东营凹陷陆相页岩油CO2增能压裂裂缝形态研究

钱钦, 鲁明晶, 钟安海

钱钦,鲁明晶,钟安海. 东营凹陷陆相页岩油CO2增能压裂裂缝形态研究[J]. 石油钻探技术,2023, 51(5):42-48. DOI: 10.11911/syztjs.2023082
引用本文: 钱钦,鲁明晶,钟安海. 东营凹陷陆相页岩油CO2增能压裂裂缝形态研究[J]. 石油钻探技术,2023, 51(5):42-48. DOI: 10.11911/syztjs.2023082
QIAN Qin, LU Mingjing, ZHONG Anhai. Study on fracture morphology of CO2 energized fracturing of continental shale oil in Dongying Sag [J]. Petroleum Drilling Techniques,2023, 51(5):42-48. DOI: 10.11911/syztjs.2023082
Citation: QIAN Qin, LU Mingjing, ZHONG Anhai. Study on fracture morphology of CO2 energized fracturing of continental shale oil in Dongying Sag [J]. Petroleum Drilling Techniques,2023, 51(5):42-48. DOI: 10.11911/syztjs.2023082

东营凹陷陆相页岩油CO2增能压裂裂缝形态研究

基金项目: 山东省自然科学基金项目“页岩油藏增能压裂裂缝扩展及压裂优化设计研究”(编号:ZR2021QE260)和中国博士后自然科学基金项目“页岩油藏增能压裂裂缝扩展机制及缝网表征研究”(编号:2021M702304)联合资助
详细信息
    作者简介:

    钱钦(1969—),男,江苏南通人,1990年毕业于江汉石油学院采油工程专业,2010年获中科院广州地球化学研究所构造地质学专业博士学位,正高级工程师,主要从事采油工程方面的研究。E-mail:qianqin.slyt@sinopec.com

  • 中图分类号: TE319

Study on Fracture Morphology of CO2 Energized Fracturing of Continental Shale Oil in Dongying Sag

  • 摘要:

    CO2增能压裂改造效果与生产效果评价受压裂裂缝分布的影响。为明确东营凹陷陆相页岩油CO2压裂造缝机理,通过试验确定了CO2浸泡下岩体破裂压力、天然裂缝剪切/张开应力和地应力随时间的变化;在此基础上,考虑CO2浸泡下的岩石应力参数,采用Pen-Robinson方程刻画CO2物性参数变化,结合试验和数模方法,形成了基于节点连接方法的CO2增能压裂裂缝扩展模拟方法,并对东营凹陷某油井进行了实例分析。研究结果表明,CO2比例对分支缝密度的影响较大,当CO2比例由0.1增加至0.3时,分支缝密度增加117%;应力差主要影响缝长及分支缝密度,水平应力差由5 MPa增至30 MPa时,缝长度增加了52%,分支缝密度下降了13.85%。裂缝形态模拟结果与实际监测结果具有较好的一致性,研究结果可以为陆相页岩油压裂方案的制定提供理论参考。

    Abstract:

    In the process of CO2 energized fracturing, the evaluation of fracturing stimulation effect and production effect is affected by fracture distribution. In order to clarify the fracture mechanism of CO2 fracturing of continental shale oil in Dongying Sag, the changes in rock mass fracture pressure, natural fracture shear/opening stress, and in-situ stress with time under CO2 immersion were determined by experiments. On this basis, by considering the rock stress parameters under CO2 immersion, the Pen-Robinson equation was used to describe the change of CO2 physical property parameters. In addition, combined with experimental and numerical methods, a simulation method for fracture propagation by CO2 energized fracturing based on node connection method was developed, and an example analysis of an oil well in Dongying Sag was carried out. The results show that the CO2 ratio has a great influence on the induced fracture density. When the CO2 ratio increased from 0.1 to 0.3, the induced fracture density increased by 117%. The stress difference mainly affects the fracture length and induced fracture density. When the horizontal stress difference increased from 5 MPa to 30 MPa, the fracture network length increased by 52%, and the induced fracture density decreased by 13.85%. The simulation results of fracture morphology are in good agreement with the actual monitoring. This study can provide a theoretical reference for the formulation of continental shale oil fracturing schemes.

