基于自然语言处理与大数据分析的漏失分析与诊断

曾义金, 李大奇, 陈曾伟, 张杜杰, 崔亚辉, 张菲菲

曾义金,李大奇,陈曾伟,等. 基于自然语言处理与大数据分析的漏失分析与诊断[J]. 石油钻探技术,2023, 51(6):1-11. DOI: 10.11911/syztjs.2023108
引用本文: 曾义金,李大奇,陈曾伟,等. 基于自然语言处理与大数据分析的漏失分析与诊断[J]. 石油钻探技术,2023, 51(6):1-11. DOI: 10.11911/syztjs.2023108
ZENG Yijin, LI Daqi, CHEN Zengwei, et al. Loss analysis and diagnosis based on natural language processing and big data analysis [J]. Petroleum Drilling Techniques,2023, 51(6):1-11. DOI: 10.11911/syztjs.2023108
Citation: ZENG Yijin, LI Daqi, CHEN Zengwei, et al. Loss analysis and diagnosis based on natural language processing and big data analysis [J]. Petroleum Drilling Techniques,2023, 51(6):1-11. DOI: 10.11911/syztjs.2023108

基于自然语言处理与大数据分析的漏失分析与诊断

基金项目: 国家重点研发计划项目“井筒稳定性闭环响应机制与智能调控方法”(编号:2019YFA0708303)和中国石化科技攻关项目“井筒安全风险智能诊断与调控技术研究”(编号:P21065-5)部分研究内容。
详细信息
    作者简介:

    曾义金(1964—),男,江西吉水人,1985年毕业于江汉石油学院钻井工程专业,2003年获石油大学(北京)油气井工程专业博士学位,正高级工程师,博士生导师,中国石化集团公司首席专家,主要从事深层超深层钻完井基础理论研究及关键技术研发与应用工作。系本刊编委会副主任。E-mail:zengyj.sripe@sinopec.com

    通讯作者:

    李大奇,lidq.sripe@sinopec.com

  • 中图分类号: TE28+3

Loss Analysis and Diagnosis Based on Natural Language Processing and Big Data Analysis

  • 摘要:

    塔里木盆地西部A区块以溶蚀孔洞型、裂缝性储层为主,18条断裂带发育,断裂带附近天然裂缝分布复杂,地层承压能力低,容易发生井漏。为准确规避井漏风险,优化井漏处理技术措施,利用自然语言处理技术,提取了A区块全部完钻井的钻井资料和井漏信息,基于大数据分析汇总了易漏地层实际地层压力和实际破裂压力当量密度不确定性的分布情况,计算出了易漏地层的裂缝发育程度、裂缝宽度不确定性范围和井漏风险系数,建立了钻前井漏风险诊断方法。实例分析表明,利用所建立的钻前井漏风险诊断方法,可以在钻前诊断井漏风险,为钻完井过程中规避井漏风险和制定井漏处理技术措施提供依据。

    Abstract:

    The Block A in the western part of the Tarim Basin are mainly karst-vuggy and fractured reservoirs. Eighteen fault zones are developed in the block. The natural fractures located near the fault zones have complex distribution and low bearing capacity of the formation, which are prone to lost circulation. In order to accurately avoid the risk of lost circulation and optimize the technical measures to deal with the lost circulation, natural language processing technology was used to extract all the drilling and completion data and lost circulation information of Block A. Based on big data analysis, the uncertainty distribution of the equivalent density of the actual formation pressure and the actual fracture pressure in the leaky formation was summarized. The uncertainty range of fracture development and fracture width, as well as the lost circulation risk coefficient of the leaky formation were calculated, and the pre-drilling lost circulation risk diagnosis method was established. The case analysis showed that the proposed method could be used to diagnose the risk of lost circulation before drilling, which can provide a basis for avoiding the risk of lost circulation and developing the technical measures for lost circulation treatment during drilling and completion.

