海上水基钻屑高效密闭输送技术

王景, 祁健, 岳明

王景,祁健,岳明. 海上水基钻屑高效密闭输送技术[J]. 石油钻探技术,2024,52(3):53-60. DOI: 10.11911/syztjs.2023105
引用本文: 王景,祁健,岳明. 海上水基钻屑高效密闭输送技术[J]. 石油钻探技术,2024,52(3):53-60. DOI: 10.11911/syztjs.2023105
WANG Jing, QI Jian, YUE Ming. Efficient closed transportation technologies for offshore water-based drilling cuttings [J]. Petroleum Drilling Techniques, 2024, 52(3):53-60. DOI: 10.11911/syztjs.2023105
Citation: WANG Jing, QI Jian, YUE Ming. Efficient closed transportation technologies for offshore water-based drilling cuttings [J]. Petroleum Drilling Techniques, 2024, 52(3):53-60. DOI: 10.11911/syztjs.2023105

海上水基钻屑高效密闭输送技术

详细信息
    作者简介:

    王景(1983—),男,河北定州人,2007年毕业于河北科技师范学院机械设计制造及其自动化专业,工程师,主要从事钻完井技术、装备及油气田环保等相关技术研究及项目施工管理。E-mail:wangjing26@cnooc.com.cn

  • 中图分类号: TE21

Efficient Closed Transportation Technologies for Offshore Water-Based Drilling Cuttings

  • 摘要:

    为解决海上水基钻屑回收过程中输送效率低、环保风险高等问题,在分析水基钻屑特性及输送难点的基础上,研究了适用于海上水基钻屑输送的高效密闭输送技术,分析了钻屑输送过程中的摩阻,进行了降阻和防堵清管技术研究。模型计算结果与现场试验表明,水基钻屑密闭输送宜采用液压输送方式,结合输送管道设计和增压混合器,有效降阻提速,当泵送速度设置为30%~100%时,输送量7.5~25.7 m3/h,泵送压力1.4~2.8 MPa。研究结果表明,海上水基钻屑密闭输送技术解决了水基钻屑高效、密闭、远距离输送的难题,能够满足海上钻井作业的需要,具有较好的推广应用价值。

    Abstract:

    In order to solve the problems of low transportation efficiency and high environmental protection risks in the process of offshore water-based drilling cuttings recovery, based on the analysis of the characteristics and transportation difficulties of water-based drilling cuttings, a set of efficient closed transportation technologies suitable for offshore water-based drilling cuttings transportation was studied, and the frictional resistance in the transportation process of drilling cuttings was analyzed. Research on resistance reduction and anti-blocking pigging technologies was also conducted. The model calculation results and field test data showed that the closed transportation of water-based drilling cuttings should adopt hydraulic transportation technology, combined with the design of transportation pipeline and pressurized mixer, to effectively reduce resistance and improve the velocity. When the pumping speed was set at 30%−100%, the transportation capacity was 7.5−25.7 m3/h, and the pumping pressure was 1.4−2.8 MPa. The research results show that the closed transportation technology of offshore water-based drilling cuttings solves the problems of efficient, closed, and long-distance transportation of water-based drilling cuttings. It can meet the needs of offshore drilling operations and is of great popularization, application, and commercialization value.

  • 随着全球能源消费持续增加,常规油气资源已无法满足日益增长的能源需求,非常规油气已成为全球油气产量增长的重要组成部分和必然选择。2018年,全球原油产量为44.5×108 t,其中非常规原油占14%;天然气产量为3.97×1012 m3,其中非常规天然气占25%[1]。我国非常规油气经过10年的探索与发展,产量快速攀升。2018年,我国非常规原油占原油总产量的10%,非常规天然气占天然气总产量的34%[1]。致密油气及页岩油气是非常规油气资源的重要组成部分,其高效开发对保障我国能源安全、优化能源结构具有重要意义[2]。国内外油气勘探开发实践表明,防止储层损害的观念及工程作业全过程储层保护的理念、系列储层保护新技术新方法已渗透到油气井工程作业各环节之中[3],储层保护技术已成为油气勘探开发的关键技术之一。与常规油气储层相比,致密/页岩油气储层地质条件特殊(高温、高压、高应力和天然裂缝发育),工程作业环节多、程序复杂、安全风险高,建井及开发生产阶段更易遭受严重的储层损害[4-5]。近年来,致密/页岩油气储层损害问题已成为国内外专家学者研究的重点和热点。为此,本文在分析致密/页岩油气储层损害特点的基础上,总结了致密/页岩油气钻井完井、增产改造和开发生产过程中储层损害的主要机理,结合现场应用的典型案例,介绍了现有致密/页岩油气储层保护技术及其应用效果,明确了储层保护对于及时发现、准确评价和高效开发致密/页岩油气资源的重要作用,并就如何降低致密/页岩油气储层完井投产及开发生产过程的储层损害、提高单井产量、实现致密/页岩油气资源经济高效开发等目前亟待解决的问题,以及致密/页岩油气储层保护技术发展方向提出了建议。

    储层损害是指在油气钻井、完井、生产、增产和提高采收率等作业环节中发生(或导致)流体产出或注入能力显著下降的现象或作用[6]。致密/页岩油气储层地质条件特殊、作业施工程序复杂,建井及开发生产阶段极易遭受严重的储层损害,与常规油气储层相比,具有损害潜力和损害程度更高及损害更难解除的特点。

    1)损害潜力更高。致密/页岩油气储层具有基质孔喉细小、渗透率极低、黏土矿物丰富、多尺度天然裂缝发育、超低含水饱和度、润湿性分布复杂和传质过程复杂等特点[7-8],储层损害具有多尺度特点,且可发生在任一作业环节、空间尺度和传质阶段,潜在损害因素多样,损害潜力较常规油气储层更高。

