Modification of the Relative Time Method Calculation Formula for Oil and Gas Up-Channeling Velocity
-
摘要:
为提高油气上窜速度计算的科学性和准确性,解决迟到时间法等计算结果不准甚至为负值的问题,曾研究提出了计算结果更为准确的相对时间法。但目前钻井中已广泛使用钻具止回阀,下钻过程中井内钻井液全部从环形空间上返而不进入钻具内部,导致相对时间法的计算结果不再准确。为适应新的钻井工艺,须对相对时间法的计算模型和计算公式进行修正。为此,增加了下钻深度过油气层底部的计算公式,提供了3种井身结构、12种下入深度情形的新的系列计算公式。应用实例分析表明,修正后计算公式的可靠性和适用性得到了进一步提高。
Abstract:In order to ensure the scientific and accurate calculation of oil and gas up-channeling velocity and solve the problem of inaccurate or even negative calculation results in the lag time method, a relative time method with more accurate calculation results has been proposed. However, check valves have been widely used in drilling, and the drilling fluid during drilling all return from the annular space without entering the drilling tool, making the calculation result of the relative time method no longer accurate. In order to adapt to the new drilling technology, the original calculation model and formula of the relative time method should be modified. Therefore, calculation formula for drilling bit depth under the bottom of the oil and gas reservoir were added, and a new series of calculation formula for three kinds of casing programs and twelve kinds of drilling depth were provided. The real cases showed that the reliability and applicability of the revised calculation formula were further improved.
-
ITT区块是厄瓜多尔最大的产油区块,位于该国东部亚马逊热带雨林腹地Oriente盆地的东南部,毗邻秘鲁边界。ITT区块已探明石油地质储量约8.5×108 t,可采石油储量达到2.2×108 t,占该国已探明石油储量的41%。ITT区块由Ishpingo、Tiputini和Tambococha等3个油田组成,其中Tambococha油田位于亚苏尼国家自然保护区内,井场周围遍布河流及热带雨林,钻井环保要求苛刻,区域地质沉积属于海相环境沉积,主要地层为古近系–新近系和白垩系。白垩系是其开发的主要目的层,自下而上由Hollin组、Napo组 和 Tena组组成,地层松散破碎,微孔裂缝发育,井壁垮塌和储层保护问题突出。
Tambococha油田勘探开发前期,普遍使用无机盐聚合物钻井液或ULTRADRIL强抑制性水基钻井液,但未从根本上解决该油田井眼易失稳和储层伤害问题[1-2]。为此,笔者开展了钻井液技术分析和室内试验,利用聚合醇浊点效应和环境友好的特点,复配乳化石蜡和其他刚性粒子,研制了强封堵储层保护钻井液,并在现场应用中取得良好效果,满足了Tambococha油田水平井安全钻井及储层保护技术要求。
1. 钻井液技术难点及解决思路
1.1 钻井液技术难点