  • 油田长期注水开发导致地层的非均质性加剧,注入水沿高渗透层突入油井,导致油井含水率升高、产油量降低,增产稳产面临的难度很大。注水井深部调剖是油田稳产增产的重要技术措施之一,但对调剖剂的要求较高。冻胶型堵剂具有成胶时间可调、成胶强度高和价格便宜的特点,在油田调剖作业中得到了广泛的应用,但冻胶在注入地层的过程中受机械剪切、色谱分离和地层水稀释等多种因素的影响,其成冻时间、形成冻胶的强度和进入地层的深度难以控制,导致冻胶在地下的成胶效果变差,影响了调剖效果和有效期[1-7]。为解决以上问题,将水膨体发展为地面成胶体系,解决了地下成胶效果不可控的问题,但其初始粒径较大、且制备工艺复杂,影响了其在海上油田调剖调驱中的应用[8-12]。近年来发展起来聚合物微球调驱技术很好地解决了上述问题,但其采用乳液聚合方式进行制备,要求引发时间、聚合时间及聚合温度精准,对制备设备要求高,制备工艺相对复杂,不能在线生成注入,且合成原料中包含表面活性剂,增大了制备成本[13-16]

    针对目前冻胶、水膨体和聚合物微球调剖存在的问题,笔者采用机械剪切法制备了一种新的海上油田剖面调整用分散共聚物颗粒体系,不仅具有冻胶的特点,还不受地面剪切、稀释和色谱分离等因素的影响,能够变形进入地层深部,封堵地层深部的大孔道,调整渗流剖面,实现深部液流转向。同时,对制备工艺进行了探索和优化,为分散共聚物颗粒体系的现场应用奠定了基础。

    根据共聚物黏度的变化情况,制备过程分为共聚物制备和分散共聚物颗粒制备2个阶段。

    化学材料:丙烯酰胺(AM),工业品;丙烯酸,工业品;N, N亚甲基双丙烯酰胺(MBA),分析纯;AMPS,分析纯;其余试剂均为分析纯。

    以丙烯酰胺为主要原料,按比例加入其他添加剂,在水中溶解后置于65 ℃恒温水浴中,聚合物进行交联反应,形成黏度极高的高分子聚合物。其交联反应式为:

    共聚物形成阶段分为引发阶段、快速交联阶段和稳定阶段。共聚物成胶后,形成三维凝胶网络结构,黏度不再增加。单体AM质量分数选用3%~6%,AM与MBA的质量比为250∶1~100∶1。不同AM/MBA质量比的共聚物样品合成时间及合成后的黏度如表1所示。

    表  1  共聚物的制备参数
    Table  1.  Preparation parameters of the copolymer
    AM质量分数,
    %
    AM/MBA
    质量比
    合成时间/
    h
    共聚物黏度/
    (mPa·s)
    5167∶12.016 460
    5250∶12.515 320
    下载: 导出CSV 
    | 显示表格

    分散共聚物颗粒形成阶段分为破碎阶段、研磨阶段和稳定阶段,研磨转速为1 000 r/min,研磨时间为3~15 min,制得不同粒径分布的均一分散共聚物颗粒水相溶液。为了更好地了解影响分散共聚物颗粒制备的因素,测试了制备过程中体系黏度、粒径分布的变化情况。

    分散共聚物颗粒制备过程中,体系黏度的变化是表征其性能的主要指标。研磨时间为1,5,10和15 min时的黏度分别为9.8,3.9,3.8和3.7 mPa·s。由此可以看出,将共聚物溶液(AM质量分数为5%,AM/MBA质量比为250∶1)加入胶体磨中高速研磨,其黏度在5 min后就迅速降至5.0 mPa·s以下,得到分散共聚物颗粒。

    使用马尔文3000激光粒度仪测试分散共聚物颗粒溶液的粒径分布情况,测量前使用蒸馏水将分散共聚物颗粒溶液稀释至400 mg/L,每个待测样品测3个平行样,得到研磨时间对体系粒径分布的影响结果,如图1表2所示。