    2)损害程度更高。致密/页岩油气储层损害贯穿钻井、完井和开发等多个环节,跨越基质孔喉、天然裂缝和人工裂缝等多个尺度,阻碍解吸、扩散、渗流等传质阶段,降低油气井产量或缩短稳产周期,油气损害程度较常规油气储层更高。

    3)损害更难以解除。致密/页岩油气储层发生工作液侵入时,在高毛细管力和天然裂缝条件下,液相和固相侵入储层深度更深,且钻井、完井和开发过程中储层损害相叠加[9-11],导致储层损害更加严重且范围广,损害解除难度极大。

    致密/页岩油气井投产后均面临初期产量低、产量递减的问题,一方面是致密/页岩油气的产出机制复杂,渗流阻力大。例如,页岩气井采用“水平井+分段压裂”方式投产后,页岩气产出需跨越基质孔喉、天然裂缝和人工裂缝,经历解吸、扩散和渗流阶段,游离气通过渗流从人工裂缝中快速产出,而吸附气解吸、扩散的速度相对较慢[12-13]。另一方面,致密/页岩油气储层损害也是一个重要原因[14-17]。为此,基于致密/页岩油气储层损害的时间和空间多尺度特点,对钻井完井、增产改造和开发生产过程中的储层损害机理进行详细阐述。

    致密/页岩油气储层多发育天然裂缝,既是油气渗流通道,又是工作液漏失通道[18-19]。工作液漏失是钻井完井阶段最严重的储层损害行为,表现为漏失损害程度高和损害带范围广。图1为四川盆地和鄂尔多斯盆地致密油气藏钻井完井过程中油气储层钻开液漏失量和油气井测试产量的统计结果。由图1可以看出,油气井产量随油气储层钻开液漏失量增加而急剧降低。工作液漏失导致固相和液相大量侵入储层,极易诱发固相堵塞损害、液相敏感损害、应力敏感损害和液相圈闭损害[20-23],而且随着工作液漏失量增加,损害带范围急剧增大,并与后续作业造成的储层损害相叠加,使储层损害更加严重,也更难解除。

    图  1  油气井产量与油气储层钻开液漏失量的统计结果
    Figure  1.  Statistical results of drill-in fluid loss volume and well production

    致密/页岩油气储层压裂作业时,压裂液返排率通常较低,如页岩气井压裂作业中压裂液返排率普遍低于30%[24]。大量现场统计结果表明,压裂液返排率较低的井初期产量往往相对较高。研究认为,压裂液水力能量充分造缝使缝网复杂程度增大是初期产量较大的重要原因之一[25-26],但滞留在储层中的压裂液会持续与储层岩石、地层水相互作用,诱发液相圈闭损害,使压裂液中的固相含量和矿化度不断增大,导致压裂液返排过程中产生各种储层损害[27-29]

    致密/页岩油气储层孔喉细小、毛细管压力高、局部含水饱和度超低,与工作液接触时液相极易通过毛细管自吸进入储层。“水平井+分段压裂”是致密/页岩油气开发的主要方式,压裂液实际用量大且返排率低,且致密/页岩油气储层岩石具有水相润湿性、黏土矿物含量高等特征,导致严重的潜在水相圈闭损害[30-31]。水相圈闭损害试验结果表明,页岩和致密砂岩岩样与水相作用后,裂缝导流能力均大幅降低(见图2图3)。对于页岩气储层,虽然压裂液返排率低是水力能量充分造缝的表现,但大量压裂液滞留会诱发严重的水相圈闭损害[32-36]

    图  2  美国Barnett页岩水相圈闭损害评价结果[30]
    Figure  2.  Evaluation results of water traps in Barnett shale in the United States[30]
    图  3  美国Berea致密砂岩水相圈闭损害评价结果[31]
    Figure  3.  Evaluation results of water traps in Berea tight sandstone in the United States[31]

    页岩储层压裂返排液具有固相含量高、矿化度高的特点,远高于压裂液入井前的固相含量和矿化度[37-38]。文献[39]的研究结果表明,压裂返排液驱替后的页岩裂缝表面可明显观察到残留固相与结晶盐(如图4)。压裂返排液高固相含量来源于压裂液残渣、页岩岩粉和破碎的支撑剂,高矿化度主要源于页岩中可溶盐和高矿化度地层水[39-40]。页岩储层压裂液返排周期长,固相堵塞、结垢、盐析、微粒运移伴随压裂液返排全过程,从而严重影响了人工裂缝的导流能力。

    图  4  压裂返排液驱替后岩样裂缝面残留固相与结晶盐[39]
    Figure  4.  Residual solid phase and crystalline salt on the fracture surface of rock sample after post-fracturing cleanup[39]

    致密/页岩油气开发生产过程中,如果生产制度不合理,会导致储层有效应力快速增大,诱发应力敏感损害[41]。国内外页岩储层应力敏感性统计结果表明,随着有效应力增大,页岩储层岩样渗透率均呈显著下降趋势(见图5[42]。储层岩石与钻井液滤液、压裂液及酸液等外来液体作用后,岩石弹性模量、硬度及强度显著降低,进而导致页岩长期蠕变,引起支撑剂嵌入与人工裂缝导流能力急剧下降,进一步加剧储层应力敏感性损害[42-45],如图6所示。

