Processing math: 100%

深层页岩欠平衡钻井气液固三相瞬态流动传热模型研究

张文平, 许争鸣, 吕泽昊, 赵雯

张文平,许争鸣,吕泽昊,等. 深层页岩欠平衡钻井气液固三相瞬态流动传热模型研究[J]. 石油钻探技术,2023, 51(5):96-105. DOI: 10.11911/syztjs.2023089
引用本文: 张文平,许争鸣,吕泽昊,等. 深层页岩欠平衡钻井气液固三相瞬态流动传热模型研究[J]. 石油钻探技术,2023, 51(5):96-105. DOI: 10.11911/syztjs.2023089
ZHANG Wenping, XU Zhengming, LYU Zehao, et al. Research on a transient flow heat transfer model of gas-liquid-solid three-phase flow for unbalanced drilling in deep shale wells [J]. Petroleum Drilling Techniques,2023, 51(5):96-105. DOI: 10.11911/syztjs.2023089
Citation: ZHANG Wenping, XU Zhengming, LYU Zehao, et al. Research on a transient flow heat transfer model of gas-liquid-solid three-phase flow for unbalanced drilling in deep shale wells [J]. Petroleum Drilling Techniques,2023, 51(5):96-105. DOI: 10.11911/syztjs.2023089

深层页岩欠平衡钻井气液固三相瞬态流动传热模型研究

基金项目: 国家自然科学基金项目“气体非平衡溶解对深井气侵井筒气–液两相流影响机制研究”(编号:52104009)、中国石化科技攻关项目“涪陵页岩气田提高采收率技术研究”(编号:P22183)和“页岩气超长水平段水平井钻完井关键技术研究”(编号:P22095)、中国石化页岩油气钻完井及压裂重点实验室开放基金项目“页岩油气长水平井钻井管柱与岩屑床耦合摩阻机理及优化研究”(编号:35800000-23-ZC0613-0005)联合资助
详细信息
    作者简介:

    张文平(1989—),男,湖北随州人,2012年毕业于中国地质大学(武汉)石油工程专业,2019年获中国石油大学(北京)油气井工程专业博士学位,副研究员,主要从事钻井工艺与井下工具研究。E-mail:zhangwp.sripe@sinopec.com

    通讯作者:

    许争鸣(1992—),xuzm@cugb.edu.cn

  • 中图分类号: TE21

Research on a Transient Flow Heat Transfer Model of Gas-Liquid-Solid Three-Phase Flow for Unbalanced Drilling in Deep Shale Wells

  • 摘要:

    井底压力的准确预测和有效控制是深层页岩欠平衡钻井作业的关键,但岩屑及环空流体与周围环境之间的对流换热对传统井底压力计算模型精度的影响较大。为此,建立了瞬态非等温井筒气液固三相流动模型,根据连续性方程和动量守恒方程,计算了流体速度、相体积分数和压力,并求解了不同径向层的能量守恒方程,得到了整个井筒–地层系统的温度分布,并采用迭代法,耦合求解了深度和径向方向上的温度、压力和流体性质;模型计算结果与欠平衡钻井作业的现场数据之间误差小于5.0%,验证了该模型的准确性与可靠性。基于所建立的模型,对比分析了考虑和不考虑岩屑存在及对流换热效应时预测的压力和温度差异,分析了欠平衡压差、机械钻速、地温梯度等因素对井筒压力和温度分布的影响规律。深层页岩欠平衡钻井气液固三相瞬态流动传热模型为控压钻井、欠平衡钻井在深层页岩油气中的高效应用提供了理论支撑。

    Abstract:

    Accurate prediction and effective control of bottom hole pressure (BHP) are crucial for underbalanced drilling of deep shale wells. However, convective heat transfer in cuttings, annulus fluid, and surrounding environment significantly impacts the accuracy of traditional BHP calculation models. Therefore, a transient non-isothermal flow model of gas, liquid, and solids within the wellbore was developed. Based on the continuity equation and momentum conservation equation, fluid velocity, phase volume fractions, and pressure were calculated. Meanwhile, the energy conservation equation for different radial layers was solved to obtain the temperature distribution of the entire wellbore–formation system. The temperature, pressure, and fluid properties in the depth and radial directions were coupled and solved using an iterative method. The calculated results of this model exhibited an error of less than 5.0% compared with the field data from underbalanced drilling operations, demonstrating its accuracy and reliability. With the proposed model, a comparative analysis was conducted to assess the differences in pressure and temperature predictions when the presence of cuttings and convective heat transfer effects were considered or neglected. The study also analyzed the impact of factors such as underbalanced pressure difference, rate of penetration (ROP), and geothermal gradient on wellbore pressure and temperature distribution. The transient flow heat transfer model of gas, liquid, and solid phases for underbalanced drilling in deep shale wells provides theoretical support for the efficient application of managed pressure drilling and underbalanced drilling in deep shale oil and gas reservoirs.