    图  1  分散共聚物颗粒的粒径分布随研磨时间变化情况
    Figure  1.  The change of particle size distribution of dispersed copolymer with grinding time
    表  2  分散共聚物颗粒粒径随研磨时间的变化
    Table  2.  Viscosity change of dispersed copolymer particles in grinding process
    剪切时间/min平均粒径/μm最大粒径/μm最小粒径/μm
    11 520.03 080.031.1
    5 135.0 352.0 4.6
    下载: 导出CSV 
    | 显示表格

    图1可以看出,研磨1 min时,体系的粒径分布范围较广,平均粒径为1 520 μm;持续研磨5 min后,体系的粒径分布变窄,平均粒径降至135 μm,说明分散共聚物颗粒制备过程中,随着研磨时间增长,体系粒径分布更为均一。另外,从表2可以看出,最大粒径与最小粒径的比值随着研磨时间增长而降低,进一步验证了以上结果。

    采用双狭缝模型,剪切速率变化范围为1~1 000 s–1,测试质量分数为3%的分散共聚物颗粒溶液的黏度随剪切速率的变化情况。试验采用模拟垦利油田注入水,总矿化度4 485.0 mg/L,钙镁离子含量为71.0 mg/L,pH值为7.34。使用Anton Paar旋转流变仪,测定了65 ℃下分散共聚物颗粒溶液的流变性能,结果见图2。由图2可知,在低剪切速率下,分散共聚物颗粒溶液的黏度随剪切速率升高而降低;在中剪切速率下,其溶液黏度基本不受剪切速率的影响,呈现出牛顿流体的性质;在高剪切流动状态下,其溶液黏度随剪切速率升高而略有升高。分析认为,在高剪切速率下,分散共聚物不断重新排布、相互碰撞而形成网状结构,导致黏度略有升高。剪切速率为1~1 000 s–1时,3%分散共聚物颗粒溶液的黏度低于6.0 mPa·s;剪切速率为7.34 s–1时,其溶液黏度为1.1 mPa·s,略高于水。

    图  2  3%分散共聚物颗粒溶液的流变曲线
    Figure  2.  Rheological curve of 3% dispersed copolymer particles solution

    使用Turbiscan多重光稳定性分析仪,将质量分数为3%的分散共聚物颗粒溶液放入分析仪中,每间隔15 min,对测试样品从底部到顶部扫描一次,测试其背散射光强和透射光强,并据此直接计算得到测试样品的稳定性动力学指数。稳定性动力学指数累计了测试样品所有光强的变化,反映了测试样品的稳定程度。稳定性动力学指数越大,测试样品越不稳定;稳定性动力学指数小于3.0时,测试样品的稳定性较好。采用高级分析模块,计算分散共聚物颗粒溶液的稳定性动力学指数,得到其稳定性动力学指数随时间的变化,如图3所示。

    图  3  60 ℃下的分散共聚物颗粒溶液稳定性动力学指数测试结果
    Figure  3.  The test results of stable dynamic index for dispersed copolymer particles solution at 60 ℃

    图3可以看出,分散共聚物颗粒溶液的稳定性动力学指数小于3.0,性能较为稳定,分散共聚物颗粒溶液从井口注入后运移至井筒及近井地带期间能够保持良好的分散稳定性能,不会发生沉降聚集。

    采用填砂管驱替装置,填砂管长度50.0 cm,渗透率5 000 mD左右,测试相同用量条件下分散共聚物颗粒体系和聚合物凝胶体系在多孔介质内的封堵情况。在模拟地层温度下,以2.0 mL/min的注入速度,分别注入1.0倍孔隙体积的分散共聚物颗粒体系和聚合物凝胶体系,记录注入压力的变化情况。后续水驱至压力平稳,记录后续水驱阶段压力的响应情况,结果如图4所示。

    图  4  分散共聚物颗粒和聚合物凝胶体系入口压力随注入量的变化曲线
    Figure  4.  Variation of inlet pressure of dispersed copolymer particles and polymer gel systems with the injection volume