Tambococha油田水平井下部井段钻遇的Hollin组、Napo组和Tena组以页岩为主,灰岩和砂岩交替发育,并夹杂大段绿色砾石层,且微裂缝发育,地层比较复杂,钻井中经常发生井下故障。分析认为,该油田主要存在以下钻井液技术难点:
1)井眼失稳问题。Tambococha油田下部地层中的泥页岩由伊利石和伊/蒙混层组成,蒙脱石较少,内部微孔微裂缝较多,且产层砂岩孔隙度大,渗透性强,井壁上容易堆积较厚滤饼;加之水平井设计成了大尺寸井眼、长裸眼段,更加剧了地层的不稳定性。其中,水平段所钻遇地层灰岩和砂岩交替发育,地层松散破碎且微裂缝发育,微裂缝中含有极少量的膨胀性黏土矿物,在钻井液滤液侵入后,由于渗透水化作用,进一步破坏了地层原始应力的稳定性,进而引发井壁垮塌等井眼失稳问题。
2)储层损害问题。Tambococha油田储层Napo组地层胶结疏松、成岩性差,具有高孔隙度、高渗透率、孔喉普遍发育和地层压力低等特点。Napo组孔隙度为15%~23%,渗透率为600~1 000 mD。由于储层孔喉尺寸分布范围广,孔喉半径大,且通常采用过平衡钻井方式,在正压差作用下,钻井液中的固相和滤液很容易侵入地层,造成严重的储层损害问题。
3)钻井环保问题。Tambococha油田处于亚苏尼热带雨林国家自然保护区内,生态环境极其敏感,该油田勘探开发产生的环境问题得到当地社区和政府的高度关注。为保护生态环境,厄瓜多尔政府颁布的最新石油法中明确规定,钻井废弃物处理后必须达到美国EPA1311环保标准要求。因此,对钻井液环保性能提出了较高的要求。
1.2 解决思路
针对上述钻井液技术难点,在优选环保处理剂的前提下,提出了构建Tambococha油田水平井钻井液的思路:1)利用钻井液物理–化学协同封堵来强化井壁,同时辅助一定的固相封堵架桥材料及聚合物降滤失剂,实现对泥页岩微裂缝和微孔隙的封堵,并抑制黏土矿物水化膨胀分散,以防止井眼失稳;2)针对该油田储层高孔渗、低压力的特点,以屏蔽暂堵颗粒合理级配、微乳液封堵,实现孔喉暂堵,降低储层伤害[3-15];3)优选出具有浊点效应的聚合醇处理剂和可变形粒子的乳化石蜡处理剂,进行复配试验,再辅助其他环保钻井液处理剂,形成强封堵储层保护水基钻井液配方。
2. 强封堵储层保护水基钻井液的研制
2.1 防塌封堵剂优选
利用聚合醇类处理剂的浊点效应、吸附作用和表面渗透性等实现页岩抑制、封堵、防塌的目的。为此,选取了液体聚合醇XCS-Ⅲ、聚丙二醇400、固体聚合醇PGCS-1和聚乙二醇6000作为防塌封堵剂,并通过页岩膨胀试验评价了抑制性能。页岩在几种聚合醇溶液中的线性膨胀量测试结果见表1。
表 1 页岩在不同聚合醇溶液中的线性膨胀量Table 1. Linear expansion of shale in different polyalcohol solutions序号 样品 加量, % 线性膨胀量/(mm·h–1) 20 min 1 h 2 h 4 h 8 h 1 清水 0.70 1.03 1.43 1.93 2.55 2 PGSC-1 3 0.48 0.78 1.05 1.42 1.83 3 XCS-Ⅲ 3 0.30 0.55 0.78 1.12 1.53 4 聚丙二醇400 3 0.55 0.80 1.35 1.80 2.35 5 聚乙二醇6000 3 0.50 0.85 1.17 1.63 2.16 由表1可知,几种聚合醇溶液的抑制性能由强到弱依次为XCS-Ⅲ,PGSC-1,聚乙二醇6000和聚丙二醇400。因此,选取聚合醇XCS-Ⅲ作为强封堵储层保护水基钻井液的防塌封堵剂。
另外,乳化石蜡G325具有较低的粒子软化温度,可为钻井液提供与地层温度相适应的、粒径与被封堵微裂缝尺寸相匹配的、可变形的软化粒子,从而实现对各类微裂缝的有效封堵,达到保持井眼稳定的目的。因此,选取乳化石蜡G325与聚合醇XCS-Ⅲ复配,进行正交回收率试验。结果表明,乳化石蜡G325有助于进一步提高岩屑的热滚回收率,二次回收率达到85%以上,两者协同效应显著且复配性能稳定。因此,将聚合醇XCS-Ⅲ与石蜡G325复配来配制强封堵储层保护水基钻井液。
2.2 降滤失剂优选
选取目前几种降滤失效果较好的聚合物降滤失剂和封堵型降滤失剂(磺化沥青、白沥青、低黏聚阴离子纤维素PAC-LV、天然高分子降滤失剂和羟丙基淀粉等)进行了常温中压滤失试验。结果表明,这几种降滤失剂均能使4%膨润土浆的滤失量降低,其中PAC-LV的降滤失效果最好。因此,以PAC-LV为配制强封堵储层保护水基钻井液的主降滤失剂,并以白沥青为辅降滤失剂。