  • 图  1   液相速度实测值与模型预测值间的对比

    Figure  1.   Comparison between measured and predicted liquid velocities

    图  2   Agave 301井实测压力与预测压力比较

    Figure  2.   Comparison between measured and predicted pressure of Well Agave 301

    图  3   考虑与不考虑岩屑时井底压力、岩屑体积分数/重力压降、气体流入速率/质量和气体分数剖面

    Figure  3.   BHP, cuttings fraction/hydrostatic pressure, gas influx rate/mass, and gas fraction profile with and without considering cuttings

    图  4   考虑与不考虑换热效应时的井底压力、环空流体温度、气体密度和岩屑体积分数分布曲线

    Figure  4.   BHP, annulus fluid temperature, gas density, and cuttings fraction distribution curve with and without considering heat transfer effects

    图  5   不同欠平衡压差下井筒压力分布及气体侵入速率随时间的变化曲线

    Figure  5.   Variation curve of wellbore pressure distribution and gas influx rate with time under different underbalanced pressure difference

    图  6   不同欠平衡压差下的气相体积分数分布曲线

    Figure  6.   Gas fraction distribution curve under different underbalanced pressure differences

    图  7   不同机械钻速下井底压力随时间的变化曲线

    Figure  7.   Changes curve of BHP with time under different ROPs

    图  8   60 000 s时不同机械钻速下的环空流体温度分布曲线

    Figure  8.   Annulus fluid temperature distribution curve under different ROP at 60000 s

    图  9   60 000 s时不同地温梯度下的环空流体温度分布曲线

    Figure  9.   Annulus fluid temperature distribution curve under different geothermal gradients at 60000 s

    图  10   不同地温梯度下的井底压力和气体密度分布曲线

    Figure  10.   BHP and gas density distribution curve profiles under different geothermal gradients

    表  1   式(15)中的变量计算公式

    Table  1   Variables in Eq. (15)

    WjFj(Wj)Qj(Wj)
    W1=ρgαgAF1(W1)=ρgαgvgAQ1(W1)=0
    W2=ρlαlAF2(W2)=ρlαlvlAQ2(W2)=0
    W3=ρsαsAF3(W3)=ρsαsvsAQ3(W3)=0
    W4=ρgαgvgF4(W4)=ρgαgv2g+αgp
    F4(W4)=ρgαgv2g
    Q4(W4)=αgρggcosθFWgFIg
    W5=ρlαlvlF5(W5)=ρlαlv2l+αlp
    F5(W5)=ρlαlv2l
    Q5(W5)=αlρlgcosθFWlFIl
    W6=ρsαsvsF6(W6)=ρsαsV2s+αsp
    F6(W6)=ρsαsv2S
    Q6(W6)=αsρsgcosθFWsFIs
    下载: 导出CSV
  • [1] 李涛,杨哲,徐卫强,等. 泸州区块深层页岩气水平井优快钻井技术[J]. 石油钻探技术,2023,51(1):16–21. doi: 10.11911/syztjs.2022036

    LI Tao, YANG Zhe, XU Weiqiang, et al. Optimized and fast drilling technology for deep shale gas horizontal wells in Luzhou Block[J]. Petroleum Drilling Techniques, 2023, 51(1): 16–21. doi: 10.11911/syztjs.2022036

    [2] 胡云锋,代一钦. 降密度控压欠平衡钻井技术在页岩气井中的应用[J]. 长江大学学报(自科版),2015,12(29):75–78. doi: 10.16772/j.cnki.1673-1409.2015.29.017

    HU Yunfeng, DAI Yiqin. Application of lower density and control of underbalanced formation pressure in shale gas wells[J]. Journal of Yangtze University(Natural Science Edition), 2015, 12(29): 75–78. doi: 10.16772/j.cnki.1673-1409.2015.29.017

    [3] 胡挺,张志磊,王云华,等. 阳评1井致密性孔隙-裂缝型气藏欠平衡钻完井技术剖析[J]. 新疆石油天然气,2020,16(4):33–36. doi: 10.3969/j.issn.1673-2677.2020.04.008

    HU Ting, ZHANG Zhilei, WANG Yunhua, et al. Analysis of underbalanced drilling and completion technology for tight-pore fractured gas reservoir-Well Yang Ping1[J]. Xinjiang Oil & Gas, 2020, 16(4): 33–36. doi: 10.3969/j.issn.1673-2677.2020.04.008

    [4] 李玉海,李博,柳长鹏,等. 大庆油田页岩油水平井钻井提速技术[J]. 石油钻探技术,2022,50(5):9–13.