    图4可以看出,在用量相同条件下,注入1.0倍孔隙体积的1 500 mg/L聚合物凝胶体系时,注入压力升至0.1 MPa;注入1.0倍孔隙体积的分散共聚物颗粒体系时,注入压力升至0.5 MPa。后续水驱阶段,2种体系均显示出较高的残余阻力系数,其中,聚合物凝胶体系的注入压力升至0.9 MPa,分散共聚物颗粒体系的注入压力升至2.8 MPa。

    因此,渗透率大于5 000 mD的高渗透储层进行剖面调整时,在调剖剂用量相同的条件下,分散共聚物颗粒体系具有更低的注入压力,即具有更优的注入性能和更强的封堵能力。

    填砂模型封堵性试验结果表明,分散共聚合颗粒体系具有良好的封堵性能,为了更真实地反映其在地层条件下的封堵性,开展了长填砂管条件下的封堵运移性试验。采用10.00 m填砂模型进行长距离运移性试验,模型渗透率为6 009 mD,沿填砂管均布5个测压点,评价其深部运移及封堵性能。

    试验时首先以1.5 mL/min的注入速度向填砂模型内注入地层水,至模型内部压力平稳;然后再以1.5 mL/min的注入速度向填砂模型内注入1.0倍孔隙体积的分散共聚物颗粒体系;关闭注入端和采出端,在65 ℃恒温箱中放置10 d,再以1.5 mL/min的注入速度向填砂模型内注入后续水,记录驱替过程中压力的变化情况,结果见图5

    图  5  后续水驱阶段模型内部压力的变化
    Figure  5.  Pressure change inside the model in the subsequent water flooding stage

    图5可以看出,开始注水后,各测压点的压力迅速上升;上升至一定压力后,压力逐渐降低;后续水突破后,距离注入端越远,压力下降越缓慢。这说明分散共聚合颗粒被注入水突破后,封堵体系在填砂模型内仍保持良好的封堵性能。因此,在模拟地层条件下,分散共聚物颗粒体系对于渗透率大于5 000 mD的高渗透储层具有良好的运移性和封堵性。

    1)通过采用特殊的交联技术和分散技术,形成的高黏聚合物经研磨后,制得纳米–微米级的均一分散水溶液。

    2)通过调节主剂AM的质量分数和AM/MBA的质量比,可得到不同粒径分布的分散共聚物颗粒溶液;其初始黏度可控制在10 mPa·s以内,具有良好的注入性、深部运移性和对高渗透储层的有效封堵性能;制备的分散共聚物颗粒溶液经高速剪切后,黏度和粒度变化较小,表现出良好的抗剪切性能。

    3)分散共聚物颗粒体系的黏度可控,工艺上可实现在线注入,可进入地层深部,对高渗透地层具有较好的封堵效果,可实现深部调剖。

  • 图  1   A区块各地层井漏次数统计

    Figure  1.   Statistics of the lost circulation of each layer in Block A

    图  2   信息提取

    Figure  2.   Information extraction

    图  3   破裂压力、地层压力、井筒压力与漏失量的相关性

    Figure  3.   Correlation among fracture pressure, formation pressure, wellbore pressure, and leakage

    图  4   地层压力当量密度分布

    Figure  4.   Equivalent density distribution of the formation pressure

    图  5   破裂压力当量密度分布

    Figure  5.   Equivalent density distribution of the fracture pressure

    图  6   各地层压力当量密度不确定性分布

    Figure  6.   Uncertainty distribution of equivalent density of the formation pressure in each layer

    图  7   各地层破裂压力当量密度不确定性分布

    Figure  7.   Uncertainty distribution of equivalent density of the fracture pressure in each layer

    图  8   裂缝宽度分布

    Figure  8.   Fracture width distribution

    图  9   裂缝宽度不确定性分布

    Figure  9.   Uncertainty distribution of the fracture width

    图  10   井漏风险系数与瞬时漏失速度的相关性

    Figure  10.   Correlation analysis of lost circulation risk coefficient and instantaneous leakage velocity

    图  11   预测压力与实测压力不确定性分布范围对比

    Figure  11.   Comparison of uncertainty distribution ranges of predicted pressure and measured pressure

