静态推靠式旋转导向控制模型与造斜率预测方法

秦永和, 范永涛, 陈文辉, 刘越, 李晓军, 王舸

秦永和,范永涛,陈文辉,等. 静态推靠式旋转导向控制模型与造斜率预测方法[J]. 石油钻探技术,2023, 51(4):74-80. DOI: 10.11911/syztjs.2023077
引用本文: 秦永和,范永涛,陈文辉,等. 静态推靠式旋转导向控制模型与造斜率预测方法[J]. 石油钻探技术,2023, 51(4):74-80. DOI: 10.11911/syztjs.2023077
QIN Yonghe, FAN Yongtao, CHEN Wenhui, et al. Static push-the-bit rotary steering control model and build-up rate prediction method [J]. Petroleum Drilling Techniques,2023, 51(4):74-80. DOI: 10.11911/syztjs.2023077
Citation: QIN Yonghe, FAN Yongtao, CHEN Wenhui, et al. Static push-the-bit rotary steering control model and build-up rate prediction method [J]. Petroleum Drilling Techniques,2023, 51(4):74-80. DOI: 10.11911/syztjs.2023077

静态推靠式旋转导向控制模型与造斜率预测方法

基金项目: 国家自然科学基金项目“旋转钻柱动力屈曲临界条件与后屈曲蛇形摆动和螺旋涡动行为研究”(编号:51904317)及中国石油集团公司科研攻关项目“智能导向系统研发(二期)”(编号:2022T-005-001 )联合资助
详细信息
    作者简介:

    秦永和(1963—),男,河北唐山人,1985年毕业于华东石油学院钻井工程专业,2006年获中国石油大学(北京)油气井工程专业博士学位,教授级高级工程师,享受国务院政府津贴,主要从事优快钻完井技术研究。系本刊编委会副主任。E-mail:qinyh@cnpc.com.cn

  • 中图分类号: TE927

Static Push-the-Bit Rotary Steering Control Model and Build-up Rate Prediction Method

  • 摘要:

    推靠式旋转导向工具的防斜、稳斜能力强,能基本满足复杂地层安全高效钻进的需要,但目前的造斜率预测方法没有考虑推靠块控制方式及钻进过程的影响,存在造斜率预测精度低的问题。为此,考虑导向工具的结构特性,建立了静态推靠式旋转导向控制模型,给出了可靠的导向力控制方案,利用下部钻具组合力学模型及钻头–地层相互作用模型,得到了基于零侧向钻速条件下的造斜率预测模型,并引入折算系数对造斜率预测结果进行了修正。实例计算及敏感性分析结果表明,该方法预测精度高,能够满足井眼轨迹精确控制的需要;导向合力、钻压、钻头与稳定器的距离对推靠式旋转导向工具的造斜能力影响显著,现场施工时为了充分发挥导向合力的作用,要适当减小钻头与稳定器的距离、降低钻压,以提高旋转导向工具的造斜能力。研究结果为旋转导向钻具组合优选、钻井参数优化等提供了理论依据。

    Abstract:

    The push-the-bit rotary steerable tool (RST) has strong anti-inclination ability, which can basically meet the needs of safe and efficient drilling in complex formations. However, the current prediction method of build-up rates does not fully consider the influence of push-the-bit unit control and drilling process and has low prediction accuracy of build-up rates. Therefore, In view of the structural characteristics of the steering tool, a static push-the-bit rotary steerable control model was established, and a reliable steerable force control scheme was given. By using the bottom hole assembly (BHA) mechanics model and the bit-formation interaction model, a prediction model of build-up rates based on the zero lateral rate of penetration was obtained, and the conversion coefficient was introduced to correct the prediction result of build-up rates. The results of case calculation and sensitivity analysis show that the method has high prediction accuracy and can meet the need for precise control of borehole trajectory. The steerable force, weight on bit (WOB), and the distance between the bit and the stabilizer have significant effects on the deflecting ability of push-the-bit RST. In field construction, in order to give full play to the role of steerable force, it is necessary to shorten the distance between the bit and the stabilizer and reduce the WOB, so as to improve the deflecting ability of the RST. The research results can provide a theoretical basis for the optimization of rotary steerable BHAs and drilling parameters.