  • 图  1   页岩破裂压力与应力随CO2浸泡时间的变化

    Figure  1.   Initiation pressure and stress changes during CO2 fracturing in rock

    图  2   CO2前置增能压裂扩展模拟流程

    Figure  2.   Simulation process of CO2 pre-energized fracturing

    图  3   不同CO2比例下的裂缝形态

    Figure  3.   Fracture morphology under different CO2 ratios

    图  4   不同CO2比例对裂缝参数的影响

    Figure  4.   Influence of different CO2 ratios on fracture parameters

    图  5   不同应力差下的裂缝形态

    Figure  5.   Fracture morphology under different stress differences

    图  6   储层应力差对裂缝参数的影响

    Figure  6.   Influence of reservoir stress difference on fracture parameters

    图  7   不同渗透率下的裂缝形态

    Figure  7.   Fracture morphology under different permeability

    图  8   储层渗透率对裂缝参数的影响

    Figure  8.   Influence of reservoir permeability on fracture parameters

    图  9   X井压裂时的微地震监测结果

    Figure  9.   Microseismic monitoring results of fracturing of Well X

    图  10   X井裂缝形态整体反演效果

    Figure  10.   Overall inversion effect of fracture morphology of Well X

  • [1] 吴奇,胥云,王晓泉,等. 非常规油气藏体积改造技术:内涵、优化设计与实现[J]. 石油勘探与开发,2012,39(3):352–358.

    WU Qi, XU Yun, WANG Xiaoquan, et al. Volume fracturing technology of unconventional reservoirs: Connotation, optimization design and implementation[J]. Petroleum Exploration and Development, 2012, 39(3): 352–358.

    [2] 胥云,雷群,陈铭,等. 体积改造技术理论研究进展与发展方向[J]. 石油勘探与开发,2018,45(5):874–887.

    XU Yun, LEI Qun, CHEN Ming, et al. Progress and development of volume stimulation techniques[J]. Petroleum Exploration and Development, 2018, 45(5): 874–887.

    [3] 吴峙颖,胡亚斐,蒋廷学,等. 孔洞型碳酸盐岩储层压裂裂缝转向扩展特征研究[J]. 石油钻探技术,2022,50(4):90–96.

    WU Shiying, HU Yafei, JIANG Tingxue, et al. Study on propagation and diversion characteristics of hydraulic fractures in vuggy carbonate reservoirs[J]. Petroleum Drilling Techniques, 2022, 50(4): 90–96.

    [4] 张衍君,葛洪魁,徐田录,等. 体积压裂裂缝前端粉砂分布规律试验研究[J]. 石油钻探技术,2021,49(3):105–110.

    ZHANG Yanjun, GE Hongkui, XU Tianlu, et al. Experimental study on silt distribution law at the front end of fractures in volume fracturing[J]. Petroleum Drilling Techniques, 2021, 49(3): 105–110.

    [5] 李虹,于海洋,杨海烽,等. 裂缝性非均质致密储层自适应应力敏感性研究[J]. 石油钻探技术,2022,50(3):99–105.

    LI Hong, YU Haiyang, YANG Haifeng, et al. Adaptive stress sensitivity study of fractured heterogeneous tight reservoir[J]. Petroleum Drilling Techniques, 2022, 50(3): 99–105.

    [6] 蒋廷学,王海涛. 中国石化页岩油水平井分段压裂技术现状与发展建议[J]. 石油钻探技术,2021,49(4):14–21.

    JIANG Tingxue, WANG Haitao. The current status and development suggestions for Sinopec’s staged fracturing technologies of horizontal shale oil wells[J]. Petroleum Drilling Techniques, 2021, 49(4): 14–21.

    [7] 孟勇,贾庆升,张潦源,等. 东营凹陷页岩油储层层间干扰及裂缝扩展规律研究[J]. 石油钻探技术,2021,49(4):130–138.

    MENG Yong, JIA Qingsheng, ZHANG Liaoyuan, et al. Research on interlayer interference and the fracture propagation law of shale oil reservoirs in the Dongying Sag[J]. Petroleum Drilling Techniques, 2021, 49(4): 130–138.

    [8] 李小刚,冉龙海,杨兆中,等. 超临界CO2压裂裂缝特征研究现状与展望[J]. 特种油气藏,2022,29(2):1–8.

    LI Xiaogang, RAN Longhai, YANG Zhaozhong, et al. Current status and prospect of study on supercritical CO2 fracturing characteristics[J]. Special Oil & Gas Reservoirs, 2022, 29(2): 1–8.

    [9] 王海柱,李根生,郑永,等. 超临界CO2压裂技术现状与展望[J]. 石油学报,2020,41(1):116–126.

    WANG Haizhu, LI Gensheng, ZHENG Yong, et al. Research status and prospects of supercritical CO2 fracturing technology[J]. Acta Petrolei Sinica, 2020, 41(1): 116–126.

    [10] 李根生,王海柱,沈忠厚,等. 超临界CO2射流在石油工程中应用研究与前景展望[J]. 中国石油大学学报(自然科学版),2013,37(5):76–80.