2.3 润滑剂优选
水平井水平段钻进过程中,钻井液的润滑减阻性能非常重要。为此,分别选取DFL-1、GHR-1、MudLube和JN302等4种油基润滑剂进行了润滑性能评价试验。试验步骤及结果:1)利用极压润滑仪,测试4%膨润土浆加入上述4种润滑剂前后的润滑系数,分析测试结果发现,润滑效果由好到差依次为MudLube,DFL-1,GHR-1和JN302;2)借助DA-II动态模拟润滑仪,测试了上述4种润滑剂在不同侧向力条件下的摩擦系数,观察了MudLube在不同侧向力下的润滑性能,发现随着MudLube加量增大,不同侧向力下的摩擦系数和扭矩逐渐降低,体系表现出良好的润滑效果,当MudLube的加量超过2%时,摩擦系数和扭矩均趋于稳定。因此,选择MudLube作为强封堵储层保护水基钻井液的主要润滑剂。
2.4 强封堵储层保护水基钻井液配方及基本性能
通过以上试验,确定了XCS-Ⅲ+G325的防塌封堵钻井液主体配方,结合筛选的润滑剂、降滤失剂,再辅以其他环保处理剂,确定强封堵储层保护水基钻井液(以下记为AKUA钻井液)的基本配方为:0.5%~1.5% XCS-Ⅲ + 1.0%~3.0% G325 + 0.2%~0.3% XC + 0.1%~0.3% PAV-HV + 0.5%~1.5% PAC-LV + 1.0%~3.0% 白沥青+ 1.0%~3.0% MudLube。用石灰石加重,使钻井液密度在1.05~1.25 kg/L,用碱度调节剂调节其pH值至8~9。AKUA钻井液基本配方的基本性能如表2所示。
表 2 AKUA钻井液的基本性能Table 2. Basic properties of AKUA drilling fluid测定条件 漏斗黏度/s API滤失量/mL 塑性黏度/(mPa·s) 动切力/Pa 静切力/Pa 初切 终切 常温 45~70 5~7 15~25 10~25 2~4 4~10 100 ℃/16 h 35~55 3~5 10~20 7~18 1~3 2~8 注:钻井液密度为1.05~1.25 kg/L。 3. 钻井液性能评价
根据厄瓜多尔Tambococha油田水平井钻遇的下部地层地质特点,通过室内试验评价AKUA钻井液的抑制性能、封堵性能、储层保护及环保性能,以确定该钻井液的性能是否满足要求。
3.1 抑制性能
利用OFI膨胀量测试仪,在室温下测试了页岩在几种钻井液滤液中的线性膨胀量,结果见图1。由图1可知,页岩在AKUA钻井液中的线性膨胀量最小,与其在清水中的线性膨胀量相比,降低了64.8%,表明该钻井液具有良好的抑制页岩膨胀的性能。
3.2 封堵性能
Tambococha油田主力油层Napo组的U层和T层属于高孔高渗低压储层,渗透率600~1 000 mD,孔隙度18%~20%,利用理想充填原理计算出其平均孔隙直径为42 μm。用碳酸钙屏蔽暂堵储层,由理想充填模型计算得知,在渗透率为800 mD、孔隙度为20%时,最大孔喉直径为41 μm ,即碳酸钙粒径分布为D90=41.3 μm、D50=12.5 μm、D10=0.5 μm,就能实现孔隙封堵。100目石灰石和325目石灰石按3∶1复配,计算出其加量为10%时的粒径分布曲线与理想充填曲线拟合地较好,能实现有效封堵(如图2所示)。
3.3 储层岩心伤害评价
选取Tambococha油田主力储层Napo组U层的3块岩心,利用岩心动态伤害系统进行了伤害评价试验。试验步骤:1)测试岩心渗透率;2)对岩心进行污染,以形成暂堵带,以6 mL/min的流量,将AKUA基浆驱入岩心,当岩心进口压力达到3.5 MPa时,保持此压力,直至出口端基本没有液体流出,此时污染完成;3)用煤油对岩心进行反向驱替,待煤油开始突破暂堵带时,记录下此时的压力(突破压力)及反排压力,并记录反向流动试验时间。试验结果见表3。
表 3 岩心反排试验结果Table 3. Test results of core flowback岩心编号 原始渗透率/mD 反向渗透率/mD 突破压力/MPa 反排压力/MPa 岩心伤害率,% 反排时间/min 1# 735.58 643.72 0.15 0.17 12.49 30 2# 793.33 720.23 0.14 0.15 9.21 30 3# 814.86 741.02 0.11 0.12 9.06 30 由表3可知,在模拟地层条件下,AKUA钻井液对岩心的伤害率平均只有10.25%,表明AKUA钻井液具有良好的降低油层损害的性能。
3.4 环保性能