  • 近年来,随着聚晶金刚石切削齿加工工艺的不断提高,PDC切削齿的金刚石层表面不再局限于二维平面结构,开始向多维发展,出现了三棱形齿、斧形齿[1]等各种新型非平面PDC切削齿。室内试验结果显示,非平面PDC切削齿较平面PDC切削齿更耐磨[25],但其表面是多维的,破碎岩石的过程与常规平面PDC切削齿相比可能存在明显差异。目前,国内外针对非平面PDC切削齿破岩的相关研究还较少。因此,为了给优化PDC钻头设计提供参考,笔者利用有限元软件,建立了切削齿直线切削和垂直压入岩石的有限元模型,计算了常规平面、三棱形和斧形PDC切削齿直线切削岩石和垂直压入岩石的切削力和接触应力,分析了3种切削齿的破岩性能,并进行了三棱形切削齿PDC钻头钻进混合花岗岩地层的试验。

    利用有限元软件建立PDC钻头切削齿直线切削岩石及垂直压入岩石的有限元模型。

    根据常见砂岩、灰岩的岩石参数,模拟PDC切削齿切削均质砂岩、软硬交错岩石和含砾砂岩3种岩石的过程。

    将PDC切削齿绕钻头轴线的旋转切削,简化为直线切削运动[68],直线切削模型如图1所示,设定直线切削速度为300 mm/s。图2为非均质岩石模型,图2中的绿色网格材料为砂岩,青色网格材料为灰岩。将PDC切削齿视为刚体,其截面直径16 mm,斧形PDC切削齿脊背夹角为156°,三棱形PDC切削齿脊背夹角为157°,脊背线长3 mm,斜度8°。为了缩短计算时间,设定PDC切削齿切削前角为15°,侧转角为0°。

    图  1  单PDC切削齿直线切削岩石的模型
    Figure  1.  Model of single PDC cutting cutter linear cutting into rock
    图  2  非均质岩石模型
    Figure  2.  Model of heterogeneous rock

    根据圣维南原理,设定岩石模型尺寸为170 mm×50 mm×25 mm,岩石四周及底面边界自由度设置为0。选用六面体网格,并采用减缩积分法划分网格。岩石本构关系选用D–P准则,并定义了硬化特征[9]。由于PDC切削齿破岩过程中以剪切破岩为主,所以根据shear damage准则判断岩石是否被破坏,并设置损伤演化系数。有限元模型主要材料的物性参数[1011]表1

    表  1  有限元模型中主要材料的物性参数
    Table  1.  Parameters of main materials in the finite element model
    材料密度/
    (g·cm–3)
    弹性模量/
    GPa
    泊松比内摩擦角/
    (°)
    抗压强度/
    MPa
    PDC层3.54890.0 0.077
    硬质合金15.00 579.0 0.220
    砂岩2.5412.80.200 34.4530.5
    灰岩2.7031.20.17143.26105.0
    下载: 导出CSV 
    | 显示表格

    岩石与切削齿的接触是非线性、相对变形差异悬殊的过程,所以岩石的接触面应选择整个岩石模型的节点集,避免出现切削齿只破碎岩石模型表面,却直接穿透内部的情况。在interaction中建立基于岩石网格节点集与切削齿网格“接触对”的接触形式,采用弹性滑移的罚函数公式,切向摩擦因数取0.4,接触面的接触关系采用“硬接触”公式。

    设置PDC切削齿的压入速度为1.0 mm/s,前角为15°。岩石模型为直径100 mm、高80 mm的圆柱体。岩石压入模型如图3所示。其他参数取值与直线切削岩石模型相同。

    图  3  单PDC切削齿垂直压入岩石的模型
    Figure  3.  Model of single PDC cutting cutter vertical feeding into rock

    图4为常规平面和三棱形PDC切削齿垂直压入岩石产生破碎坑时的Mises应力分布模拟结果。由图4可以看出,三棱形PDC切削齿垂直压入岩石产生的Mises应力更集中。

    图  4  常规平面和三棱形PDC切削齿垂直压入岩石时的Mises应力分布
    Figure  4.  Stress distribution while vertical feeding into rock by conventional planar and triangular prism PDC cutter

    模拟常规平面、斧形及三棱形PDC切削齿垂直压入岩石轴向力随时间的变化,结果见图5。由图5可以看出:轴向力出现峰值,说明切削齿持续压入岩石时,轴向力不断增大,当其达到峰值时,岩石出现第一次大体积破碎;切削齿刃边的岩石达到屈服极限时失去联结力形成岩屑,致使轴向力迅速降低;三棱形PDC切削齿使岩石产生第一次体积破碎所需轴向力明显小于常规平面和斧形PDC切削齿,其更易压入岩石产生破碎坑,能在更小的钻压条件下吃入并破碎岩石,适用于硬地层。