    LI Gensheng, WANG Haizhu, SHEN Zhonghou, et al. Application investigations and prospects of supercritical carbon dioxide jet in petroleum engineering[J]. Journal of China University of Petroleum (Edition of Natural Science), 2013, 37(5): 76–80.

    [11] 王香增,孙晓,罗攀,等. 非常规油气CO2压裂技术进展及应用实践[J]. 岩性油气藏,2019,31(2):1–7.

    WANG Xiangzeng, SUN Xiao, LUO Pan, et al. Progress and application of CO2 fracturing technology for unconventional oil and gas[J]. Lithologic Reservoirs, 2019, 31(2): 1–7.

    [12]

    HE Jianming, ZHANG Zhaobin, LI Guanfang, et al. Modeling study on supercritical CO2 fracturing applicability and capacity to stimulate reservoirs with different permeabilities[J]. Journal of Petroleum Science and Engineering, 2022, 213: 110427. doi: 10.1016/j.petrol.2022.110427

    [13] 蔡鑫. 非常规储层超临界CO2压裂复杂裂缝扩展模型[J]. 断块油气田,2022,29(1):107–110.

    CAI Xin. Complex fracture propagation model of supercritical CO2 fracturing in unconventional reservoirs[J]. Fault-Block Oil & Gas Field, 2022, 29(1): 107–110.

    [14] 邹万礼. 二氧化碳前置蓄能体积压裂优化设计研究[D]. 大庆: 东北石油大学, 2018.

    ZOU Wanli. Study on the optimal design of carbon dioxide precharged volume fracturing[D]. Daqing: Northeast Petroleum University, 2018.

    [15] 陈立强,田守嶒,李根生,等. 超临界CO2压裂起裂压力模型与参数敏感性研究[J]. 岩土力学,2015,36(增刊2):125–131.

    CHEN Liqiang, TIAN Shouceng, LI Gensheng, et al. Initiation pressure models for supercritical CO2 fracturing and sensitivity analysis[J]. Rock & Soil Mechanics, 2015, 36(supplement2): 125–131.

    [16]

    ZHANG Xinwei, LU Yiyu, TANG Jiren, et al. Experimental study on fracture initiation and propagation in shale using supercritical carbon dioxide fracturing[J]. Fuel, 2017, 190: 370–378. doi: 10.1016/j.fuel.2016.10.120

    [17]

    LI Sihai, ZHANG Shicheng, MA Xinfang, et al. Coupled physical–chemical effects of CO2 on rock properties and breakdown during intermittent CO2-hybrid fracturing[J]. Rock Mechanics and Rock Engineering, 2020, 53(4): 1665–1683. doi: 10.1007/s00603-019-02000-6

    [18] 金军,王冉. 超临界CO2注入与页岩气储层相互作用的研究进展[J]. 断块油气田,2018,25(3):363–366.

    JIN Jun, WANG Ran. Research progress of supercritical CO2 injection and its interaction with shale gas reservoirs[J]. Fault-Block Oil & Gas Field, 2018, 25(3): 363–366.

    [19] 苏映宏,吴忠维,崔传智,等. 水力压裂支撑裂缝导流能力计算与分析[J]. 大庆石油地质与开发,2021,40(6):62–71. doi: 10.19597/j.issn.1000-3754.202008029

    SU Yinghong, WU Zhongwei, CUI Chuanzhi, et al. Calculation and analysis of the propped fracture conductivity created by hydraulic fracturing[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(6): 62–71. doi: 10.19597/j.issn.1000-3754.202008029

    [20] 何强,李凤霞,史爱萍,等. 基于三维CT重构的油页岩复杂水力裂缝网络分形表征[J]. 油气地质与采收率,2021,28(5):116–123. doi: 10.13673/j.cnki.cn37-1359/te.2021.05.014

    HE Qiang, LI Fengxia, SHI Aiping, et al. Fractal characterization of complex hydraulic fracture networks of oil shale via 3D CT reconstruction[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(5): 116–123. doi: 10.13673/j.cnki.cn37-1359/te.2021.05.014

    [21] 邢德钢,崔连可,王树森,等. 泌阳凹陷陆相页岩复杂裂缝起裂及扩展研究[J]. 石油地质与工程,2021,35(2):93–97.

    XING Degang, CUI Lianke, WANG Shusen, et al. Initiation and extending of complex fractures from continental shale in Biyang Sag[J]. Petroleum Geology and Engineering, 2021, 35(2): 93–97.

    [22]

    ZHAO Hui, SHENG Guanglong, HUANG Luoyi, et al. Application of lightning breakdown simulation in inversion of induced fracture network morphology in stimulated reservoirs[R]. IPTC-21157-MS, 2021.