    表  1   A区块井漏信息统计结果

    Table  1   Information statistics of lost circulation in Block A

    地层漏失次数漏失率,%钻井液密度/(kg·L−1平均漏失量/m3平均损失周期/h最大漏失速度/(m3·h−1平均漏失速度/(m3·h−1
    P24837.291.22~1.42176.94290.63727.11525.818
    S1t6220.341.27~1.40115.67469.35227.09814.952
    S1k3118.641.27~1.44221.714237.36625.20418.590
    O3s3220.341.29~1.87136.86637.01512.3529.411
    O2yj2735.591.16~1.72320.344104.64119.97514.558
    O1-2y2233.901.10~2.00296.999129.6779.16211.416
    下载: 导出CSV

    表  2   各地层实际地层压力当量密度分布统计结果

    Table  2   Statistics of actual equivalent density distribution of the formation pressure in each layer

    地层均值/(kg·L−1标准差/(kg·L−1分布范围下限/(kg·L−1分布范围上限/(kg·L−1
    P21.3116922210.321 164 3050.669 363 6101.954 020 831
    S1t1.151 520 1570.265 860 7170.619 798 7231.683 241 592
    S1k1.279 467 7350.181 530 3730.916 406 9891.642 528 481
    O3s1.224 136 3680.288 242 7680.647 650 8311.800 621 904
    O2yj1.126 302 9600.128 635 8520.869 031 2571.383 574 664
    O1-2y1.076 552 9620.249 590 2640.577 372 4341.575 733 490
    下载: 导出CSV

    表  3   各地层实际破裂压力当量密度分布统计结果

    Table  3   Statistics of actual equivalent density distribution of the fracture pressure in each layer

    地层均值/(kg·L−1标准差/(kg·L−1分布范围下限/(kg·L−1分布范围上限/(kg·L−1
    P21.762 290 6170.083 384 7141.595 521 1891.929 060 044
    S1t1.763 333 3330.099 247 1661.564 839 0011.961 827 666
    S1k1.780 773 8260.127 570 2461.525 633 3352.035 914 317
    O3s1.952 118 0140.220 338 0771.511 441 8602.392 794 168
    O2yj1.900 000 0000.241 660 9191.416 678 1612.383 321 839
    O1-2y1.724 581 8760.115 840 7771.492 900 3231.956 263 429
    下载: 导出CSV

    表  4   裂缝宽度不确定性分布统计

    Table  4   Statistics of uncertainty distribution of fracture width

    地层最大裂缝宽度/m最小裂缝宽度/m裂缝宽度均值/m裂缝宽度标准差/m裂缝宽度上限95%/m
    P20.058 900.001 60.016 700.012 700.042 00
    S1t0.024 300.000 80.006 700.003 900.014 50
    S1k0.020 600.001 30.009 100.006 800.022 70
    O3s0.057 900.000 40.009 800.001 090.031 60
    O2yj0.131 600.001 10.008 300.013 200.034 70
    O1-2y0.005 710.001 20.001 860.014 500.004 75
    下载: 导出CSV

    表  5   A区块8井的预测当量密度

    Table  5   Predicted equivalent density for eight wells in Block A

    层位井深/m预测地层孔隙压力当量
    密度/(kg·L−1
    预测地层破裂压力当量
    密度/(kg·L−1
    设计钻井液密度/(kg·L−1
    P24 507~4 9911.17~1.201.89~1.961.22~1.26
    S1t5 393~6 1611.20~1.241.89~1.961.26~1.30
    S1k6 161~6 5411.20~1.241.89~1.961.26~1.30
    O3s6 541~7 4151.20~1.241.89~1.961.26~1.30
    O2yj7 450~7 5721.15~1.181.65~1.851.21~1.29
    O1-2y7 572~7 8141.15~1.181.65~1.851.21~1.29
    下载: 导出CSV