    随着致密/页岩油气勘探开发向深层、超深层发展,储层高温、高矿化度特征愈加突出,如塔里木盆地克深区块超深致密砂岩储层地层水的矿化度高达200 000~210 000 mg/L。生产过程中,地层高温、高盐条件与井筒附近压降、地层水蒸发作用易诱发盐析,导致储层孔隙度、渗透率和岩石力学强度降低,诱发严重的储层损害(见图7[46]

    图  5  国内外页岩储层岩样应力敏感性统计结果[42]
    Figure  5.  Statistics on the stress sensitivity of shale reservoir samples at home and abroad[42]
    图  6  压裂液浸泡时间对页岩强度的影响[42]
    Figure  6.  Impact of fracturing fluid immersion time on shale strength[42]

    物理颗粒暂堵技术是指通过架桥、填充和变形材料相结合,在井壁和近井带裂缝中形成暂堵带,阻止钻井完井液中的固相和液相侵入储层,从而起到保护储层的目的,而暂堵带在油气井投产前可通过酸溶、油溶或自然解堵等办法解除。物理颗粒暂堵技术经过多年发展,先后形成了孔隙型储层暂堵技术(酸溶性暂堵技术、油溶性暂堵技术)[47-48]、广谱暂堵技术[49]、理想充填技术[50-51]、自适应暂堵技术[52]、裂缝暂堵技术和暂堵性堵漏技术[53-54]等,并在致密/页岩油气储层保护中起到了重要作用。

    大牛地气田致密砂岩气藏埋深2 300~2 900 m,温度79.0~91.6 ℃,平均压力系数0.92,储层有效渗透率小于0.5 mD,基质渗透率小于0.1 mD,平均孔喉半径0.31 μm。储层具有孔喉细小、天然裂缝发育、含水饱和度超低和毛细管力高等特点。该气田前期气井试井数据表明,完钻后表皮系数4.28~52.23,平均17.5。储层损害的主要原因是钻井液固相和液相侵入导致的固相堵塞损害、水相圈闭损害和液体敏感损害。为此,该气田后期气井钻井完井时应用了酸溶性裂缝暂堵技术,有效保护了储层(见图8),促进了致密气藏的及时发现与准确评价:发现了盒2段、盒3段致密砂岩高产气层,该气层前期由于储层损害,解释为差气层或水层,试验井产气量较非试验井大幅度提高(见表1[34]。2005年7月,大牛地气田建成10×108 m3/年的产能。

    图  7  不同初始含水饱和度下致密砂岩盐析前后孔隙度/渗透率降幅[46]
    Figure  7.  Porosity/permeability decreases before and after salting out of tight sandstone at different initial water saturations[46]
    图  8  大牛地气田储层保护前后气层测井解释结果对比
    Figure  8.  Comparison of logging interpretation results in Dani-udi Gas Field before and after reservoir protection
    表  1  大牛地致密砂岩气藏储层保护效果[34]
    Table  1.  Protection effect in Daniudi tight sandstone gas reservoir[34]
    井号测试层位测试产量/(104m3·d–1备注
    D7石盒子组3段3.17非试验井
    D104.04非试验井
    D1521.08试验井
    DK238.87试验井
    D8山西组2段1.54非试验井
    D90.24非试验井
    D122.31试验井
    D137.03试验井
     注:气井均采用水平井加砂压裂+液氮伴注的投产方式。
    下载: 导出CSV 
    | 显示表格

    塔里木盆地克深区块致密砂岩气藏埋深6 500~8 000 m,温度140~180 ℃,压力系数1.65~1.76,测井孔隙度平均为4.97%,渗透率平均为0.060 mD;室内测试孔隙度平均为3.10%,渗透率平均为0.014 mD,具有典型的超致密储层特征。孔喉半径呈单峰分布,主峰介于0.09~0.66 μm,渗透率贡献最大孔喉半径介于0.16~0.63 μm,平均为0.21 μm。储层天然裂缝发育,裂缝线密度0.70~1.47 条/m,裂缝宽度0.1~1.2 mm。由于储层裂缝发育,导致钻井完井液漏失频繁,造成储层发生严重的固相堵塞、流体敏感性损害和相圈闭损害。为此,该区块超深井钻井完井作业时,根据裂缝暂堵与暂堵性堵漏相结合的技术思路及全酸溶储层保护的理念,以保护裂缝为重点,兼顾基质,应用了可酸溶处理剂、可酸溶堵漏材料等,有效控制了钻井液漏失,降低了固相和液相侵入损害,实现了储层的有效保护,试验井产气量显著提高(见表2[55-56],促进了超深致密气藏的高效开发。例如,克深2-1-6井小型酸化后产气量达74×104 m3/d,较酸化前(59×104 m3/d)提高25%,且油压也升高,说明酸溶效果明显,储层保护效果显著。大北9井采用了高密度酸溶性加重剂和可酸溶纤维封堵剂实施储层暂堵保护,酸化压裂后,其测试产气量与邻井平均产气量(未采用全酸溶材料)相比提高了78%。

    表  2  塔里木盆地克深区块超深致密砂岩气藏储层保护效果[55]
    Table  2.  Protection effect of ultra-deep tight sandstone gas reservoirs in Keshen Block, Tarim Basin[55]
    井号测试井段/m钻井液漏
    失量/m3
    测试产气量/
    (104m3·d–1)
    备注
    KS9077 509.00~7 635.003.4094.87试验井
    KS9057 540.00~7 720.0013.9096.64试验井
    KS9017 910.00~7 930.00242.40 0.74非试验井
    KS9027 810.00~7 812.0055.0045.66非试验井
    KS9037 559.00~7 641.20222.41 63.44非试验井
    KS9047 710.00~7 780.00309.80 11.96非试验井
    下载: 导出CSV 
    | 显示表格