    [23] 赵辉,盛广龙,黄罗义,等. 基于闪电模拟的油藏压裂裂缝网络扩展计算方法[J]. 中国科学:技术科学,2022,52(3):499–510.

    ZHAO Hui, SHENG Guanglong, HUANG Luoyi, et al. Calculation of reservoir fracture network propagation based on lightning breakdown path simulation[J]. Scientia Sinica(Technologica), 2022, 52(3): 499–510.

    [24] SHENG Guanglong, ZHAO Hui, MA Jialing, et al. A new approach for flow simulation in complex hydraulic fracture morphology and its application: Fracture connection element method[J/OL]. Petroleum Science, 2023: 1-11. [2023-05-16]. https://doi.org/10.1016/j.petsci.2023.03.026. DOI: 10.1016/j.petsci.2023.03.026.
    [25] R. C. 里德, J. M. 普劳斯尼茨, B. E. 波林. 气体和液体性质[M]. 李芝芬, 杨怡生, 译. 北京: 石油工业出版社, 1994.

    REID R C, PRAUSNITZ J M, POLING B E.The properties of gases and liquids[M].LI Zhifen, YANG Yisheng, Translated. Beijing: Petroleum Industry Press, 1994.

    [26]

    GREEN A E, SNEDDON I N. The distribution of stress in the neighbourhood of a flat elliptical crack in an elastic solid[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1950, 46(1): 159–163. doi: 10.1017/S0305004100025585

  • 期刊类型引用(14)

    1. 赵楠,李万渠,冯金钰,王奕儒,李丽. 多裂纹对裂纹搭接规律影响数值模拟及机理研究. 钻采工艺. 2022(02): 160-164 . 百度学术
    2. 张瑞萍,祝云,窦益华,杨晓儒,李明飞. 基于FLAC~(3D)的压裂工况下地应力重新分布规律研究. 石油机械. 2021(08): 91-99 . 百度学术
    3. 何其胜,王贵君. 砂砾岩水压致裂机理及数值仿真研究. 三峡大学学报(自然科学版). 2020(06): 45-49 . 百度学术
    4. 尉雪梅,吴飞鹏,刘恒超,徐尔斯,张艳玉,蒲春生. 燃爆压裂井井周诱导应力分布规律. 中国石油大学学报(自然科学版). 2018(01): 105-112 . 百度学术
    5. 王坤,葛腾泽,曾雯婷. 低产油气井强制裂缝转向重复压裂技术. 石油钻探技术. 2018(02): 81-86 . 本站查看
    6. 吴飞鹏,徐尔斯,尉雪梅,刘恒超,李德,丁乾申. 燃爆诱导水力压裂多裂缝耦合起裂规律. 天然气工业. 2018(11): 65-72 . 百度学术
    7. 苏超,李士斌,刘照义,徐晶,薛东阳,张维薇. 体积压裂裂缝对地应力场干扰规律的研究. 北京石油化工学院学报. 2017(04): 16-23 . 百度学术
    8. 彭瑀,李勇明,赵金洲. 考虑任意压力分布的裂缝诱导应力场计算模型及其应用. 中国石油大学学报(自然科学版). 2017(03): 92-97 . 百度学术
    9. 李玮,纪照生. 暂堵转向压裂机理有限元分析. 断块油气田. 2016(04): 514-517 . 百度学术
    10. 胡海洋,金军,田树烜. 分段压裂技术在贵州松河煤层气开发中的应用. 煤矿安全. 2016(09): 137-140 . 百度学术
    11. 李玉梅,吕炜,宋杰,李军,杨宏伟,于丽维. 层理性页岩气储层复杂网络裂缝数值模拟研究. 石油钻探技术. 2016(04): 108-113 . 本站查看
    12. 陈作,周健,张旭,吴春方,张啸宇. 致密砂岩水平井组同步压裂过程中诱导应力场变化规律. 石油钻探技术. 2016(06): 78-83 . 本站查看
    13. 李士斌,官兵,张立刚,陈双庆,王业强. 水平井压裂裂缝局部应力场扰动规律. 油气地质与采收率. 2016(06): 112-119 . 百度学术
    14. 林飞,盛萍,李春颖. 煤层气藏水平井分段压裂裂缝参数优化. 中州煤炭. 2016(02): 126-128 . 百度学术

    其他类型引用(7)

图(10)
计量
  • 文章访问数:  190
  • HTML全文浏览量:  82
  • PDF下载量:  113
  • 被引次数: 21
出版历程
  • 收稿日期:  2023-05-29
  • 修回日期:  2023-08-21
  • 录用日期:  2023-08-30
  • 网络出版日期:  2023-09-04
  • 刊出日期:  2023-10-30

目录

    /

    返回文章
    返回