    表  6   A区块8井的预测压力

    Table  6   Predicted pressure for eight wells in Block A

    层位井深/m预测地层孔隙压力/MPa预测地层破裂压力/MPa设计井筒压力/MPa
    P24 507~4 99151.677~58.69483.479~95.86753.886~61.628
    S1t5 393~6 16163.422~74.86899.889~118.34066.592~78.491
    S1k6 161~6 54172.453~79.486114.114~125.63976.076~83.332
    O3s6 541~7 41576.922~90.107121.152~142.42780.768~94.467
    O2yj7 450~7 57283.962~87.563120.466~137.28088.342~95.725
    O1-2y7 572~7 81485.336~90.361122.439~141.66889.789~98.785
    下载: 导出CSV

    表  7   钻前井漏风险诊断结果

    Table  7   Pre-drilling lost circulation risk diagnosis

    地层厚度/m井漏风险系数预测漏失速度/(m3·s−1
    P24840.245 0~0.475 826.464~51.390
    S1t7680.000 2~0.000 30.020~0.029
    S1k3800.004 3~0.004 40.463~0.470
    O3s8740.011 51.242~1.246
    O2yj1220~0.000 10.006~0.012
    O1-2y2400.001 0~0.001 10.114
    下载: 导出CSV
  • [1] 汪蓬勃. 基于巨厚盐膏层以及碳酸盐储层的钻井技术研究[D]. 成都: 西南石油大学, 2015.

    WANG Pengbo. Research on the drilling technique based on the layer of thick salt paste and carbonate reservoir[D]. Chengdu: Southwest Petroleum University, 2015.

    [2] 房超,张辉,陈朝伟,等. 地质工程一体化漏失机理与预防措施:以塔里木库车山前古近系复合盐层为例[J]. 石油钻采工艺,2022,44(6):684–692. doi: 10.13639/j.odpt.2022.06.004

    FANG Chao, ZHANG Hui, CHEN Zhaowei,et al. Geology-engineering integrated investigation of leakoff mechanisms and prevention measures: a case study of the Palaeogene composite salt layer in the Kuqa piedmont zone, Tarim Basin[J]. Oil Drilling & Production Technology, 2022, 44(6): 684–692. doi: 10.13639/j.odpt.2022.06.004

    [3] 马磊,袁学强,张万栋,等. 乌石17-2油田强封堵合成基钻井液体系[J]. 钻井液与完井液,2022,39(5):558–564. doi: 10.12358/j.issn.1001-5620.2022.05.005

    MA Lei, YUAN Xueqiang, ZHANG Wandong, et al. A synthetic based drilling fluid with strong plugging capacity for Block Wushi17-2[J]. Drilling Fluid & Completion Fluid, 2022, 39(5): 558–564. doi: 10.12358/j.issn.1001-5620.2022.05.005

    [4]

    AL MENHALI S, KASHWANI G, SAHWANI A. Safety engineering controls of lost circulation during cementing in onshore oil construction projects[J]. International Journal of Materials Engineering, 2015, 5(3): 46-49.

    [5]

    AL-HAMEEDI A T, ALKINANI H H, DUNN-NORMAN S, et al. Mud losses estimation using partial least squares algorithm[R]. SPE 193266, 2018.

    [6]

    WIBOWO H B, JULIANTO C, BUNTORO A, et al. Mud weight evaluation based on safe mud window in drilling Well “X-1” to overcome caving and partial loss problems in the oil field[J]. IOP Conference Series: Earth and Environmental Science, 2021, 830: 012074.

    [7] 李双贵,罗江,于洋,等. 顺北5号断裂带南部压力剖面建立及井身结构优化[J]. 石油钻探技术,2023,51(1):9–15. doi: 10.11911/syztjs.2022037

    LI Shuanggui, LUO Jiang, YU Yang, et al. Establishing pressure profiles and casing program optimization in the Southern Shunbei No.5 Fault Zone[J]. Petroleum Drilling Techniques, 2023, 51(1): 9–15. doi: 10.11911/syztjs.2022037

    [8] 何成江,姜应兵,文欢,等. 塔河油田缝洞型油藏 “一井多控”高效开发关键技术[J]. 石油钻探技术,2022,50(4):37–44.

