Numerical Simulation of Complex Fracture Propagation in Shallow Shale Gas Fracturing in Zhaotong
-
摘要:
昭通浅层页岩气田主体埋深在1 000~2 200 m,地层压力系数低,效益开发难度较大,水力压裂是唯一增产措施,但目前国内尚无对中浅层页岩储层实施规模开发的经验可供借鉴,水力压裂工艺参数仍有优化空间。为明确目标昭通浅层页岩气田裂缝扩展主控影响因素,优化页岩气水平井压裂参数,针对该页岩气田储层天然裂缝发育、水平应力差小,主体改造工艺射孔簇较多等地质、工程特点,开展了昭通浅层页岩气压裂复杂裂缝扩展数值模拟研究。采用位移不连续法,考虑天然裂缝和水力裂缝的相互作用模式,基于压裂裂缝流动方程、裂缝宽度方程和物质平衡方程,推导了复杂裂缝扩展数学模型;针对昭通浅层页岩气实际地质特点,基于建立的数学模型优化了施工参数,明确了天然裂缝内聚力、射孔簇数是影响改造体积的主要因素。同时,通过暂堵数值模拟,明确得出:暂堵有利于提高裂缝开启效率,暂堵位置、暂堵时机及暂堵次数对暂堵效果有明显影响。通过现场试验对比模拟结果,发现采取优化后的压裂措施可使单井日产气量提高30.3%。该研究成果对昭通浅层页岩气后续压裂施工具有良好的借鉴意义。
Abstract:The main burial depth of the shallow shale gas field in Zhaotong is 1000-2200 m. The formation pressure coefficient is low, making the benefit development challenging. Hydraulic fracturing technology remains the only stimulation measure. However, there is no prior experience of large-scale development of medium and shallow shale reservoirs in China for reference. Therefore, there is still room for optimizing hydraulic fracturing parameters. In consideration of the geological and engineering characteristics, such as natural fracture development, small horizontal stress differences, and large perforation cluster numbers of the main stimulation, a numerical simulation of complex fracture propagation in shallow shale gas fracturing in Zhaotong was conducted. The displacement discontinuity method was employed, with the interaction mode of natural and hydraulic fractures considered. Based on the fracture flow equation, fracture width equation, and mass balance equation, the mathematical model of complex fracture propagation was derived. Based on the model, construction parameters were optimized according to the actual geological characteristics of shallow shale gas in Zhaotong. It was determined that natural fractures and perforation cluster numbers were the main factors affecting the stimulated reservoir volume (SRV). At the same time, through the temporary plugging numerical simulation, it is clarified that temporary plugging is conducive to improving the fracture opening efficiency, and the location, timing and times for temporary plugging have obvious effects on the temporary plugging effect. The simulation results were compared with on-site test results, demonstrating that the optimized fracturing measures increased daily single gas production by 30.3%. Consequently, this study provides valuable insights for the subsequent fracturing treatment of shallow shale gas in Zhaotong.
-
-
-
[1] 徐政语,梁兴,鲁慧丽,等. 昭通示范区五峰组—龙马溪组页岩气成藏类型与有利区分布[J]. 海相油气地质,2021,26(4):289–298. XU Zhengyu, LIANG Xing, LU Huili, et al. Shale gas accumulation types and favorable area distribution of Wufeng Formation-Longmaxi Formation in Zhaotong Demonstration Area[J]. Marine Origin Petroleum Geology, 2021, 26(4): 289–298.
[2] 王红岩,刘钰洋,张晓伟,等. 基于层次分析法的页岩气储层地质工程一体化甜点评价:以昭通页岩气示范区太阳页岩气田海坝地区X井区为例[J]. 地球科学,2023,48(1):92–109. WANG Hongyan, LIU Yuyang, ZHANG Xiaowei, et al. Geology-engineering intergration shale gas sweet spot evaluation based on analytic hierarchy process: application to Zhaotong Shale Gas Demonstration District, Taiyang Shale Gas Field, Haiba Area, X Well region[J]. Earth Science, 2023, 48(1): 92–109.
[3] RAHMAN M M, AGHIGHI A, RAHMAN S S. Interaction between induced hydraulic fracture and pre-existing natural fracture in a poro-elastic environment: effect of pore pressure change and the orientation of natural fracture[R]. SPE 122574, 2009.
