基于页岩气井返排特征的闷井时间优化方法

翁定为, 江昀, 易新斌, 何春明, 车明光, 朱怡晖

翁定为,江昀,易新斌,等. 基于页岩气井返排特征的闷井时间优化方法[J]. 石油钻探技术,2023, 51(5):49-57. DOI: 10.11911/syztjs.2023080
引用本文: 翁定为,江昀,易新斌,等. 基于页岩气井返排特征的闷井时间优化方法[J]. 石油钻探技术,2023, 51(5):49-57. DOI: 10.11911/syztjs.2023080
WENG Dingwei, JIANG Yun, YI Xinbin, et al. Optimization of shut-in time in shale gas wells based on the characteristics of fracturing flowback [J]. Petroleum Drilling Techniques,2023, 51(5):49-57. DOI: 10.11911/syztjs.2023080
Citation: WENG Dingwei, JIANG Yun, YI Xinbin, et al. Optimization of shut-in time in shale gas wells based on the characteristics of fracturing flowback [J]. Petroleum Drilling Techniques,2023, 51(5):49-57. DOI: 10.11911/syztjs.2023080

基于页岩气井返排特征的闷井时间优化方法

基金项目: 中国石油天然气股份有限公司科技专项“海陆过渡相页岩气勘探开发关键技术研究”(编号:2021DJ2004)资助
详细信息
    作者简介:

    翁定为(1981—),男,湖北枝江人,2003年毕业于中国地质大学(武汉)石油工程专业,2010年获中国石油勘探开发研究院油气田开发工程专业博士学位,正高级工程师,主要从事储层改造应用基础研究、压裂工艺设计和现场技术服务等工作。E-mail:wengdw69@petrochina.com.cn

  • 中图分类号: TE349

Optimization of Shut-in Time in Shale Gas Wells Based on the Characteristics of Fracturing Flowback

  • 摘要:

    为确定页岩气井压后闷井时间,提高最终采收率,提出了基于页岩气井返排液特征的闷井时间优化方法。首先,以泸州地区深层页岩和威远地区中深层页岩为研究对象,开展自发渗吸试验确定实验室尺度闷井时间;然后,利用返排液矿化度和返排率数据反演得到矿场尺度裂缝宽度和特征长度;最后,结合自发渗吸无因次时间模型,计算得到矿场尺度闷井时间。结果表明,矿场尺度闷井时间与岩心尺度闷井时间并不一定呈正相关关系,其结果受渗吸速率、返排液矿化度和返排率等因素影响。研究结果为页岩气井压后闷井时间优化提供了一种新的方法。

    Abstract:

    To determine the shut-in time after fracturing and improve the ultimate gas recovery of shale gas wells, the optimization method of shut-in time in shale gas wells based on the characteristics of fracturing flowback fluid was proposed. The deep shale in Luzhou area and the medium and deep shale in Weiyuan area were studied. First, the shut-in time in the lab scale was obtained by spontaneous imbibition experiment. After that, fracture width and characteristic length in the field scale were inverted by using fracturing flowback fluid salinity and flowback efficiency data. Finally, the shut-in time in the field scale was calculated according to the dimensionless time model of spontaneous imbibition. The results indicated that the shut-in time was not always in a positive correlation with that in the lab scale. It was affected by factors including imbibition rate, fracturing flowback fluid salinity, flowback efficiency, etc. The result provides a new idea for optimizing shut-in time after fracturing of shale gas wells.

  • 图  1   岩样自发渗吸试验T2谱测试结果

    Figure  1.   Results of T2 spectrum for rock samples spontaneous imbibition

    图  2   不同弛豫时间对应的信号分布频率

    Figure  2.   Signal distribution frequency corresponding to different relaxation time

    图  3   不同岩样的渗吸体积、T2谱面积及电导率随时间变化曲线

    Figure  3.   Changes of imbibition volume, T2 spectrum area and conductivity with time of different rock samples

    图  4   裂缝–基质示意图

    Figure  4.   Illustration for fracture–matrix

    图  5   返排与生产曲线

    Figure  5.   Flowback and production curve

    图  6   返排液矿化度数据

    Figure  6.   Fracturing flowback fluid salinity

    图  7   不同宽度的裂缝体积分布

    Figure  7.   Distribution of fracture volume with different widths

    图  8   基质块长度分布

    Figure  8.   Distribution of matrix length

    表  1   页岩样品物性参数

    Table  1   Physical parameters of shale samples

    井号编号垂深/m长度/mm直径/mm质量/g孔隙度,%渗透率/mD
    泸AA13 986.1223.5125.3228.826.210.019
    泸AA23 989.1821.3825.1927.465.450.012
    威BB12 705.1822.4625.0027.038.410.120
    威BB22 710.1323.4125.1129.127.890.145
    下载: 导出CSV
  • [1]

    US Energy Information Administration (EIA). Unconventional dry natural gas production [EB/OL]. [2022-12-30].https://www.eia.gov/naturalgas/data.phpproduction.