    HE Chengjiang, JIANG Yingbing, WEN Huan, et al. Key technologies for high-efficiency one-well multi-control development of fractured-vuggy reservoirs in Tahe Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(4): 37–44.

    [9] 马永生,蔡勋育,云露,等. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J]. 石油勘探与开发,2022,49(1):1–17.

    MA Yongsheng, CAI Xunyu, YUN Lu, et al. Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas field, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(1): 1–17.

    [10] 林波,云露,李海英,等. 塔里木盆地顺北5号走滑断层空间结构及其油气关系[J]. 石油与天然气地质,2021,42(6):1344–1353.

    LIN Bo, YUN Lu, LI Haiying, et al. Spatial structure of Shunbei No.5 strike-slip fault and its relationship with oil and gas reservoirs in the Tarim Basin[J]. Oil & Gas Geology, 2021, 42(6): 1344–1353.

    [11] 马海陇,王震,邓光校,等. 塔里木盆地和田河东地区断裂特征及其油气地质意义[J]. 断块油气田,2021,28(3):329–334. doi: 10.6056/dkyqt202103008

    MA Hailong, WANG Zhen, DENG Guangxiao, et al. Fault features in eastern Hetianhe Area,Tarim Basin and its petroleum geological significance[J]. Fault-Block Oil & Gas Field, 2021, 28(3): 329–334. doi: 10.6056/dkyqt202103008

    [12] 瞿长,赵 锐,李慧莉,等. 塔里木盆地顺北5断裂带储集体地震反射与产能特征分析[J]. 特种油气藏,2020,27(1):68–74. doi: 10.3969/j.issn.1006-6535.2020.01.010

    QU Chang, ZHAO Rui, LI Huili, et al. Seismic reflection and productivity of reservoirs in the fault-zone 5 of Shunbei, Tarim Basin[J]. Special Oil & Gas Reservoir, 2020, 27(1): 68–74. doi: 10.3969/j.issn.1006-6535.2020.01.010

    [13] 刘雨晴,邓尚,张荣,等. 深层火成岩侵入体和相关构造发育特征及其石油地质意义:以塔里木盆地顺北地区为例[J]. 石油与天然气地质,2022,43(1):105–117.

    LIU Yuqing, DENG Shang, ZHANG Rong, et al. Characterization and petroleum geological significance of deep igneous intrusions and related structures in the Shunbei Area, Tarim Basin[J]. Oil & Gas Geology, 2022, 43(1): 105–117.

    [14]

    CHOWDHARY K R. Natural language processing[M]//CHOWDHARY K R. Fundamentals of artificial intelligence. New Delhi: Springer, 2020: 603–649.

    [15]

    MANNING C D, RAGHAVAN P, SCHÜTZE H. Introduction to information retrieval[M]. Cambridge: Cambridge University Press, 2008.

    [16] 潘军,李大奇. 顺北油田二叠系火成岩防漏堵漏技术[J]. 钻井液与完井液,2018,35(3):42–47. doi: 10.3969/j.issn.1001-5620.2018.03.007

    PAN Jun, LI Daqi. Technology of preventing and controlling mud losses into the Permian igneous rocks in Shunbei Oilfield[J]. Drilling Fluid & Completion Fluid, 2018, 35(3): 42–47. doi: 10.3969/j.issn.1001-5620.2018.03.007

    [17] 林波,张旭,况安鹏,等. 塔里木盆地走滑断裂构造变形特征及油气意义:以顺北地区1号和5号断裂为例[J]. 石油学报,2021,42(7):906–923.

    LIN Bo, ZHANG Xu, KUANG Anpeng, et al. Structural deformation characteristics of strike-slip faults in Tarim Basin and their hydrocarbon significance: a case study of No. 1 Fault and No. 5 Fault in Shunbei Area[J]. Acta Petrolei Sinica, 2021, 42(7): 906–923.