目前,国内外普遍使用水质五日生化需氧量与水质化学需氧量之比(BOD5/COD),来考察有机物的生物可降解性。评价试验参照标准“水质:化学需氧量的测定:重铬酸盐法”(HJ 828—2017)和“水质:五日生化需氧量(BOD5)的测定:稀释与接种法”( HJ 505—2009)进行。参考石油天然气行业标准“水溶性油田化学剂环境保护技术评价方法”(SY/T 6788—2010)和“水溶性油田化学剂环境保护技术要求”(SY/T 6787—2010),用BOD5/COD评价生物可降解性,标准为:Y=BOD5/COD,Y≥0.05,易;0.01≤Y<0.05,较难;Y<0.01,难。使用哈希COD max plus sc型分析仪和哈希BOD Trak II型分析仪测定AKUA钻井液的COD和BOD5,AKUA钻井液的BOD5/COD为0.440,表明其易生物降解。
采用发光细菌法,通过显微毒性试验评价钻井液的环保性能。该方法是加拿大测试海上钻井液生物毒性的标准方法之一。采用石油天然气行业标准“水溶性油田化学剂环境保护技术评价方法”(SY/T 6788—2010)中的EC50评价钻井液的生物毒性:EC50<1,剧毒;1<EC50<1 000,中毒;1 001<EC50<20 000,微毒;EC50>20 000,无毒。AKUA钻井液的EC50为51 200,表明其无毒。
4. 现场应用
研制的强封堵储层保护水基钻井液(AKUA钻井液)在厄瓜多尔Tambococha油田15口水平井进行了应用,均取得成功,钻井过程中井壁稳定、起下钻顺畅、套管均一次下到底,且钻屑环保指标能够达到美国EPA1311环保标准,可直接回注到地层。应用该钻井液,有效解决了Tambococha油田水平井钻速慢、易发生井下故障的问题,并多次打破该油田水平井钻井纪录,有效推进了Tambococha油田钻井提速提效。
分析表明,AKUA钻井液主要应用效果为:
1)井壁防塌效果明显。优选了适合地层孔隙尺寸的粒径级配封堵剂,然后与聚合醇进行复配,实现了井壁微裂缝封堵和抑制页岩膨胀分散,降低了井壁压力传递,使井径规则、井眼稳定、起下钻顺畅,下套管一次到底。进入水平段的砂岩地层后,AKUA钻井液密度控制在1.05~1.06 kg/L,起到了良好的井壁稳定能力。
2)润滑减阻性能优良。AKUA钻井液选用的主要处理剂聚合醇和乳化石蜡均具有良好的润滑作用,再配合高效润滑剂MudLube,使该钻井液的润滑性能更好,有效降低了摩阻。滑动钻进井段均未出现托压,起下钻畅通无阻。
3)储层保护效果显著。Tambococha油田水平井采用裸眼完井方式,用完井盐水顶替钻井液后下筛管直接投产,未采取任何储层改造措施。投产数据显示,应用AKUA钻井液的水平井均属于高产井,平均单井日产原油超过300 t,较邻井产量提高近90%,充分说明AKUA钻井液具有优良的储层保护特性,很大程度上降低了井筒中流体和固相颗粒对储层的污染损害。
4)环保检测达标。Tambococha油田产生的钻井废液及钻屑必须在指定的地点进行填埋,或直接回注到地层。考虑其外运成本高、周期长和环保风险大等因素,现场一般采用钻屑回注工艺,将钻井废液及钻屑直接回注到Napo组T层(垂深1 645.60~1 705.70 m)的砂岩地层。回注之前,当地环保部门聘请第三方检测机构对现场钻井废液和钻屑进行了取样检测。检测结果表明,应用AKUA 钻井液井产生的钻井废液和钻屑符合厄瓜多尔当地石油法规定的钻井废弃物排放环保标准,可直接回注到地层。现场钻井废液、钻屑的检验结果分别见表4、表5。
表 4 现场钻井废液检验结果Table 4. Test results of well site waste drilling fluids参数 pH值 电导率/(μS·cm–1) 固体悬浮物含量/(mg·L–1) 化学需氧量/(mg·L–1) 总烃/(mg·L–1) 重金属含量/(mg·L–1) 钡 铅 钒 总铬 排放标准 5.0~9.0 <2 500 <1 700 <120 <20 <5.0 <0.5 <1.0 <0.5 检测结果 8.4 295 527.58 13.88 0.06 0.3 0.15 0.4 0.1 表 5 现场钻屑检验结果Table 5. Test results of well site drilling cuttings参数 pH值 电导率/(μS·cm–1) 总烃/(mg·L–1) 重金属含量/(mg·L–1) 钡 铅 钒 总铬 排放标准 6.0~9.0 <4 000 <1.0 <0.05 <1.0 <0.2 <5.0 检测结果 7.4 2 350 0.8 <0.000 5 0.001 7 0.009 2 0.4 5. 结论与建议