    LI Yuhai, LI Bo, LIU Changpeng, et al. ROP improvement technology for horizontal shale oil wells in Daqing Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(5): 9–13.

    [5] 姜政华,孙钢,陈士奎,等. 南川页岩气田超长水平段水平井钻井关键技术[J]. 石油钻探技术,2022,50(5):20–26.

    JIANG Zhenghua, SUN Gang, CHEN Shikui, et al. Key drilling technologies for horizontal wells with ultra-long horizontal sections in Nanchuan Shale Gas Field[J]. Petroleum Drilling Techniques, 2022, 50(5): 20–26.

    [6] 石崇东,王万庆,史配铭,等. 盐池区块深层页岩气水平井钻井关键技术研究[J]. 石油钻探技术,2021,49(6):23–28.

    SHI Chongdong, WANG Wanqing, SHI Peiming, et al. Research on key drilling technology for horizontal wells in the deep shale gas reservoirs in Yanchi Block[J]. Petroleum Drilling Techniques, 2021, 49(6): 23–28.

    [7] 车卫勤,许雅潇,岳小同,等. 渝西大足区块超深超长页岩气水平井钻井技术[J]. 石油钻采工艺,2022,44(4):408–414.

    CHE Weiqin, XU Yaxiao, YUE Xiaotong, et al. Drilling technology of ultra-deep ultra-long shale gas horizontal wells in Dazu, West Chongqing[J]. Oil Drilling & Production Technology, 2022, 44(4): 408–414.

    [8] 谭宾. 四川盆地南部地区深层页岩气工程关键技术与展望[J]. 天然气工业,2022,42(8):212–219. doi: 10.3787/j.issn.1000-0976.2022.08.017

    TAN Bin. Key technologies and prospects of deep shale gas engineering in the southern Sichuan Basin[J]. Natural Gas Industry, 2022, 42(8): 212–219. doi: 10.3787/j.issn.1000-0976.2022.08.017

    [9] FALAVAND-JOZAEI A,HAJIDAVALLOO E,SHEKARI Y,等. 基于非等温三相流模型的欠平衡钻井井底压力预测[J]. 石油勘探与开发,2022,49(2):358–365. doi: 10.11698/PED.2022.02.14

    FALAVAND-JOZAEI A, HAJIDAVALLOO E, SHEKARI Y, et al. Modeling and simulation of non-isothermal three-phase flow for accurate prediction in underbalanced drilling[J]. Petroleum Exploration and Development, 2022, 49(2): 358–365. doi: 10.11698/PED.2022.02.14

    [10] 吴萌,王玺,杨国彬. MPD技术在印尼基岩地层微欠平衡钻井实践[J]. 钻采工艺,2017,40(2):8–10. doi: 10.3969/J.ISSN.1006-768X.2017.02.03

    WU Meng, WANG Xi, YANG Guobin. Practice of MPD technology in micro-underbalanced drilling in bed rock in Indonesia[J]. Drilling & Production Technology, 2017, 40(2): 8–10. doi: 10.3969/J.ISSN.1006-768X.2017.02.03

    [11] 胡清富,谢春来,田玉栋,等. 伊拉克库尔德A油田原油注氮欠平衡钻井技术[J]. 石油钻探技术,2021,49(2):32–36.

    HU Qingfu, XIE Chunlai, TIAN Yudong, et al. Under-balanced drilling technique using nitrogen injection into crude oil in Oilfield A of Iraq Kurdistan[J]. Petroleum Drilling Techniques, 2021, 49(2): 32–36.