    化学成膜暂堵技术是通过在井壁上形成膜状物,最大限度地阻止固相和液相侵入油气层,实现从物理暂堵向化学成膜暂堵的转变,先后形成了油膜暂堵技术[57]、成膜钻井液技术[58-60]和仿生生物膜暂堵技术[61]等,在国内外均得到了广泛应用,并取得显著的储层保护效果。

    北美威利斯顿盆地致密碳酸盐岩/页岩油藏钻井完井过程中,应用了由酸溶性暂堵剂、微乳液生成剂和高温高压成膜降滤失剂等配制的新型化学膜保护储层水基钻井液,与原始油基钻井液相比,钻井液漏失量降低90.6%,显著提高了致密油藏产量与产能指数[62]。分析认为主要原因是:原始油基钻井液侵入储层后易与地层水作用形成微乳液,产生乳化堵塞损害;而化学膜保护储层水基钻井液中加入了成膜降滤失剂、黏土稳定剂、膨胀抑制剂和酸溶性暂堵剂,在保证水基钻井液与油基钻井液性能相当的同时,大幅降低了钻井液漏失量,有效保护了储层。应用化学膜保护储层水基钻井液的试验井,日产油量提高了1.7倍[62]

    化学成膜暂堵技术与物理颗粒暂堵技术相结合,可起到协同增效保护储层的效果。通过采用物理颗粒暂堵技术,将储层偏大孔喉暂堵为微细孔喉,然后利用化学成膜技术在微细孔喉表面形成高质量膜,从而达到更好地保护储层的目的[63-65]。该技术在四川盆地中坝区块等中渗–高渗油气藏和低渗–致密油气藏钻井完井中进行了应用,均取得了良好的储层保护效果(见表3)。

    表  3  化学成膜与物理暂堵技术协同保护储层效果[65]
    Table  3.  The reservoir protection effects of chemical filming and physical temporary plugging technologies[65]
    井号油气层
    厚度/m
    油气井米采油指数/
    (m3·m−1·MPa−1)
    增产
    倍数
    备注
    中30-斜更53310.50.09522.11试验井
    中31-更533 7.30.4520非试验井
    中32-斜53315.00.58001.28试验井
    中31-斜533 7.30.4520非试验井
    中30-斜更52819.10.73308.63试验井
    中31-斜52915.30.0850非试验井
    下载: 导出CSV 
    | 显示表格

    欠平衡钻井完井技术通过保持井筒液柱压力小于地层压力,抑制钻井完井液侵入储层,控制钻井完井液漏失量,达到保护储层的目的[5]。欠平衡钻井完井技术与物理/化学暂堵技术作为储层保护的两条路径,互为补充,欠平衡钻井技术从部分过程欠平衡逐步发展到全过程欠平衡,在致密油气藏储层保护中发挥了重要作用[66]

    四川盆地邛西构造须2段致密砂岩气藏埋深3 241~3 912 m,气藏中深处温度平均为101 ℃,压力系数1.10~1.24,储层基质渗透率平均为0.036 mD,孔隙度平均为3.44%。储层孔喉分布频带较宽,分选较差,以小于0.2 μm的孔喉为主;微裂缝发育,属于裂缝–孔隙型储层。储层致密基质潜在损害以水相圈闭损害、水敏损害为主,其次为速敏、碱敏、酸敏和盐敏损害;对于天然裂缝,以应力敏感损害为主。该构造气井初期采用传统的过平衡钻井方法,未能有效保护储层,气井产量均不高。例如,邛西1井产气量仅700 m3/d,邛西2井微量产气,经美国德士古公司加砂压裂后产气量仅5 200 m3/d。为此,在邛西3井和邛西4井应用了全过程欠平衡钻井技术,实现了储层的有效保护,2口井的产气量均远高于邛西1井和邛西2井(见表4)。之后连续10多口气井均应用了全过程欠平衡钻井技术,产气量(50~100)×104 m3/d,实现了邛西构造须2段致密气砂岩藏的高效开发。

    表  4  四川盆地邛西构造须2段致密砂岩气藏储层保护效果
    Table  4.  Protection effect of Xu 2 tight sandstone gas reservoir in Qiongxi structure, Sichuan Basin
    井号井深/m完井方式测试产量/(104m3·d–1)钻井方法
    邛西14 450射孔完井 0.07常规过平衡
    邛西23 900加砂压裂 0.52
    邛西33 572先期裸眼45.67全过程欠平衡
    邛西43 852衬管完井89.34
    下载: 导出CSV 
    | 显示表格

    加拿大Bakken盆地致密油气藏埋深2 745~3 230 m,储层温度110~120 ℃,压力系数1.12~1.56,渗透率0.05~0.50 mD,孔隙度4%~8%,平均孔喉直径19.57 nm。该盆地气井钻井过程中的储层损害主要是钻井液固相和液相侵入导致的固相堵塞、水相圈闭和流体敏感性损害。为有效保护储层,部分井应用了全过程欠平衡钻井技术,与采用常规过平衡钻井技术的油气井相比,年产油量提高19.0倍,年产气量提高12.8倍(见图9[67-68]

    图  9  加拿大Bakken盆地致密油气藏欠平衡钻井储层保护试验井与非试验井对比[68]
    Figure  9.  Comparison of underbalanced drilling reservoir protection test wells and non-test wells in tight oil and gas reservoirs of Bakken Basin, Canada[68]