    图  5  不同形状PDC切削齿垂直压入岩石时轴向力随时间变化的曲线
    Figure  5.  Curves of vertical pressure/rock axial force varies with time while cutting rock with different shapes of PDC cutters

    模拟常规平面、斧形及三棱形PDC切削齿直线切削均质砂岩时的剪应力,结果见图6。由图6可以看出,非平面PDC切削齿直线切削岩石时,产生的剪应力更大。也就是说,非平面切削齿能使岩石产生更大的预破碎区域,对于脆性岩石而言会引起更大的体积破碎。

    图  6  不同形状PDC切削齿直线切削均质砂岩时的剪应力分布
    Figure  6.  Shear stress distribution during linear cutting homo-geneous sandstone with different shapes of cutters

    常规平面和三棱形PDC切削齿吃入均质砂岩时的Cpress接触应力云图见图7。由图7可以看出:Cpress接触应力只在岩石与切削齿相互作用的区域产生,而在其他区域的Cpress接触应力为零;常规平面PDC切削齿接触区域主要集中于齿边沿,而非平面PDC切削齿接触区域更大、且Cpress接触应力更均匀。

    图  7  常规平面和三棱形PDC切削齿的接触应力分布
    Figure  7.  Contact stress distribution of conventional planar and triangular prism PDC cutters

    根据不同形状PDC切削齿切削力随时间变化的数据,计算不同形状PDC切削齿切削均质砂岩时的平均切削力。其计算方法为:设定历史输出为每个固定时间间隔输出数据,提取切削齿三向切削力历史输出数据,并求取平均值,最后求三向切削力平均值的合力。常规平面、斧形及三棱形PDC切削齿切削均质砂岩时,不同切削深度下破岩所需的平均切削力如图8所示。由图8可以看出,直线切削均质砂岩时,非平面PDC切削齿破岩所需的切削力更小,随切削深度增大,差异愈明显。破岩所需的切削力越小,要求钻机提供的扭矩、钻压越小,越有利于造斜段和水平段的钻进。同时,扭矩较小,也可以降低钻具发生粘滑的概率。

    图  8  不同形状PDC切削齿切削均质砂岩时不同切削深度下的平均切削力
    Figure  8.  Average cutting force at different cuttings depths for different shaped PDC cutters while cutting homogeneous sandstone

    常规平面、斧形及三棱形PDC切削齿切削软硬交错岩石和含砾岩石时,在相同切削深度下切向力随时间变化关系曲线如图9所示。由图9可以得出,切向力随时间波动剧烈并出现多处峰值,且非平面PDC切削齿的切向力波动幅度明显小于常规平面PDC切削齿。切向力波动的原因主要是,切削齿在破岩过程中遇到硬质成分时,切向力迅速升高,当达到岩石屈服极限后岩石崩碎断裂,然后切向力迅速降低。

    图  9  不同形状PDC切削齿切削非均质岩石时切向力随时间变化的曲线
    Figure  9.  Curve in which tangential force varies with time for different shaped PDC cutters while cutting heterogeneous rocks

    常规平面、斧形及三棱形PDC切削齿切削非均质岩石时的破碎比功如图10所示。由图10可以看出,非平面PDC切削齿的破碎比功小于常规平面PDC切削齿,且斧形PDC切削齿所需的破碎比功最小。

    图  10  不同形状PDC切削齿切削非均质岩石时的破碎比功
    Figure  10.  Breaking specific work of different shaped PDC cutters while cutting heterogeneous rocks

    分析有限元模拟结果得知:三棱形PDC切削齿更易吃入地层形成破碎坑;非平面PDC切削齿的切削力及其波动幅度更小,与岩石接触更均匀,有利于降低振动和出现粘滑现象的概率;非平面PDC切削齿的破碎区域更大,更易形成较大的破碎体积,降低岩石断裂对切削齿的冲击;在非均质地层中非平面PDC切削齿能更轻松地破碎岩石。结合有限元分析及试验结果[11]可知,斧形PDC切削齿的攻击性更强,三棱形PDC切削齿更耐磨。