    [12] 高如军,唐国军,李洪玺. 充气欠平衡钻井技术在低压漏失井的应用[J]. 钻采工艺,2017,40(3):16–18. doi: 10.3969/J.ISSN.1006-768X.2017.03.06

    GAO Rujun, TANG Guojun, LI Hongxi. Application of aerated UBD in low-pressure lost-circulation well[J]. Drilling & Production Technology, 2017, 40(3): 16–18. doi: 10.3969/J.ISSN.1006-768X.2017.03.06

    [13] 李科,贾江鸿,于雷,等. 页岩油钻井漏失机理及防漏堵漏技术[J]. 钻井液与完井液,2022,39(4):446–450. doi: 10.12358/j.issn.1001-5620.2022.04.008

    LI Ke, JIA Jianghong, YU Lei, et al. Mechanisms of lost circulation and technologies for mud loss prevention and control in shale oil drilling[J]. Drilling Fluid & Completion Fluid, 2022, 39(4): 446–450. doi: 10.12358/j.issn.1001-5620.2022.04.008

    [14] 陈更生,吴建发,刘勇,等. 川南地区百亿立方米页岩气产能建设地质工程一体化关键技术[J]. 天然气工业,2021,41(1):72–82.

    CHEN Gengsheng, WU Jianfa, LIU Yong, et al. Geology-engineering integration key technologies for ten billion cubic meters of shale gas productivity construction in the southern Sichuan Basin[J]. Natural Gas Industry, 2021, 41(1): 72–82.

    [15] 谢金波,王安成,罗世祥. 煤层气洞穴充气欠平衡钻井井底压力的研究[J]. 钻采工艺,2015,38(4):31–34. doi: 10.3969/J.ISSN.1006-768X.2015.04.09

    XIE Jinbo, WANG Ancheng, LUO Shixiang. Research on bottom hole pressure of cave aerated underbalanced drilling in coalbed gas reservoir[J]. Drilling & Production Technology, 2015, 38(4): 31–34. doi: 10.3969/J.ISSN.1006-768X.2015.04.09

    [16]

    LI Hongtao, LIANG Jie, LI Chengxiao, et al. A novel method to improve mud pulse telemetry performance during gaseated underbalanced drilling[J]. Journal of Petroleum Science and Engineering, 2022, 213: 110400. doi: 10.1016/j.petrol.2022.110400

    [17]

    AL-DARWEESH J, ALJAWAD M S, AL-RAMADAN M, et al. Review of underbalanced drilling techniques highlighting the advancement of foamed drilling fluids[J]. Journal of Petroleum Exploration and Production Technology, 2023, 13(4): 929–958. doi: 10.1007/s13202-022-01596-w

    [18]

    LAGE A C V M, FJELDE K K, TIME R W. Underbalanced drilling dynamics: two-phase flow modeling and experiments[J]. SPE Journal, 2003, 8(1): 61–70. doi: 10.2118/83607-PA

    [19]

    PEDERSEN T, GODHAVN J M. Linear multivariable control of underbalanced-drilling operations[J]. SPE Drilling & Completion, 2017, 32(4): 301–311.

    [20]

    OZBAYOGLU E M. Optimization of liquid and gas flow rates for aerated drilling fluids considering hole cleaning for vertical and low inclination wells[J]. Journal of Canadian Petroleum Technology, 2010, 49(10): 15–24. doi: 10.2118/141517-PA

    [21]

    VEFRING E H, NYGAARD G, LORENTZEN R J, et al. Reservoir characterization during underbalanced drilling (UBD): methodology and active tests[J]. SPE Journal, 2006, 11(2): 181–192. doi: 10.2118/81634-PA

    [22]

    HE Miao, ZHANG Yihang, XU Mingbiao, et al. Real-time interpretation model of reservoir characteristics while underbalanced drilling based on UKF[J]. Geofluids, 2020, 2020: 8967961.

    [23]

    GUO Boyun, HARELAND G, RAJTAR J. Computer simulation predicts unfavorable mud rate and optimum air injection rate for aerated mud drilling[J]. SPE Drilling & Completion, 1996, 11(2): 61–66.

    [24]

    UDEGBUNAM J E, FJELDE K K, EVJE S, et al. On the advection-upstream-splitting-method hybrid scheme: a simple transient-flow model for managed-pressure-drilling and underbalanced-drilling applications[J]. SPE Drilling & Completion, 2015, 30(2): 98–109.

    [25]

    KHEZRIAN M, HAJIDAVALLOO E, SHEKARI Y. Modeling and simulation of under-balanced drilling operation using two-fluid model of two-phase flow[J]. Chemical Engineering Research and Design, 2015, 93: 30–37. doi: 10.1016/j.cherd.2014.05.007

    [26]

    ZHANG Wei, MAO Xinjun, YANG Hong, et al. Innovative application of underbalanced drilling technology for deep drilling in Wuxia Area of Junggar Basin[R]. SPE 156258, 2012.