    岩石表面润湿性与表面能和表面结构相关,通过改变岩石表面能或表面形貌调整岩石表面润湿性的技术称为界面修饰技术[69]。该技术拓展了暂堵技术与欠平衡钻井技术在保护致密储层中的应用,与之形成优势互补,是解除液相圈闭损害、改善微–纳米孔喉渗流通道的有效技术途径。界面修饰技术主要通过吸附表面活性物质和纳米粒子实现,在钻井完井、增产改造作业中起到了重要的储层保护作用。

    美国Barnett盆地页岩气藏埋深2 170~2 830 m,总厚度80~100 m,温度71~93 ℃,储层压力20.7~27.6 MPa,压力系数0.99~1.02,储层渗透率0.1~10 nD,孔隙度2.0%~6.0%,平均孔喉半径小于0.5 μm。近几年,Barnett盆地页岩气井绝大多数为水平井(通常为20~40口的丛式井组),水平段长度为1 000~2 000 m,压裂级数为4~15级。统计结果显示,该盆地页岩气井投产1年后,单井产气量大约递减了55%~60%,在没有新井的情况下,整个气田产量会减少30%~35%。分析认为,页岩气井压裂完成后压裂液返排率低,压裂液滞留易诱发水相圈闭损害,极大降低了裂缝导流能力,导致气井产量递减速度很快。研究表明,Barnett页岩与2%KCl溶液和蒸馏水作用后,裂缝导流能力分别降低97%和99%;Berea致密砂岩与2%KCl溶液作用后,裂缝导流能力降低80%。为此,依据接触角、界面张力和毛细管力等指标优选了表面活性剂,并进行了重复压裂,页岩气井稳定产量提高约3倍,稳产期大于2年(见图10[28]

    图  10  储层保护压裂液体系提高气井产量和稳产期[28]
    Figure  10.  Production increase and stabilize production periodof reservoir protection fracturing fluid system[28]

    我国在界面修饰储层保护技术方面也开展了大量的基础性工作和现场试验。氟表面活性剂和超双疏表面活性剂等处理剂的研发及应用,有效降低了钻井完井液滤液侵入损害,提高了储层保护效果[70-71]。中国石油工程技术研究院研发了一种聚合物防液锁剂,致密气岩心束缚水饱和度可降低6%,气相相对渗透率提高20%,井壁表面能可降至原来的10%,甲烷气的黏附力降至原来的0.4%。该聚合物防液锁剂已在塔里木盆地致密气藏成功应用,与邻井相比,平均产量至少提高37.5%。

    储层保护理论与技术经过半个多世纪的发展,已基本满足了常规油气储层损害防控治理的需求。由于致密/页岩油气藏具有赋存地质条件独特、储渗品质极端劣化和储渗空间多尺度结构特征等特点,现有储层保护技术仍不能完全满足其勘探开发需求,再加上降低作业成本、增产提效、提高油气采收率等要求,亟待发展和升级储层保护能力。为此,建议开展以下技术攻关研究。

    1)着力打造致密/页岩油气储层损害预测与诊断专家系统。非常规油气储层保护应以预防为主,防治结合。储层损害机理与保护技术的针对性很强,不同地区、不同类型油气层的损害机理与最佳保护措施存在很大差异,对储层损害机理的认识是建立良好油气层保护技术的基础。未来需充分利用储层地质、工程和生产资料,基于大数据分析方法,建立致密/页岩油气储层损害智能预测与诊断方法,形成储层损害预测与诊断专家系统,利用储层现有资料和数据,快速、准确、高效、实时诊断与评估油气层保护技术的有效性,以便及时确定油气层保护方案和调整油气层保护措施,提高油气层保护效果,为储层保护技术的高效实施奠定基础。

    2)升级完善致密/页岩油气储层多尺度损害评价方法。致密/页岩油气储层多尺度损害评价方法是认识、预防和控制储层损害的关键。目前,针对常规油气储层损害,国内外虽然形成了系列评价方法并研制了相关评价仪器,但多以渗透率为评价指标,多针对单一储渗空间、传质阶段和作业环节。因此,未来需要以储层产能指数为指标,建立考虑非常规储层低孔/低渗特点和传质特征的储层损害评价方法,并研发相关评价仪器。

    3)加快研发适应致密/页岩油气储层的智能型储层保护材料。传统暂堵材料多需要通过射孔、化学溶解、返排等措施进行解除,不但增加了作业成本,也在一定程度上影响了储层保护效果。因此,未来需要研发智能型储层保护材料,如自降解型暂堵材料、原位反应型储层保护材料(如原位生成酸液、氧化液,原位生热等)等,进而形成暂堵带自动解除技术,提高储层损害预防与解除的效果。

    4)重点突破致密/页岩油气储层液相圈闭损害防治关键技术。针对页岩气储层孔隙通道润湿性分布复杂,油相、水相圈闭损害严重的问题,研发含氟、含硅的油水双憎高效防液锁剂,将储层岩石表面润湿性调整为气润湿,降低天然气、油、水与储层孔喉的黏附力及残余油气饱和度,恢复储层的能量以提高产量。同时,开展注入高温气体、地层微波加热等技术的现场试验,解除致密/页岩油气储层的液相圈闭损害,提高液相圈闭损害的防治效果。

    5)高度重视储层保护–漏失控制–增渗改造一体化技术研究。钻井完井储层保护与工作液漏失损害控制的发展主要经历了3个阶段,第1阶段主要通过减小钻进正压差、采用无固相工作液等来避免或降低漏失损害,但安全和成本方面的因素限制了该类技术的应用;第2阶段通过允许固相颗粒侵入到井周较浅的位置,形成物理和化学暂堵带来控制工作液漏失造成的损害,如酸溶/油溶性暂堵技术和“暂堵性堵漏”技术,但固相常沿裂缝侵入到储层深处,损害范围大且难以有效解除;第3阶段仍处于萌芽之中,探索允许架桥支撑颗粒进入裂缝较深处,使该部分颗粒既可在漏失过程中与可溶填充颗粒协同起到封堵裂缝的作用,又可在生产过程中起到支撑裂缝、保持裂缝导流能力的作用,即储层保护–漏失控制–增渗改造一体化。