    某井采用常规PDC钻头钻至井深3 979.00 m时,因泵压升高起钻,发现钻头肩部出现严重环切。取心发现,该井深处地层岩性由角砾岩变为混合花岗岩,石英含量50%~60%,地层研磨性高,可钻性差。为了避免钻头过快失效和快速钻穿该段地层,根据上文的有限元模拟结果,设计应用了肩部安装有三棱形PDC切削齿的PDC钻头。钻井参数:转速40~50 r/min,排量18 L/s,泵压18~19 MPa,钻压400~900 kN。该钻头总进尺71.00 m,平均机械钻速1.92 m/h,钻时曲线如图11所示(图中3 986.00~3 988.00 m井段钻时出现峰值,为取心钻头钻进时间)。可见三棱形齿PDC钻头能在混合花岗岩地层钻进,并能长时间保持稳定的机械钻速。最后,因钻速变慢起钻,钻头出井后发现为正常失效。

    图  11  不同井深下的钻时
    Figure  11.  Drilling time at different well depths

    1)有限元模拟结果表明:非平面PDC切削齿与岩石接触更平稳,三棱形PDC切削齿更易轻松吃入地层;非平面PDC切削齿破碎岩石的切削力及切削力波动幅度均比常规平面PDC切削齿小,能有效控制粘滑振动;钻进非均质地层时,非平面齿PDC钻头能更轻松破碎岩石,且能避免产生较大冲击载荷。

    2)非平面PDC切削齿为快速穿越复杂难钻地层、缩短钻井周期和降低钻井成本,提供了新的技术方案。由于非平面PDC切削齿的金刚石层是多维结构,其破岩过程与常规平面PDC切削齿有明显区别。为使非平面PDC切削齿的破岩效果达到最佳,应对其布齿角度、金刚石层倒角和脊背斜度等进行深入研究。

  • 图  1   静态推靠式旋转导向工具基本结构

    Figure  1.   Basic structure of static push-the-bit RST

    图  2   静态推靠式旋转导向系统基本工作原理

    Figure  2.   Working principle of static push-the-bit RST

    图  3   平面三力汇交力系

    Figure  3.   Planar three-force concurrent force system

    图  4   静态推靠式旋转导向工具导向合力取值范围

    Figure  4.   Range of steerable force for static push-the-bit RST

    图  5   最大可使用导向合力矢量几何解析

    Figure  5.   Geometric analysis of available maximum steerable force

    图  6   静态推靠式旋转导向控制与造斜率预测基本流程

    Figure  6.   Basic flow of static push-the-bit rotary steerable control and build-up rate prediction

    图  7   旋转导向钻具组合基本组成

    Figure  7.   Structure of rotary steerable BHA

    图  8   纵横弯曲梁模型

    Figure  8.   Longitudinal and transverse bending beam model

    图  9   某井3 070~4 290 m井段造斜率折算系数计算结果

    Figure  9.   Calculation result of conversion coefficient of build-up rate for 3 070–4 290 m interval of a well

    图  10   旋转导向工具造斜率随推靠块、稳定器位置的变化

    Figure  10.   Change of build-up rate of RST with positions of push-the-bit unit and stabilizer

    图  11   旋转导向工具造斜率随导向工具面角的变化

    Figure  11.   Change of build-up rate of RST with steerable tool-face angle

    图  12   旋转导向工具造斜率随钻压的变化

    Figure  12.   The change of build-up rate of RST with WOB

  • [1] 姜伟,蒋世全,盛利民,等. 旋转导向钻井工具系统的研究及应用[J]. 石油钻采工艺,2008,30(5):21–24. doi: 10.3969/j.issn.1000-7393.2008.05.005

    JIANG Wei, JIANG Shiquan, SHENG Limin, et al. Research on rotary navigation drilling tools and its application[J]. Oil Drilling & Production Technology, 2008, 30(5): 21–24. doi: 10.3969/j.issn.1000-7393.2008.05.005

    [2] 徐坤吉,熊继有,陈军,等. 深井水平井水平段水力延伸能力评价与分析[J]. 西南石油大学学报(自然科学版),2012,34(6):101–106.

    XU Kunji, XIONG Jiyou, CHEN Jun, et al. The evaluation and analysis of hydraulic extensions ability of horizontal section in deep horizontal wells[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2012, 34(6): 101–106.

    [3]

    JEREZ H, TILLEY J. Advancements in powered rotary steerable technologies result in record-breaking runs[R]. SPE 169348, 2014.