1)针对厄瓜多尔Tambococha油田下部地层水平井井眼失稳、储层损害及钻井存在的环保问题,利用乳化液滴、浊点效应、微米颗粒及刚性粒子等的协同封堵作用,以阻止液相和固相侵入地层,研制了一种强封堵储层保护钻井液(AKUA钻井液)。
2)AKUA钻井液性能稳定、环保性能突出,且现场维护简便,不仅可满足地质、钻井需求,还能满足热带雨林环境敏感区域的钻井环保要求,可实现经济和环保的双重效益。
3)AKUA钻井液在现场应用中取得了很好的效果,主要表现为井眼稳定、起下钻顺畅。应用后平均单井日产原油超过300 t,较邻井提高产量近90%,为Tambococha油田钻井提速和规模上产提供了有力的技术支撑。
4)建议继续研发新型钻井液处理剂,优化AKUA钻井液配方,提高该钻井液的综合性能,然后在厄瓜多尔ITT区块水平井长水平段全面推广应用。
-
表 1 相对时间法与迟到时间法的油气上窜速度计算结果对比
Table 1 Comparison of oil and gas up-channeling velocity calculation results by relative time method and lag time method
序
号应用井 二级复合直径井眼 无油气
显示时
间/h油气显
示时
间/h迟到时
间/h总静止
时间/h油气上窜速度/(m·h−1) 备注 表层套管 二开井眼 油层顶部
深度/m钻头深
度/m相对时
间法迟到时
间法直径/ mm 深度/m 井径 /mm 井深/m 1 高91井 339.7 391.00 215.9 2770.00 2740.00 2770.00 0.83 0.17 0.73 14.5 20.07 –28.24 存在错误 2 高92井 339.7 402.11 215.9 4067.00 4059.00 3388.00 1.43 1.12 1.65 22.6 35.70 49.77 差距大 3 高93井 273.1 299.68 215.9 2675.00 2615.00 2675.00 1.13 0.17 1.30 10.7 16.69 27.08 差距大 4 金8–
斜21井273.1 202.20 241.3 915.00 865.00 915.00 0.31 0.18 0.49 7.0 41.80 40.87 数据接近 5 梁38–
平10井339.7 346.66 215.9 3205.00 2928.00 2938.00 0.75 0.24 28.5 18.96 不能对比 6 高43–
平7井339.7 290.47 215.9 1225.00 1225.00 0.25 0.67 0.92 18.0 43.76 49.56 比较接近 7 樊159–
1井339.7 267.00 215.9 3227.90 3227.90 1.00 0.50 1.50 19.0 47.92 56.63 差距较大 8 滨412–
斜1井273.1 297.64 215.9 3111.00 2797.00 2817.00 1.13 0.56 1.69 16.3 45.07 55.42 差距较大 9 樊18–
斜10井339.7 348.87 215.9 3235.00 3120.00 3235.00 1.20 0.33 1.53 17.0 42.88 34.28 差距较大 10 金8–
斜22井273.1 216.00 241.3 984.00 1200.00 1225.00 0.25 0.67 18.0 41.23 不能对比 11 金9–7–
斜6井273.1 200.00 241.3 1262.00 857.00 1262.00 0.28 0.03 5.0 19.05 不能对比 12 梁203–
平4井273.1 289.00 215.9 3005.00 2672.00 2750.00 1.67 0.17 1.67 4.0 38.10 44.02 比较接近 -
[1] 张殿强, 李联玮. 地质录井方法与技术[M]. 北京: 石油工业出版社, 2001: 72. ZHANG Dianqiang, LI Lianwei. Geological logging methods and techniques[M]. Beijing: Petroleum Industry Press, 2001: 72.