    1)非常规油气储层损害贯穿钻井、完井、生产及提高采收率等多个环节,跨越基质孔喉、天然裂缝、人工裂缝等多个尺度,具有损害潜力高、损害严重和损害难解除的特点。

    2)钻井完井过程中的工作液漏失,增产改造过程中的压裂液滞留与延迟返排,生产过程中的应力敏感、岩石长期蠕变、盐析等是导致致密/页岩储层损害的主要原因,亟待深刻揭示损害机理,探索有效的防护治理技术。

    3)物理颗粒暂堵技术、化学成膜暂堵技术、欠平衡钻井完井技术、界面修饰技术等储层保护技术,已在致密/页岩油气勘探开发中发挥了重要作用,但仍需进一步完善,形成配套技术系列。

    4)储层损害预测与诊断专家系统、储层多尺度损害评价方法、智能型储层保护材料、液相圈闭损害防治技术、储层保护–漏失控制–增渗改造一体化技术是致密/页岩油气储层保护技术的重要发展方向。

  • 图  1   钻屑密闭输送工艺流程

    Figure  1.   Closed transportation process of drilling cuttings

    图  2   钻屑在管道内的流动状态

    Figure  2.   Flow state of drilling cuttings in a pipeline

    图  3   钻屑表面有润滑层时的流动状态

    Figure  3.   Flow state when there is a lubricating layer on the surface of drilling cuttings

    图  4   钻屑高效传输装置的结构

    1.底架;2.主油缸1;3.水箱;4.润滑泵;5.料缸1;6.进料斗;7.出料斗;8.出料油缸1;9.出料口;10.出料油缸2;11.出料群阀1;12.出料群阀2;13.进料群阀2;14.进料群阀1;15.料缸2;16.活塞2;17.活塞1;18.主油缸2

    Figure  4.   Structure of efficient transportation device for drilling cuttings

    图  5   管道几何模型示意

    Figure  5.   Geometric model of pipeline

    图  6   管道不同位置处的压力

    Figure  6.   Pressure at different positions of the pipeline

    图  7   选定的4个位置

    Figure  7.   Selected 4 positions

    图  8   不同位置处的速度和压力剖面

    Figure  8.   Velocity and pressure profile at different positions

    图  9   增压混合器的结构

    Figure  9.   Structure of pressurized mixer

    表  1   钻屑的物性参数

    Table  1   Physical parameters of drilling cuttings

    样品序号含液率,
    %
    平均密度/
    (g·cm−3
    固体颗粒密度/
    (g·cm−3
    固体颗粒粒径/
    mm
    表观黏度/
    (Pa·s)
    静置2 h后物态
    168.01.232.690.1845.40固液分层,界面清晰
    252.01.422.310.1811.06固液分层,界面清晰
    345.71.422.320.073.81固液分层,界面清晰
    下载: 导出CSV

    表  2   气动与液压2种输送方式下水基钻屑输送试验的结果

    Table  2   Results of conveying water-based drilling cuttings using pneumatic and hydraulic conveying methods

    输送方式输送介质功率/kW输送量/
    (m3·h−1
    占地面积/
    m2
    输送
    压力/MPa
    输送
    距离/m
    输送管道
    直径/mm
    输送管道
    承压/MPa
    连续作业无
    故障时间/h
    气动水基钻屑1603517.00.8100127.022
    液压水基钻屑60307.55.0150101.668
    下载: 导出CSV

    表  3   不同工况下湍流与层流模型计算出的压降

    Table  3   Pressure drop calculated by turbulence and laminar models under different operating conditions

    工况
    不同模型计算的压降/MPa
    Realizable κε模型雷诺应力模型层流模型
    不考虑重力,20 ℃4.2824.6554.438
    不考虑重力,25 ℃3.6133.9133.735
    考虑重力,20 ℃3.7914.1643.947
    考虑重力,25 ℃3.7223.4223.233
    下载: 导出CSV

    表  4   摩阻计算结果

    Table  4   Friction calculation results

    计算方法摩阻/MPa泵供压力/
    MPa
    忽略重力考虑重力
    理论法8.0237.5359.035
    OLGA法6.8526.3607.860
    FLUENT单相流5.1224.6286.128
    FLUENT多相流5.2264.7286.228
    流变原理法6.6846.2677.770
    下载: 导出CSV

    表  5   增压混合器仿真结果

    Table  5   Simulation results of pressurized mixer

    入射
    压力/MPa
    喷嘴倾斜
    角度/(°)
    喷嘴最大射流
    速度/(m·s−1
    最大湍动能
    (m2·s−2
    混合器出口平均
    速度/(m·s−1
    混合器进出口
    压差/MPa
    混合器内部最大
    负压/MPa
    103076.8610.271.2670.013−0.110
    104576.510.251.1800.002−0.103
    2030130.926.861.3150.073−0.370
    2045130.026.771.2960.042−0.198
    3030173.945.841.4410.160−0.443
    3045172.545.641.3890.092−0.305
    4030210.266.281.5840.247−0.515
    4045208.665.931.4670.146−0.397
    5030243.087.781.6340.338−0.627
    5045240.287.251.5380.202−0.481
    下载: 导出CSV