    [4] 江波,李晓军,程召江,等. 一种静止推靠式旋转导向钻井系统的设计方案[J]. 石油钻采工艺,2015,37(3):19–22. doi: 10.13639/j.odpt.2015.03.005

    JIANG Bo, LI Xiaojun, CHENG Zhaojiang, et al. Design scheme of a static push-the-bit rotary steering drilling system[J]. Oil Drilling & Production Technology, 2015, 37(3): 19–22. doi: 10.13639/j.odpt.2015.03.005

    [5] 王舸,黄文君,高德利. 滑动钻进造斜率预测与分析[J]. 石油钻采工艺,2022,44(2):139–144.

    WANG Ge, HUANG Wenjun, GAO Deli. Prediction and analysis of build-up rate during sliding drilling[J]. Oil Drilling & Production Technology, 2022, 44(2): 139–144.

    [6] 黄文君,王舸,高德利. 推靠式旋转导向工具造斜率预测方法[J]. 天然气工业,2021,41(7):101–106. doi: 10.3787/j.issn.1000-0976.2021.07.011

    HUANG Wenjun, WANG Ge, GAO Deli. A method for predicting the build-up rate of “push-the-bit” rotary steering tool[J]. Natural Gas Industry, 2021, 41(7): 101–106. doi: 10.3787/j.issn.1000-0976.2021.07.011

    [7] 张晓广,邵明仁,傅文伟,等. Geo-Pilot旋转导向钻井系统在水平分支井中的应用[J]. 海洋石油,2013,33(1):92–95. doi: 10.3969/j.issn.1008-2336.2013.01.092

    ZHANG Xiaoguang, SHAO Mingren, FU Wenwei, et al. Application of Geo-Pilot rotary steerable drilling system in horizontal multilateral well[J]. Offshore Oil, 2013, 33(1): 92–95. doi: 10.3969/j.issn.1008-2336.2013.01.092

    [8] 姜伟,蒋世全,付鑫生,等. 旋转导向钻井技术应用研究及其进展[J]. 天然气工业,2013,33(4):75–79. doi: 10.3787/j.issn.1000-0976.2013.04.013

    JIANG Wei, JIANG Shiquan, FU Xinsheng, et al. Application of rotary steering drilling technology and its research progress[J]. Natural Gas Industry, 2013, 33(4): 75–79. doi: 10.3787/j.issn.1000-0976.2013.04.013

    [9] 陈启文,董瑜,王飞,等. 苏里格气田水平井开发技术优化[J]. 天然气工业,2012,32(6):39–42. doi: 10.3787/j.issn.1000-0976.2012.06.009

    CHEN Qiwen, DONG Yu, WANG Fei, et al. Optimization of horizontal well development technology in the Sulige Gas Field[J]. Natural Gas Industry, 2012, 32(6): 39–42. doi: 10.3787/j.issn.1000-0976.2012.06.009

    [10] 史配铭,李晓明,倪华峰,等. 苏里格气田水平井井身结构优化及钻井配套技术[J]. 石油钻探技术,2021,49(6):29–36. doi: 10.11911/syztjs.2021057

    SHI Peiming, LI Xiaoming, NI Huafeng, et al. Casing program optimization and drilling matching technologies for horizontal wells in Sulige Gas Field[J]. Petroleum Drilling Techniques, 2021, 49(6): 29–36. doi: 10.11911/syztjs.2021057

    [11] 李士斌,王业强,张立刚,等. 静态推靠式旋转导向控制方案分析及优化[J]. 石油钻采工艺,2015,37(4):12–15. doi: 10.13639/j.odpt.2015.04.004

    LI Shibin, WANG Yeqiang, ZHANG Ligang, et al. Analysis and optimization of static push-the-bit rotary steering control scheme[J]. Oil Drilling & Production Technology, 2015, 37(4): 12–15. doi: 10.13639/j.odpt.2015.04.004

    [12] 杜建生,刘宝林,夏柏如. 静态推靠式旋转导向系统三支撑掌偏置机构控制方案[J]. 石油钻采工艺,2008,30(6):5–10. doi: 10.3969/j.issn.1000-7393.2008.06.002

    DU Jiansheng, LIU Baolin, XIA Bairu. The control scheme for three-pad static bias device of push-the-bit rotary steerable system[J]. Oil Drilling & Production Technology, 2008, 30(6): 5–10. doi: 10.3969/j.issn.1000-7393.2008.06.002

    [13]

    WANG Ge, HUANG Wenjun, SHI Xiaolei, et al. Prediction and optimization method of drilling trajectory for push-the-bit rotary steering tools[R]. ARMA-2022-0517, 2022.

