林波,云露,李海英,等. 塔里木盆地顺北5号走滑断层空间结构及其油气关系[J]. 石油与天然气地质,2021,42(6):1344–1353.

    LIN Bo, YUN Lu, LI Haiying, et al. Spatial structure of Shunbei No.5 strike-slip fault and its relationship with oil and gas reservoirs in the Tarim Basin[J]. Oil & Gas Geology, 2021, 42(6): 1344–1353.

    [11] 马海陇,王震,邓光校,等. 塔里木盆地和田河东地区断裂特征及其油气地质意义[J]. 断块油气田,2021,28(3):329–334. doi: 10.6056/dkyqt202103008

    MA Hailong, WANG Zhen, DENG Guangxiao, et al. Fault features in eastern Hetianhe Area,Tarim Basin and its petroleum geological significance[J]. Fault-Block Oil & Gas Field, 2021, 28(3): 329–334. doi: 10.6056/dkyqt202103008

    [12] 瞿长,赵 锐,李慧莉,等. 塔里木盆地顺北5断裂带储集体地震反射与产能特征分析[J]. 特种油气藏,2020,27(1):68–74. doi: 10.3969/j.issn.1006-6535.2020.01.010

    QU Chang, ZHAO Rui, LI Huili, et al. Seismic reflection and productivity of reservoirs in the fault-zone 5 of Shunbei, Tarim Basin[J]. Special Oil & Gas Reservoir, 2020, 27(1): 68–74. doi: 10.3969/j.issn.1006-6535.2020.01.010

    [13] 刘雨晴,邓尚,张荣,等. 深层火成岩侵入体和相关构造发育特征及其石油地质意义:以塔里木盆地顺北地区为例[J]. 石油与天然气地质,2022,43(1):105–117.

    LIU Yuqing, DENG Shang, ZHANG Rong, et al. Characterization and petroleum geological significance of deep igneous intrusions and related structures in the Shunbei Area, Tarim Basin[J]. Oil & Gas Geology, 2022, 43(1): 105–117.

    [14]

    CHOWDHARY K R. Natural language processing[M]//CHOWDHARY K R. Fundamentals of artificial intelligence. New Delhi: Springer, 2020: 603–649.

    [15]

    MANNING C D, RAGHAVAN P, SCHÜTZE H. Introduction to information retrieval[M]. Cambridge: Cambridge University Press, 2008.

    [16] 潘军,李大奇. 顺北油田二叠系火成岩防漏堵漏技术[J]. 钻井液与完井液,2018,35(3):42–47. doi: 10.3969/j.issn.1001-5620.2018.03.007

    PAN Jun, LI Daqi. Technology of preventing and controlling mud losses into the Permian igneous rocks in Shunbei Oilfield[J]. Drilling Fluid & Completion Fluid, 2018, 35(3): 42–47. doi: 10.3969/j.issn.1001-5620.2018.03.007

    [17] 林波,张旭,况安鹏,等. 塔里木盆地走滑断裂构造变形特征及油气意义:以顺北地区1号和5号断裂为例[J]. 石油学报,2021,42(7):906–923.

    LIN Bo, ZHANG Xu, KUANG Anpeng, et al. Structural deformation characteristics of strike-slip faults in Tarim Basin and their hydrocarbon significance: a case study of No. 1 Fault and No. 5 Fault in Shunbei Area[J]. Acta Petrolei Sinica, 2021, 42(7): 906–923.

    [18]

    LEE H P, OLSON J E, SCHULTZ R A. Interaction analysis of propagating opening mode fractures with veins using the discrete element method[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 103: 275–288. doi: 10.1016/j.ijrmms.2018.01.005

    [19] 王贵. 提高地层承压能力的钻井液封堵理论与技术研究[D]. 成都: 西南石油大学, 2012.

    WANG Gui. Theory and technology on drilling fluids for wellbore strengthening[D]. Chengdu: Southwest Petroleum University, 2012.

    [20] 许成元. 裂缝性储层强化封堵承压能力模型与方法[D]. 成都: 西南石油大学, 2015.

    XU Chengyuan. Models and methods to strengthen wellbore pressure containment by fracture plugging in fractured reservoirs[D]. Chengdu: Southwest Petroleum University, 2015.

    [21]

    RAZAVI O, VAJARGAH A K, VAN OORT E, et al. Comprehensive analysis of initiation and propagation pressures in drilling induced fractures[J]. Journal of Petroleum Science and Engineering, 2017, 149: 228–243. doi: 10.1016/j.petrol.2016.10.039

    [22]

    MAJIDI R, MISKA S Z, YU M, et al. Quantitative analysis of mud losses in naturally fractured reservoirs: the effect of rheology[J]. SPE Drilling & Completion, 2010, 25(4): 509–517.