    表  6   现场试验结果

    Table  6   Field test results

    泵送速度,
    %
    钻井井深/
    m
    测试时间/
    min
    A缸压力/MPaB缸压力/
    MPa
    锥阀压力/MPa缸冲次/min−1平均实际输送量/(m3·h−1)
    30365601.41.46.22.47.5
    40987601.81.76.23.411.4
    701 2581202.02.26.25.618.3
    1001 989602.82.86.27.825.7
    下载: 导出CSV
  • [1] 梅波. 渤海海域油气田水基钻井废弃物危险特性研究[J]. 天津化工,2022,36(2):121–124. doi: 10.3969/j.issn.1008-1267.2022.02.035

    MEI Bo. Research of hazard identification of water-based drilling wastes in Bohai offshore oilfield[J]. Tianjin Chemical Industry, 2022, 36(2): 121–124. doi: 10.3969/j.issn.1008-1267.2022.02.035

    [2] 苏勤,何青水,张辉,等. 国外陆上钻井废弃物处理技术[J]. 石油钻探技术,2010,38(5):106–110.

    SU Qin, HE Qingshui, ZHANG Hui, et al. Foreign onshore drilling waste treatment technology[J]. Petroleum Drilling Techniques, 2010, 38(5): 106–110.

    [3] 张羽臣,岳明,霍宏博,等. 渤海钻井废物无害化处置技术研究[J]. 油气田环境保护,2020,30(5):13–16. doi: 10.3969/j.issn.1005-3158.2020.05.004

    ZHANG Yuchen, YUE Ming, HUO Hongbo, et al. Research on the harmless disposal technology of drilling waste in Bohai Oilfield[J]. Environmental Protection of Oil & Gas Fields, 2020, 30(5): 13–16. doi: 10.3969/j.issn.1005-3158.2020.05.004

    [4] 李晓刚,杨保健,王攀. 勘探环保配套技术的研究及在渤海油田的应用[J]. 科技创新与应用,2018(20):113–114.

    LI Xiaogang, YANG Baojian, WANG Pan. Research on supporting technology of exploration and environmental protection and its application in Bohai Oil Field[J]. Technology Innovation and Application, 2018(20): 113–114.

    [5] 王中华. 国内钻井液技术进展评述[J]. 石油钻探技术,2019,47(3):95–102. doi: 10.11911/syztjs.2019054

    WANG Zhonghua. Review of progress on drilling fluid technology in China[J]. Petroleum Drilling Techniques, 2019, 47(3): 95–102. doi: 10.11911/syztjs.2019054

    [6] 薛玉志,马云谦,李公让,等. 海上废弃钻井液处理研究[J]. 石油钻探技术,2008,36(5):12–16. doi: 10.3969/j.issn.1001-0890.2008.05.003

    XUE Yuzhi, MA Yunqian, LI Gongrang, et al. Offshore waste drilling fluid treatment[J]. Petroleum Drilling Techniques, 2008, 36(5): 12–16. doi: 10.3969/j.issn.1001-0890.2008.05.003

    [7] 谢恩年. 渤海生态修复与治理思路[J]. 环境保护,2010(11):49–51. doi: 10.3969/j.issn.0253-9705.2010.11.014

    XIE Ennian. Ideas on ecological restoration and governance in the Bohai Sea[J]. Environmental Protection, 2010(11): 49–51. doi: 10.3969/j.issn.0253-9705.2010.11.014

    [8] 江先雄. 美国海上CleanCut闭式钻屑清除系统[J]. 石油机械,2002,30(11):59–60. doi: 10.3969/j.issn.1001-4578.2002.11.021

    JIANG Xianxiong. American offshore CleanCut closed cuttings removal system[J]. China Petroleum Machinery, 2002, 30(11): 59–60. doi: 10.3969/j.issn.1001-4578.2002.11.021

    [9] 安文忠,陈建兵,牟小军,等. 钻屑回注技术及其在国内油田的首次应用[J]. 石油钻探技术,2003,31(1):22–25. doi: 10.3969/j.issn.1001-0890.2003.01.008

    AN Wenzhong, CHEN Jianbing, MOU Xiaojun, et al. Applications of cuttings re-injection technology used in Penglai 19-3 Oilfield[J]. Petroleum Drilling Techniques, 2003, 31(1): 22–25. doi: 10.3969/j.issn.1001-0890.2003.01.008

    [10] 吕广,马英文,张晓诚,等. 水基钻屑絮凝压滤一体机的研制与应用[J]. 石油机械,2020,48(6):52–56. doi: 10.16082/j.cnki.issn.1001-4578.2020.06.008

    LYU Guang, MA Yingwen, ZHANG Xiaocheng, et al. Research and application of water based drilling cuttings flocculation filter press system[J]. China Petroleum Machinery, 2020, 48(6): 52–56. doi: 10.16082/j.cnki.issn.1001-4578.2020.06.008

    [11] 侯永亮,宋峙潮,陈真,等. “零排放” 技术在渤海油田的研究与应用[J]. 石油化工应用,2022,41(4):34–38. doi: 10.3969/j.issn.1673-5285.2022.04.008

    HOU Yongliang, SONG Zhichao, CHEN Zhen, et al. Research and application of “zero emission” technology in Bohai Oilfield[J]. Petrochemical Industry Application, 2022, 41(4): 34–38. doi: 10.3969/j.issn.1673-5285.2022.04.008

    [12] 吕聪. 钻井液粘滞力作用下大位移井附加摩阻扭矩计算分析[J]. 石化技术,2019,26(8):54–56. doi: 10.3969/j.issn.1006-0235.2019.08.035