    [2] 刘鸿渊,蒲萧亦,张烈辉,等. 中国页岩气效益开发:理论逻辑、实践逻辑与展望[J]. 天然气工业,2023,43(4):177–183.

    LIU Hongyuan, PU Xiaoyi, ZHANG Liehui, et al. Beneficial development of shale gas in China: Theoretical logic, practical logic and prospect[J]. Natural Gas Industry, 2023, 43(4): 177–183.

    [3] 高芸,王怡平,胡迤丹,等. 2022年中国天然气发展述评及2023年展望[J]. 天然气技术与经济,2023,17(1):1–10.

    GAO Yun, WANG Yiping, HU Yidan, et al. China’s natural gas development: 2022 review and 2023 outlook[J]. Natural Gas Technology and Economy, 2023, 17(1): 1–10.

    [4] 陈志明,赵鹏飞,曹耐,等. 页岩油藏压裂水平井压–闷–采参数优化研究[J]. 石油钻探技术,2022,50(2):30–37.

    CHEN Zhiming, ZHAO Pengfei, CAO Nai, et al. Fracturing parameters optimization of horizontal wells in shale reservoirs during “well fracturing-soaking-producing”[J]. Petroleum Drilling Techniques, 2022, 50(2): 30–37.

    [5] 蒋廷学,周珺,廖璐璐. 国内外智能压裂技术现状及发展趋势[J]. 石油钻探技术,2022,50(3):1–9.

    JIANG Tingxue, ZHOU Jun, LIAO Lulu. Development status and future trends of intelligent fracturing technologies[J]. Petroleum Drilling Techniques, 2022, 50(3): 1–9.

    [6] 曾波,王星皓,黄浩勇,等. 川南深层页岩气水平井体积压裂关键技术[J]. 石油钻探技术,2020,48(5):77–84.

    ZENG Bo, WANG Xinghao, HUANG Haoyong, et al. Key technology of volumetric fracturing in deep shale gas horizontal wells in southern Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(5): 77–84.

    [7] 韩慧芬,王良,贺秋云,等. 页岩气井返排规律及控制参数优化[J]. 石油钻采工艺,2018,40(2):253–260.

    HAN Huifen, WANG Liang, HE Qiuyun, et al. Flowback laws and control parameter optimization of shale gas wells[J]. Oil Drilling & Production Technology, 2018, 40(2): 253–260.

    [8]

    GHANBARI E, ABBASI M A, DEHGHANPOUR H, et al. Flowback volumetric and chemical analysis for evaluating load recovery and its impact on early-time production[R]. SPE 167165, 2013.

    [9] 申颍浩,葛洪魁,宿帅,等. 页岩气储层的渗吸动力学特性与水锁解除潜力[J]. 中国科学:物理学 力学 天文学,2017,47(11):114609.

    SHEN Yinghao, GE Hongkui, SU Shuai, et al. Imbibition characteristic of shale gas formation and water-block removal capability[J]. SCIENTIA SINICA: Physica, Mechanica & Astronomica, 2017, 47(11): 114609.

    [10]

    GHANBARI E, DEHGHANPOUR H. The fate of fracturing water: a field and simulation study[J]. Fuel, 2016, 163: 282–294. doi: 10.1016/j.fuel.2015.09.040

    [11]

    WIJAYA N, SHENG J J. Effect of desiccation on shut-in benefits in removing water blockage in tight water-wet cores[J]. Fuel, 2019, 244: 314–323. doi: 10.1016/j.fuel.2019.01.180

    [12] 才博,毕国强,何春明,等. 人工裂缝复杂程度的压裂液返排表征方法及应用[J]. 石油钻采工艺,2017,39(1):20–24.

    CAI Bo, BI Guoqiang, HE Chunming, et al. A characterization method on complexity degree of artificial fractures based on fracturing fluid flowback and its application[J]. Oil Drilling & Production Technology, 2017, 39(1): 20–24.

    [13]

    CARPENTER C. Impact of liquid loading in hydraulic fractures on well productivity[J]. Journal of Petroleum Technology, 2013, 65(11): 162–165. doi: 10.2118/1113-0162-JPT

    [14]

    BERTONCELLO A, WALLACE J, BLYTON C, et al. Imbibition and water blockage in unconventional reservoirs: Well-management implications during flowback and early production[J]. SPE Reservoir Evaluation and Engineering, 2014, 17(4): 497–506. doi: 10.2118/167698-PA

    [15]

    YAICH E, WILLIAMS S, BOWSER A, et al. A case study: The impact of soaking on well performance in the Marcellus[R]. URTEC-2154766-MS, 2015.