[4] TALEGHANI A D, OLSON J E. How natural fractures could affect hydraulic-fracture geometry[J]. SPE Journal, 2014, 19(1): 161–171. doi: 10.2118/167608-PA
[5] CHENG Wan, JIN Yan, CHEN Mian, et al. Reactivation mechanism of natural fractures by hydraulic fracturing in naturally fractured shale reservoirs[J]. Journal of Natural Gas Science and Engineering, 2015, 27(Part 3): 1357 − 1365.
[6] AIMENE Y, HAMMERQUIST C, OUENES A. Anisotropic damage mechanics for asymmetric hydraulic fracture height propagation in a layered unconventional gas reservoir[J]. Journal of Natural Gas Science and Engineering, 2019, 67: 1–13. doi: 10.1016/j.jngse.2019.04.013
[7] 赵金洲,任岚,胡永全,等. 裂缝性地层水力裂缝非平面延伸模拟[J]. 西南石油大学学报(自然科学版),2012,34(4):174–180. ZHAO Jinzhou, REN Lan, HU Yongquan, et al. Numerical simulation on non-planar propagation of hydraulic fracture in naturally fractured formations[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2012, 34(4): 174–180.
[8] RU Zhixing, HU Jinghong, MADNI A S, et al. A study on the optimal conditions for formation of complex fracture networks in fractured reservoirs[J]. Journal of Structural Geology, 2020, 135: 104039. doi: 10.1016/j.jsg.2020.104039
[9] GUO Jianchun, ZHAO Xing, ZHU Haiyan, et al. Numerical simulation of interaction of hydraulic fracture and natural fracture based on the cohesive zone finite element method[J]. Journal of Natural Gas Science and Engineering, 2015, 25: 180–188. doi: 10.1016/j.jngse.2015.05.008
[10] DAHI-TALEGHANI A, OLSON J E. Numerical modeling of multistranded - hydraulic - fracture propagation: accounting for the interaction between induced and natural fractures[J]. SPE Journal, 2011, 16(3): 575–581. doi: 10.2118/124884-PA
[11] CIPOLLA C L, LOLON E P, ERDLE J C, et al. Reservoir modeling in shale-gas reservoirs[J]. SPE Reservoir Evaluation & Engineering, 2010, 13(4): 638–653.
[12] 郑新权,何春明,杨能宇,等. 非常规油气藏体积压裂2.0工艺及发展建议[J]. 石油科技论坛,2022,41(3):1–9. ZHENG Xinquan, HE Chunming, YANG Nengyu, et al. Volume fracturing 2.0 technology and development suggestions for unconventional reservoirs[J]. Petroleum Science and Technology Forum, 2022, 41(3): 1–9.
[13] 周朗,林然,周小金,等. 页岩气水平井段内多簇缝口暂堵转向压裂数值模拟[J]. 钻采工艺,2023,46(4):82–87. ZHOU Lang, LIN Ran, ZHOU Xiaojin, et al. Numerical simulation research on diverting fracturing for staged fracturing horizontal well in shale gas reservoir[J]. Drilling and Production Technology, 2023, 46(4): 82–87.
[14] 郭建春,赵峰,詹立,等. 四川盆地页岩气储层暂堵转向压裂技术进展及发展建议[J]. 石油钻探技术,2023,51(4):170–183. GUO Jianchun, ZHAO Feng, ZHAN Li, et al. Progress and development suggestions on temporary plugging and diversion fracturing technology for shale gas reservoirs in Sichuan Basin[J]. Petroleum Drilling Techniques, 2023, 51(4): 170–183.
[15] TAN Xuehao, WENG Xiaowei, AHMED T K, et al. An improved ball sealer model for well stimulation[R]. SPE189573, 2018.