    LYU Cong. Calculation and analysis of additional friction torque of extended reach well under viscous force of drilling fluid[J]. Petrochemical Industry Technology, 2019, 26(8): 54–56. doi: 10.3969/j.issn.1006-0235.2019.08.035

    [13] 蔡利山,赵素丽. 钻井液润滑剂润滑能力影响因素分析与评价[J]. 石油钻探技术,2003,31(1):44–46. doi: 10.3969/j.issn.1001-0890.2003.01.016

    CAI Lishan, ZHAO Suli. Analysis and evaluation of influence factors of lubricating ability of lubricants for drilling fluids[J]. Petroleum Drilling Techniques, 2003, 31(1): 44–46. doi: 10.3969/j.issn.1001-0890.2003.01.016

    [14] 李晓玫. 新型高稳定且低黏附超疏水表面的制备及其性能研究[D]. 成都: 电子科技大学, 2019.

    LI Xiaomei. Preparation and properties of a novel superhydrophobic surface with high stability and low adhesion[D]. Chengdu: University of Electronic Science and Technology of China, 2019.

    [15] 郭光明,郑晓雯,吴淼. 管道输送危险废物泵送压力试验研究[J]. 矿业科学学报,2021,6(1):82–90.

    GUO Guangming, ZHENG Xiaowen, WU Miao. Experimental study on pumping pressure of pipeline transportation of hazardous waste[J]. Journal of Mining Science, 2021, 6(1): 82–90.

    [16] 许振良. 一个非均质流水力坡度解析的新模型[J]. 泥沙研究,2000,25(1):56–64. doi: 10.3321/j.issn:0468-155X.2000.01.009

    XU Zhenliang. A new model of predicting hydraulic gradient for settling slurry flow in a horizontal pipe[J]. Journal of Sediment Research, 2000, 25(1): 56–64. doi: 10.3321/j.issn:0468-155X.2000.01.009

    [17] 罗焕,薛登存,张婷婷. 三种气液混输软件的模拟计算与分析[J]. 中国科技信息,2015(1):114–116. doi: 10.3969/j.issn.1001-8972.2015.01.042

    LUO Huan, XUE Dengcun, ZHANG Tingting. Simulation calculation and analysis of three gas-liquid mixed transport software[J]. China Science and Technology Information, 2015(1): 114–116. doi: 10.3969/j.issn.1001-8972.2015.01.042

    [18] 吴鑫鑫,安垚,孙啸,等. 管道仿真技术发展与应用进展[J]. 管道技术与设备,2017(4):1–3. doi: 10.3969/j.issn.1004-9614.2017.04.001

    WU Xinxin, AN Yao, SUN Xiao, et al. Development and advances in application of pipeline simulation technology[J]. Pipeline Technique and Equipment, 2017(4): 1–3. doi: 10.3969/j.issn.1004-9614.2017.04.001

    [19] 吕科,赵涛. 基于不同数学模型对某弯道式渠首水沙运动的数值模拟对比研究[J]. 水资源与水工程学报,2018,29(2):150–155.

    LYU Ke, ZHAO Tao. Numerical simulation study on flow and sediment movement of a bend canal based on different mathematical models[J]. Journal of Water Resources and Water Engineering, 2018, 29(2): 150–155.

    [20] 胡远洋,江斌,江文彬,等. 文丘里分流器的结构优化与分配特性研究[J]. 合肥工业大学学报(自然科学版),2022,45(6):736–741. doi: 10.3969/j.issn.1003-5060.2022.06.004

    HU Yuanyang, JIANG Bin, JIANG Wenbin, et al. Study on structure optimization and distribution characteristics of Venturi distributor[J]. Journal of Hefei University of Technology(Natural Science), 2022, 45(6): 736–741. doi: 10.3969/j.issn.1003-5060.2022.06.004

    [21] 刘德灿. 文丘里喷射泵结构设计与流场分析[J]. 机电技术,2021(5):52–55. doi: 10.19508/j.cnki.1672-4801.2021.05.016

    LIU Decan. Structural design and flow field analysis of Venturi jet pump[J]. Mechanical & Electrical Technology, 2021(5): 52–55. doi: 10.19508/j.cnki.1672-4801.2021.05.016

  • 期刊类型引用(5)

    1. 狄勤丰,尤明铭,李田心,周星,杨赫源,王文昌. 特深井钻柱动力学特性模拟与分析. 石油钻探技术. 2024(02): 108-117 . 本站查看
    2. 赵一超,宋朝阳,刘志强,王强,荆国业,孙建荣,王媛. 基于力-构-能模型的钻井法凿井钻进参数设计思路与方法. 建井技术. 2024(03): 1-9+43 . 百度学术
    3. 祝兆鹏,朱林,宋先知,李永钊,张仕民,柯迪丽娅·帕力哈提,张诚恺,王超尘. 机理约束下钻井机械钻速智能预测泛化方法. 天然气工业. 2024(09): 179-189 . 百度学术
    4. 王果,许博越. 理论模型与机器学习融合的PDC钻头钻速预测方法. 石油钻探技术. 2024(05): 117-123 . 本站查看
    5. 余昕泽. 赵集盐矿钻井提速提质技术. 复杂油气藏. 2024(04): 480-485 . 百度学术

    其他类型引用(1)

图(9)  /  表(6)
计量
  • 文章访问数:  155
  • HTML全文浏览量:  45
  • PDF下载量:  66
  • 被引次数: 6
出版历程
  • 收稿日期:  2022-07-14
  • 修回日期:  2023-10-23
  • 网络出版日期:  2023-11-12
  • 刊出日期:  2024-05-24

目录

/

返回文章
返回