    [16]

    LAN Qing, GHANBARI E, DEHGHANPOUR H, et al. Water loss versus soaking time: Spontaneous imbibition in tight rocks[J]. Energy Technology, 2014, 2(12): 1033–1039. doi: 10.1002/ente.201402039

    [17]

    MA Shouxiang, MORROW N R, ZHANG Xiaoyun. Generalized scaling of spontaneous imbibition data for strongly water-wet systems[J]. Journal of Petroleum Science and Engineering, 1997, 18(3/4): 165–178.

    [18]

    MAKHANOV K, HABIBI A, DEHGHANPOUR H, et al. Liquid uptake of gas shales: a workflow to estimate water loss during shut-in periods after fracturing operations[J]. Journal of Unconventional Oil and Gas Resources, 2014, 7: 22–32. doi: 10.1016/j.juogr.2014.04.001

    [19]

    HANDY L L. Determination of effective capillary pressures for porous media from imbibition data[J]. Transactions of the AIME, 1960, 219(1): 75–80. doi: 10.2118/1361-G

    [20]

    ROYCHAUDHURI B, TSOTSIS T T, JESSEN K. An experimental investigation of spontaneous imbibition in gas shales[J]. Journal of Petroleum Science and Engineering, 2013, 111: 87–97. doi: 10.1016/j.petrol.2013.10.002

    [21] 郭建成,林伯韬,向建华,等. 四川盆地龙马溪组页岩压后返排率及产能影响因素分析[J]. 石油科学通报,2019,4(3):273–287.

    GUO Jiancheng, LIN Botao, XIANG Jianhua, et al. Study of factors affecting the flowback ratio and productive capacity of Longmaxi Formation shale in the Sichuan Basin after fracturing[J]. Petroleum Science Bulletin, 2019, 4(3): 273–287.

    [22]

    WIJAYA N, SHENG J J. Comparative study of well soaking timing (pre vs. post flowback) for water blockage removal from matrix-fracture interface[J]. Petroleum, 2020, 6(3): 286–292. doi: 10.1016/j.petlm.2019.11.001

    [23]

    HU Jinghong, ZHAO Haopeng, DU Xianfei, et al. An analytical model for shut-in time optimization after hydraulic fracturing in shale oil reservoirs with imbibition experiments[J]. Journal of Petroleum Science and Engineering, 2022, 210: 110055. doi: 10.1016/j.petrol.2021.110055

    [24] 卜淘,严小勇,伍梓健,等. 基于返排期动态数据的页岩气井EUR快速评价方法[J]. 非常规油气,2023,10(3):74–79.

    BU Tao, YAN Xiaoyong, WU Zijian, et al. Quick evaluation method of EUR for shale gas wells based on dynamic data of flowback period[J]. Unconventional Oil & Gas, 2023, 10(3): 74–79.

    [25] 杨海,李军龙,石孝志,等. 页岩气储层压后返排特征及意义[J]. 中国石油大学学报(自然科学版),2019,43(4):98–105.

    YANG Hai, LI Junlong, SHI Xiaozhi, et al. Characteristics and significance of flow-back processes after fracturing in shale-gas reservoirs[J]. Journal of China University of Petroleum (Edition of Natural Science), 2019, 43(4): 98–105.

    [26]

    ZOLFAGHARI A, DEHGHANPOUR H, GHANBARI E, et al. Fracture characterization using flowback salt-concentration transient[J]. SPE Journal, 2016, 21(1): 233–244. doi: 10.2118/168598-PA

    [27]

    YANG Liu, WANG Shuo, CAI Jianchao, et al. Main controlling factors of fracturing fluid imbibition in shale fracture network[J]. Capillarity, 2018, 1(1): 1–10. doi: 10.26804/capi.2018.01.01

    [28]

    JIANG Yun, SHI Yang, XU Guoqing, et al. Experimental study on spontaneous imbibition under confining pressure in tight sandstone cores based on low-field nuclear magnetic resonance measure-ments[J]. Energy & Fuels, 2018, 32(3): 3152–3162.

    [29]

    ZOLFAGHARI A, TANG Yingzhe, HE Jia, et al. Fracture network characterization by analyzing flowback salts: Scale-up of experimental data[R]. SPE 185078, 2017.

  • 期刊类型引用(2)

    1. 张强,耿永鹏,任宪可,李玮,赵栋. 考虑钻柱涡动的环空摩阻压降影响因素分析. 化工自动化及仪表. 2025(03): 400-407 . 百度学术
    2. 曹砚锋,邱浩,文敏,王通,赵军伟,邹明华,潘豪. 基于响应面法的小型井下油水分离器操作参数优化. 石油机械. 2025(05): 125-132 . 百度学术

    其他类型引用(0)

图(8)  /  表(1)
计量
  • 文章访问数:  323
  • HTML全文浏览量:  127
  • PDF下载量:  117
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-05-11
  • 修回日期:  2023-08-30
  • 网络出版日期:  2023-09-05
  • 刊出日期:  2023-10-30

目录

    /

    返回文章
    返回