[16] WILSON A. Engineering approach to designing fluid diverters: jamming and plugging[J]. Journal of Petroleum Technology, 2018, 70(6): 63–67. doi: 10.2118/0618-0063-JPT
[17] EL-EMAM M A, ZHOU L, SHI W, et al. Theories and applications of CFD-DEM coupling approach for granular flow: a review[J]. Archives of Computational Methods in Engineering, 2021, 28(7): 4979–5020. doi: 10.1007/s11831-021-09568-9
[18] REN Long, SU Yuliang, ZHAN Shiyuan, et al. Modeling and simulation of complex fracture network propagation with SRV fracturing in unconventional shale reservoirs [J]. Journal of Natural Gas Science and Engineering,2016,28:132-141
[19] 王军磊,贾爱林,位云生,等. 基于复杂缝网模拟的页岩气水平井立体开发效果评价新方法:以四川盆地南部地区龙马溪组页岩气为例[J]. 天然气工业,2022,42(8):175–189. WANG Junlei, JIA Ailin, WEI Yunsheng, et al. A new method for evaluating tridimensional development effect of shale gas horizontal wells based on complex fracture network simulation: A case study of Longmaxi Formation shale gas in the southern Sichuan Basin[J]. Natural Gas Industry, 2022, 42(8): 175–189.
[20] GHASSEMI A, ZHOU X X, RAWAL C. 3D poroelastic analysis of rock failure around a hydraulic fracture[J]. Journal of Petroleum Science and Engineering, 2013, 108(34/35): 118–127.
[21] LI Zhiqiang, QI Zhilin, YAN Wende, et al. New algorithm to simulate fracture network propagation using stationary and moving coordinates in naturally fractured reservoirs[J]. Energy Science & Engineering, 2020, 8(11): 4025–4042.
[22] HU Yongquan, LI Zhiqiang, ZHAO Jinzhou, et al. Prediction and analysis of the stimulated reservoir volume for shale gas reservoirs based on rock failure mechanism[J]. Environmental Earth Sciences, 2017, 76(15): 546–559.
[23] 林然. 页岩压裂水平井SRV动态模拟的理论研究[D]. 成都: 西南石油大学, 2018. LIN Ran. Dynamic simulation of stimulated reservoir volume(SRV) during hydraulic fracturing in horizontal shale gas well[D]. Chengdu: Southwest Petroleum University, 2018.
-
期刊类型引用(10)
1. 王博,吴媚,肖祖行,鲍静,张建军,张荔. 缝内暂堵二次转向主控因素及其影响规律. 断块油气田. 2025(03): 480-484 . 百度学术
2. 江铭,邹清腾,肖壮,汪勇,葛婧楠,陈钊. 浅层页岩气井间压窜影响因素与防治优化. 石油实验地质. 2025(03): 693-704 . 百度学术
3. 李紫妍,陈军斌,左海龙,王庆,欧阳雯,林天,刘波,任大忠. 页岩储层水力裂缝和天然裂缝交互规律. 断块油气田. 2024(02): 232-240 . 百度学术
4. 尹帅,赵军辉,刘平,沈志成. 裂缝性储层天然缝与水力缝开启条件及扩展规律研究. 石油钻探技术. 2024(03): 98-105 . 本站查看
5. 宋兆辉. 树莓状聚合物纳微米封堵剂的制备及性能评价. 石油钻探技术. 2024(03): 84-90 . 本站查看
6. 刘善勇,尹彪,楼一珊,张艳. 粗糙裂缝内支撑剂运移与展布规律数值模拟. 石油钻探技术. 2024(04): 104-109 . 本站查看
7. 史小卫,孙麒涵,陈俊侠,林萌,吴会永,王洪建. 首山一矿水平井水力压裂应力阴影效应及裂缝演化机理. 能源与环保. 2024(08): 14-21 . 百度学术
8. 余绍志,纪国法. 基于水力压裂裂缝扩展规律的天然气开发应用. 能源与环保. 2024(08): 242-247+253 . 百度学术
9. 李德旗,刘春亭,朱炬辉,胥云,王荣,张俊成,吴凯,潘丹丹. 高闭合压力下深层页岩气促缝网强支撑压裂工艺. 石油钻采工艺. 2024(03): 336-345 . 百度学术
10. 杨亚东,邹龙庆,王一萱,朱静怡,李小刚,熊俊雅. 川南深层页岩气藏压裂裂缝导流能力影响因素分析. 特种油气藏. 2024(05): 162-167 . 百度学术
其他类型引用(1)