[2] 宋广健,严建奇,王丽珍,等. 油气上窜速度计算方法的改进与应用[J]. 石油钻采工艺,2010,32(5):17–19. doi: 10.13639/j.odpt.2010.05.002 SONG Guangjian, YAN Jianqi, WANG Lizhen, et al. Improvement and application of the calculation method of oil and gas ascending velocity[J]. Oil Drilling & Production Technology, 2010, 32(5): 17–19. doi: 10.13639/j.odpt.2010.05.002
[3] 李开荣, 陈俊男, 段丽娟, 等. 油气上窜速度计算中迟到时间的精准取值方法[J]. 录井工程, 2023, 34(2): 34–38. LI Kairong, CHEN Junnan, DUAN Lijuan, et al. An accurate method of determining lag time in the calculation of oil and gas ascending velocity[J]. Mud Logging Engineering, 2023, 34(2): 34–38.
[4] 张桂林. 油气上窜速度实用计算方法[J]. 石油钻探技术,2006,34(6):23–26. ZHANG Guilin. The practical method to calculating oil and gas upward velocity[J]. Petroleum Drilling Techniques, 2006, 34(6): 23–26.
[5] 李基伟,柳贡慧,李军,等. 油气上窜速度的精确计算方法[J]. 科学技术与工程,2014,14(22):180–184. LI Jiwei, LIU Gonghui, LI Jun, et al. Research on accurate calculation method of oil and gas upward velocity[J]. Science Technology and Engineering, 2014, 14(22): 180–184.
-
期刊类型引用(30)
1. 张峰,姬超,刘宇. 长水平段水平井钻井技术难点分析及对策分析. 中国石油和化工标准与质量. 2024(01): 156-158 . 百度学术
2. 黄腾达,纪成,赵兵,朱其志,李加虎,张振南. 超深碳酸盐岩储层岩石三轴压缩实验与数值模拟研究. 断块油气田. 2024(01): 134-139 . 百度学术
3. 李乐,胡远清,彭小桂,王伟,余浩宇,崔亚圣. 页岩气藏中硫化氢成因研究进展. 石油学报. 2024(02): 461-476 . 百度学术
4. 佘朝毅. 四川盆地深层页岩气钻井关键技术新进展及发展展望. 天然气工业. 2024(03): 1-9 . 百度学术
5. 刘奔. 电子趾端压裂滑套的研制与试验. 石油机械. 2024(06): 103-108 . 百度学术
6. 刘淑霞. 低丰度油层水平井穿层压裂技术应用研究. 化学工程与装备. 2024(05): 76-78+85 . 百度学术
7. 汪海阁,常龙,卓鲁斌,席传明,欧阳勇. 中国石油陆相页岩油钻井技术现状与发展建议. 新疆石油天然气. 2024(03): 1-14 . 百度学术
8. 汪海阁,乔磊,杨雄,车阳,丁吉平. 中石油页岩油气工程技术现状及发展建议. 石油学报. 2024(10): 1552-1564 . 百度学术
9. 宋先知,李根生,祝兆鹏,马宝东,张子悦. 钻井数字孪生技术研究现状及发展趋势. 石油钻探技术. 2024(05): 10-19+171 . 本站查看