    [14]

    KARLSSON H, BRASSFIELD T. Performance drilling optimization[R]. SPE 13474, 1985.

    [15]

    BIRADES M, FENOUL R. A microcomputer program for prediction of bottomhole assembly trajectory[J]. SPE Drilling Engineering, 1988, 3(2): 167–172. doi: 10.2118/15285-PA

    [16] 管志川,史玉才,夏焱,等. 底部钻具组合运动状态及钻进趋势评价方法研究[J]. 石油钻探技术,2005,33(5):24–27. doi: 10.3969/j.issn.1001-0890.2005.05.006

    GUAN Zhichuan, SHI Yucai, XIA Yan, et al. Research on motion state of bottom hole assembly and the evaluation method of drilling tendency[J]. Petroleum Drilling Techniques, 2005, 33(5): 24–27. doi: 10.3969/j.issn.1001-0890.2005.05.006

    [17] 李作会,孙铭新,韩来聚. 旋转自动导向钻井技术[J]. 石油矿场机械,2003,32(4):8–10. doi: 10.3969/j.issn.1001-3482.2003.04.003

    LI Zuohui, SUN Mingxin, HAN Laiju. Rotary steering drilling technology[J]. Oil Field Equipment, 2003, 32(4): 8–10. doi: 10.3969/j.issn.1001-3482.2003.04.003

    [18] 白家祉, 苏义脑. 井斜控制理论与实践[M]. 北京: 石油工业出版社, 1990: 44−196.

    BAI Jiazhi, SU Yinao. Inclined wellbore control theory and practice[M]. Beijing: Petroleum Industry Press, 1990: 44−196.

    [19] 高德利. 钻头和地层各向异性钻井特性的一种表达方法[J]. 石油学报,1994,15(2):126–132. doi: 10.3321/j.issn:0253-2697.1994.02.019

    GAO Deli. A diagrammatic method for drilling characteristics of formation anisotropy and drill bit[J]. Acta Petrolei Sinica, 1994, 15(2): 126–132. doi: 10.3321/j.issn:0253-2697.1994.02.019

  • 期刊类型引用(36)