    [18]

    LEE H P, OLSON J E, SCHULTZ R A. Interaction analysis of propagating opening mode fractures with veins using the discrete element method[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 103: 275–288. doi: 10.1016/j.ijrmms.2018.01.005

    [19] 王贵. 提高地层承压能力的钻井液封堵理论与技术研究[D]. 成都: 西南石油大学, 2012.

    WANG Gui. Theory and technology on drilling fluids for wellbore strengthening[D]. Chengdu: Southwest Petroleum University, 2012.

    [20] 许成元. 裂缝性储层强化封堵承压能力模型与方法[D]. 成都: 西南石油大学, 2015.

    XU Chengyuan. Models and methods to strengthen wellbore pressure containment by fracture plugging in fractured reservoirs[D]. Chengdu: Southwest Petroleum University, 2015.

    [21]

    RAZAVI O, VAJARGAH A K, VAN OORT E, et al. Comprehensive analysis of initiation and propagation pressures in drilling induced fractures[J]. Journal of Petroleum Science and Engineering, 2017, 149: 228–243. doi: 10.1016/j.petrol.2016.10.039

    [22]

    MAJIDI R, MISKA S Z, YU M, et al. Quantitative analysis of mud losses in naturally fractured reservoirs: the effect of rheology[J]. SPE Drilling & Completion, 2010, 25(4): 509–517.

    [23]

    MAJIDI R, MISKA S Z, AHMED R, et al. Radial flow of yield-power-law fluids: Numerical analysis, experimental study and the application for drilling fluid losses in fractured formations[J]. Journal of Petroleum Science and Engineering, 2010, 70(3/4): 334–343. doi: 10.1016/j.petrol.2009.12.005

    [24] 王斌. 裂缝性漏层钻井液漏失与堵漏计算机模拟研究[D]. 成都: 西南石油大学, 2019.

    WANG Bin. Computer simulation of drilling fluid loss and plugging in fractured formation[D]. Chengdu: Southwest Petroleum University, 2019.

    [25] 陈曾伟,刘四海,林永学,等. 塔河油田顺西2井二叠系火成岩裂缝性地层堵漏技术[J]. 钻井液与完井液,2014,31(1):40–43. doi: 10.3969/j.issn.1001-5620.2014.01.011

    CHEN Zengwei, LIU Sihai, LIN Yongxue, et al. Lost circulation control technology for fractured Permian igneous rock formation in Well Shunxi 2 of Tahe Oilfield[J]. Drilling Fluid & Completion Fluid, 2014, 31(1): 40–43. doi: 10.3969/j.issn.1001-5620.2014.01.011

    [26] 黄诚,云露,曹自成,等. 塔里木盆地顺北地区中–下奥陶统“断控”缝洞系统划分与形成机制[J]. 石油与天然气地质,2022,43(1):54–68.

    HUANG Cheng, YUN Lu, CAO Zicheng, et al. Division and formation mechanism of fault-controlled fracture-ug system of the Middle-to-Lower Ordovician, Shunbei Area, Tarim Basin[J]. Oil & Gas Geology, 2022, 43(1): 54–68.

    [27] 彭军,夏梦,曹飞,等. 塔里木盆地顺北一区奥陶系鹰山组与一间房组沉积特征[J]. 岩性油气藏,2022,34(2):17–30.

    PENG Jun, XIA Meng, CAO Fei, et al. Sedimentary characteristics of Ordovician Yingshan Formation and Yijianfang Formation in Shunbei-1 Area, Tarim Basin[J]. Lithologic Reservoirs, 2022, 34(2): 17–30.

  • 期刊类型引用(1)

    1. 贾志伟,程长坤,朱秀雨,濮兰天,韩宇,扈福堂. 青海油田尕斯N_1–N_2~1超高盐油藏复合驱提高采收率技术. 石油钻探技术. 2021(05): 81-87 . 本站查看

    其他类型引用(0)

图(11)  /  表(7)
计量
  • 文章访问数:  375
  • HTML全文浏览量:  67
  • PDF下载量:  168
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-11-16
  • 修回日期:  2023-11-12
  • 网络出版日期:  2023-11-21
  • 刊出日期:  2023-11-24

目录

/

返回文章
返回