10. 潘子真. 古龙页岩油GY15-Q8-H1井优化二开实践与认识. 钻探工程. 2024(S1): 358-363 . 百度学术
11. 贾慧,金鑫,魏浩光,李小江. 碳纳米管羧基功能化及其对水泥石的影响. 钻井液与完井液. 2024(05): 640-645 . 百度学术
12. 周鹏高,李亚双. 高职石油钻井技术专业人才培养模式探索与实践. 化工管理. 2024(32): 44-48 . 百度学术
13. 余文帅,苏强,孟鐾桥,夏连彬,李亚天,谭天一. 天府气田致密气水平井二开一趟钻钻井关键技术. 天然气勘探与开发. 2024(06): 35-44 . 百度学术
14. 杜焕福,王春伟,董佑桓,柳启明,孙鑫,侯文辉,陈荣华,艾亚博. 典型油气藏水平井靶盒钻遇率影响因素及对策. 世界石油工业. 2024(06): 88-97 . 百度学术
15. 黄云,雷庆虹. 适用于页岩气水平井新型水基钻井液室内研究. 化学工程师. 2023(01): 50-53 . 百度学术
16. 耿学礼,郑晓斌,苏延辉,敬倩,史斌,李建. 沁南区域煤层气水平井瓜尔胶钻井液技术. 石油钻探技术. 2023(01): 34-39 . 本站查看
17. 赵廷峰,叶雨晨,席传明,吴继伟,史玉才. 七段式三维水平井井眼轨道设计方法. 石油钻采工艺. 2023(01): 25-30 . 百度学术
18. 刘东亮,陈玉平,李傲仙,郭莉. 非常规油气水平井湿鞋固井首段压裂新工艺. 石油钻采工艺. 2023(01): 85-89 . 百度学术
19. 彭汉修,赵建国,王菊,韩硕,梁鹏辉. 伸缩式井下机器人电液控制系统研制与性能评价. 石油钻探技术. 2023(03): 66-72 . 本站查看
20. 吴鹏程,汪瑶,付利,陈烨,王元,张震,张恒. 深层页岩气水平井“一趟钻”技术探索与实践. 石油机械. 2023(08): 26-33 . 百度学术
21. 蔡峰,陶继凯. 松软低透气性煤层水力压裂裂缝拓展模拟研究及优化. 安徽理工大学学报(自然科学版). 2023(03): 1-6 . 百度学术
22. 袁建强. 中国石化页岩气超长水平段水平井钻井技术新进展与发展建议. 石油钻探技术. 2023(04): 81-87 . 本站查看
23. 陈天,易远元,李甜甜,兰天庆. 中国煤层气勘探开发现状及关键技术展望. 现代化工. 2023(09): 6-10 . 百度学术
24. 王元,杨恒林,黄浩勇,付利,陈刚,张恒,王子昕,郭凯杰. 四川盆地泸州区块深层页岩气地质力学研究及应用. 中国石油勘探. 2023(05): 68-83 . 百度学术
25. 张超鹏,陈立超,张典坤,王扶静. 深层非常规油气固井材料发展现状及趋势浅析. 世界石油工业. 2023(06): 96-105 . 百度学术
26. 张新亮,金磊,张瑞,张冠林,冯丽莹. 中深层水平井双漂浮下套管关键技术. 石油钻探技术. 2023(06): 57-63 . 本站查看
27. 张冕,陶长州,左挺. 页岩油华H100平台储层改造关键技术及实践. 钻采工艺. 2023(06): 53-58 . 百度学术
28. 黄昆,李欣阳,朱鑫磊,孟庆阳,曾凡辉. 页岩气增产用脉冲放电冲击波装置研究. 石油钻探技术. 2022(04): 97-103 . 本站查看
29. 朱迪斯,赵洪波,刘恩然,岳伟民,康海霞,王胜建,徐秋晨,石砥石,单文军,迟焕鹏,郑红军,李大勇. 长江下游(安徽)地区页岩气钻井工程难点及对策分析. 钻探工程. 2022(05): 11-21 . 百度学术
30. 姜政华,孙钢,陈士奎,李伯尧,董红烨. 南川页岩气田超长水平段水平井钻井关键技术. 石油钻探技术. 2022(05): 20-26 . 本站查看
其他类型引用(13)