    [23]

    MAJIDI R, MISKA S Z, AHMED R, et al. Radial flow of yield-power-law fluids: Numerical analysis, experimental study and the application for drilling fluid losses in fractured formations[J]. Journal of Petroleum Science and Engineering, 2010, 70(3/4): 334–343. doi: 10.1016/j.petrol.2009.12.005

    [24] 王斌. 裂缝性漏层钻井液漏失与堵漏计算机模拟研究[D]. 成都: 西南石油大学, 2019.

    WANG Bin. Computer simulation of drilling fluid loss and plugging in fractured formation[D]. Chengdu: Southwest Petroleum University, 2019.

    [25] 陈曾伟,刘四海,林永学,等. 塔河油田顺西2井二叠系火成岩裂缝性地层堵漏技术[J]. 钻井液与完井液,2014,31(1):40–43. doi: 10.3969/j.issn.1001-5620.2014.01.011

    CHEN Zengwei, LIU Sihai, LIN Yongxue, et al. Lost circulation control technology for fractured Permian igneous rock formation in Well Shunxi 2 of Tahe Oilfield[J]. Drilling Fluid & Completion Fluid, 2014, 31(1): 40–43. doi: 10.3969/j.issn.1001-5620.2014.01.011

    [26] 黄诚,云露,曹自成,等. 塔里木盆地顺北地区中–下奥陶统“断控”缝洞系统划分与形成机制[J]. 石油与天然气地质,2022,43(1):54–68.

    HUANG Cheng, YUN Lu, CAO Zicheng, et al. Division and formation mechanism of fault-controlled fracture-ug system of the Middle-to-Lower Ordovician, Shunbei Area, Tarim Basin[J]. Oil & Gas Geology, 2022, 43(1): 54–68.

    [27] 彭军,夏梦,曹飞,等. 塔里木盆地顺北一区奥陶系鹰山组与一间房组沉积特征[J]. 岩性油气藏,2022,34(2):17–30.

    PENG Jun, XIA Meng, CAO Fei, et al. Sedimentary characteristics of Ordovician Yingshan Formation and Yijianfang Formation in Shunbei-1 Area, Tarim Basin[J]. Lithologic Reservoirs, 2022, 34(2): 17–30.

  • 期刊类型引用(12)

    1. 罗建新,赵茂林,张烈辉,刘继柱,范梓煊. 基于产量损失率的气井合理配产方法研究. 西南石油大学学报(自然科学版). 2024(01): 89-96 . 百度学术
    2. 徐凤银,聂志宏,孙伟,熊先钺,徐博瑞,张雷,时小松,刘莹,刘世瑞,赵增平,王渊,黄红星,林海鲲. 鄂尔多斯盆地东缘深部煤层气高效开发理论技术体系. 煤炭学报. 2024(01): 528-544 . 百度学术
    3. 沈金才. 页岩气井邻井压裂干扰响应特征及机理探讨:以涪陵页岩气田为例. 地质科技通报. 2024(04): 87-97 . 百度学术
    4. 汤亚顽. 页岩气开发调整区生产特征及产能影响因素. 江汉石油职工大学学报. 2023(03): 8-10+16 . 百度学术
    5. 漆世伟,翟中波,王波,杨卫刚. 基于多参数测量柱塞的井底流压连续监测及应用. 中外能源. 2023(10): 62-66 . 百度学术
    6. 房大志,马伟竣,谷红陶,卢比,胡春锋. 南川区块平桥地区页岩气井生产阶段划分与合理生产方式研究. 油气藏评价与开发. 2022(03): 477-486 . 百度学术
    7. 蔡勋育,赵培荣,高波,朱彤,田玲珏,孙川翔. 中国石化页岩气“十三五”发展成果与展望. 石油与天然气地质. 2021(01): 16-27 . 百度学术
    8. 沈金才,董长新,常振. 涪陵页岩气田气井生产阶段划分及动态特征描述. 天然气勘探与开发. 2021(01): 111-117 . 百度学术
    9. 周玉萍,杨文新,郑爱维,梁榜. 页岩气衰竭开采规律影响因素室内模拟. 天然气勘探与开发. 2021(04): 115-122 . 百度学术
    10. 陈筱琳. 页岩气完井管柱下入时机分析. 江汉石油职工大学学报. 2020(03): 21-23 . 百度学术
    11. 崔传智,尹帆,李立峰,冯绪波. 水驱油藏产量递减评价方法. 断块油气田. 2019(05): 605-608 . 百度学术
    12. 邓佳琪. 一种确定页岩气井合理配产的方法. 江汉石油职工大学学报. 2018(05): 48-51 . 百度学术

    其他类型引用(3)

图(11)  /  表(7)
计量
  • 文章访问数:  375
  • HTML全文浏览量:  67
  • PDF下载量:  168
  • 被引次数: 15
出版历程
  • 收稿日期:  2022-11-16
  • 修回日期:  2023-11-12
  • 网络出版日期:  2023-11-21
  • 刊出日期:  2023-11-24

目录

    /

    返回文章
    返回