    [27]

    TENG Xueqing, YANG Pei, LI Ning, et al. The first application of whole process underbalanced drilling in ultradeep horizontal well in Tarim Oilfield[R]. SPE 168954, 2014.

    [28]

    SONG Xuncheng, GUAN Zhichuan. Coupled modeling circulating temperature and pressure of gas–liquid two phase flow in deep water wells[J]. Journal of Petroleum Science and Engineering, 2012, 92/93: 124–131. doi: 10.1016/j.petrol.2012.06.017

    [29]

    ABDELGHANY W K, RADWAN A E, ELKHAWAGA M A, et al. Geomechanical modeling using the depth-of-damage approach to achieve successful underbalanced drilling in the Gulf of Suez rift basin[J]. Journal of Petroleum Science and Engineering, 2021, 202: 108311. doi: 10.1016/j.petrol.2020.108311

    [30]

    SHIRDEL M, SEPEHRNOORI K. Development of transient mechanistic three-phase flow model for wellbores[J]. SPE Journal, 2017, 22(1): 374–388. doi: 10.2118/180928-PA

    [31]

    BROOKS C S, HIBIKI T, ISHII M. Interfacial drag force in one-dimensional two-fluid model[J]. Progress in Nuclear Energy, 2012, 61: 57–68. doi: 10.1016/j.pnucene.2012.07.001

    [32]

    XU Zhengming, SONG Xianzhi, LI Gensheng, et al. Predicting fiber drag coefficient and settling velocity of sphere in fiber containing Newtonian fluids[J]. Journal of Petroleum Science and Engineering, 2017, 159: 409–418. doi: 10.1016/j.petrol.2017.09.046

    [33]

    CHEN N H. An explicit equation for friction factor in pipe[J]. Industrial & Engineering Chemistry Fundamentals, 1979, 18(3): 296–297.

    [34]

    NICKENS H V. A dynamic computer model of a kicking well[J]. SPE Drilling Engineering, 1987, 2(2): 159–173. doi: 10.2118/14183-PA

    [35]

    XU Zhengming, SONG Xianzhi, LI Gensheng, et al. Development of a transient non-isothermal two-phase flow model for gas kick simulation in HTHP deep well drilling[J]. Applied Thermal Engineering, 2018, 141: 1055–1069. doi: 10.1016/j.applthermaleng.2018.06.058

    [36]

    AVELAR C S, RIBEIRO P R, SEPEHRNOORI K. Deepwater gas kick simulation[J]. Journal of Petroleum Science and Engineering, 2009, 67(1/2): 13–22.

    [37]

    YOSHINAGA T, SATO Y. Performance of an air-lift pump for conveying coarse particles[J]. International Journal of Multiphase Flow, 1996, 22(2): 223–238. doi: 10.1016/0301-9322(95)00067-4

  • 期刊类型引用(5)

    1. 程为彬,王洋,康思民,胡静文,郭颖娜. 井下定功率高效无线电能传输系统的分析与设计. 电源学报. 2022(02): 183-191 . 百度学术
    2. 张辉,刘庆波,底青云,杨永友,谢棋军. 井下非接触电能传输耦合器仿真与优化. 地球物理学进展. 2022(04): 1780-1788 . 百度学术
    3. 宋红喜,曾义金,张卫,米金泰,黄中伟. 旋转导向系统现状及关键技术分析. 科学技术与工程. 2021(06): 2123-2131 . 百度学术
    4. 孟巍,朱伟红,孙师贤. ICPT技术在旋转导向钻井工具中的应用. 电子技术与软件工程. 2018(09): 64-66 . 百度学术
    5. 孟巍,张国强,菅志军,李春楠. 一种井下非接触电能信号耦合传输装置的设计. 石油管材与仪器. 2018(01): 9-13 . 百度学术

    其他类型引用(4)

图(10)  /  表(1)
计量
  • 文章访问数:  249
  • HTML全文浏览量:  70
  • PDF下载量:  59
  • 被引次数: 9
出版历程
  • 收稿日期:  2023-05-17
  • 修回日期:  2023-08-26
  • 网络出版日期:  2023-08-31
  • 刊出日期:  2023-10-30

目录

    /

    返回文章
    返回