    1. 崔强. 新型非平面齿破碎泥岩机理研究. 中国石油和化工标准与质量. 2025(04): 126-128 . 百度学术
    2. 马亚超,罗逸非,荣准,陶垒,曾汇川,蒋东,张文远. 沙溪庙组硬质砂岩地层异形PDC齿的设计与研究. 工程设计学报. 2025(02): 262-271 . 百度学术
    3. 陈炼,魏小虎,曹强,周岩,杨迎新,胡川,赵志杰,伍彬. 凸棱非平面聚晶金刚石齿的破岩机理及在含砾地层中的应用. 中国机械工程. 2024(02): 371-379 . 百度学术
    4. 程伟,幸雪松,楼一珊,朱亮,尹彪. 三棱形PDC齿破岩特性数值模拟研究. 石油机械. 2024(11): 21-28 . 百度学术
    5. 赵洪波,张龙,沈立娜,张交东,刘旭锋,王丹丹,孟祥龙,胡浩,朱迪斯. 三门峡盆地油气调查优快钻井技术. 钻探工程. 2024(06): 111-118 . 百度学术
    6. 翁炜,吴烁,贺云超,蔺文静,冯美贵,甘浩男,李晓东. 高温硬岩受控钻进新技术、新方法及应用. 地学前缘. 2024(06): 120-129 . 百度学术
    7. 魏向辉,王辉,周学超,樊思成. 塑性泥岩高效PDC钻头的设计与应用. 设备管理与维修. 2024(22): 138-140 . 百度学术
    8. 刘伟吉,阳飞龙,董洪铎,程润,祝效华. 异形PDC齿混合切削破碎花岗岩特性研究. 工程力学. 2023(03): 245-256 . 百度学术
    9. 吴泽兵,翟喜萍,李济彤,谷亚冰,王刚. 混合钻头切削齿工作部位几何面离散化研究. 机电工程技术. 2023(04): 113-118 . 百度学术
    10. 刘畅,杨迎新,姚建林,黄奎林. 新型非平面齿破岩规律研究. 地下空间与工程学报. 2023(02): 428-436+455 . 百度学术
    11. 王勇军,梁伟,张涛,杜志强,王磊,佟铮. 深部地热钻探中硬塑性泥岩地层钻头应用研究. 钻探工程. 2023(03): 92-98 . 百度学术
    12. 雷宇奇,房伟,蔡晨光,杨高,于东兵,康凯,田家林. PDC钻头复合冲击井下破岩特性模拟研究. 石油机械. 2023(05): 25-32 . 百度学术
    13. 彭齐,杨雄文,任海涛,张灯,柯晓华,冯枭,马驰. 扇形齿PDC钻头破岩机理及工作性能仿真分析. 石油机械. 2023(07): 28-35 . 百度学术
    14. 张玉静,李升,张栋. 考虑外界负载变化的自调节元件响应控制方法. 机电工程技术. 2023(08): 54-58 . 百度学术
    15. 李勇,董仕明,姚建林. 锥形PDC齿单齿破岩有限元仿真研究. 石油和化工设备. 2023(10): 33-36+27 . 百度学术
    16. 王勇军,聂德久,张涛,冯守涛,邸佳强,王磊,佟铮. 雄安新区D19地热勘探井钻探技术及成果. 钻探工程. 2023(S1): 299-304 . 百度学术
    17. 邹德永,潘龙,崔煜东,徐建飞. 斧形PDC切削齿破岩机理及试验研究. 石油机械. 2022(01): 34-40 . 百度学术
    18. 刘和兴,罗云旭,刘伟吉,马传华,吴艳辉,祝效华,柳亚亚. 异形PDC齿切削破碎非均质花岗岩机理研究. 石油机械. 2022(04): 22-31 . 百度学术
    19. 吴泽兵,席凯凯,赵海超,黄海,张文超,杨晨娟. 仿生PDC齿旋转破岩时的温度场和破岩特性模拟研究. 石油钻探技术. 2022(02): 71-77 . 本站查看
    20. 李燕,胡志强,薛玉志,梁文龙,唐文泉,牛成成. 基于日费制管理模式的彬4井钻井关键技术. 石油钻探技术. 2022(03): 34-38 . 本站查看
    21. 刘忠,赵航,李劲,胡信阳,胡伟. 屋脊齿破岩生成岩屑特性研究. 石油矿场机械. 2022(04): 12-21 . 百度学术
    22. 胡莉,况雨春,韩一维,杨博,刘志鹏. 塑性地层宽刃齿破岩机理研究与提速应用. 石油机械. 2022(08): 52-60 . 百度学术
    23. 刘伟吉,阳飞龙,祝效华,罗云旭,何灵. 异形PDC齿切削破岩提速机理研究. 中国机械工程. 2022(17): 2133-2141 . 百度学术
    24. 刘笑傲,邹德永,王庆,刘洪山,黄勇,陈雅辉. 基于离散元法的砾岩地层三棱齿切削破岩数值模拟. 特种油气藏. 2022(04): 149-155 . 百度学术
    25. 龚均云,吴文秀,周宗赣. 斧形齿破岩机理数值模拟研究. 石油机械. 2022(09): 44-51 . 百度学术
    26. 张松峰,陈长青,邢厚伟,魏向辉,潘龙,马晓婷. 硬质岩石中PDC切削齿结构完整性研究. 石油矿场机械. 2022(06): 76-87 . 百度学术
    27. 罗鸣,朱海燕,刘清友,王兆巍,李炎军,韩成,张超. 一种适用于超高温超高压塑性泥岩的V形齿PDC钻头. 天然气工业. 2021(04): 97-106 . 百度学术
    28. 贺振国,石李保,李灵樨,孔璐琳,张小宁,刘新云. 基于单齿破岩有限元模拟的黏滑振动机理研究. 石油机械. 2021(05): 17-26 . 百度学术
    29. 胡思成,管志川,路保平,梁德阳,呼怀刚,闫炎,陶兴华. 锥形齿旋冲及扭冲的破岩过程与破岩效率分析. 石油钻探技术. 2021(03): 87-93 . 本站查看
    30. 魏秀艳,赫文豪,史怀忠,陈振良,熊超,李硕文. 三轴应力下三棱形PDC齿破岩特性数值模拟研究. 石油机械. 2021(09): 17-23+32 . 百度学术
    31. 刘建华,令文学,王恒. 非平面三棱形PDC齿破岩机理研究与现场试验. 石油钻探技术. 2021(05): 46-50 . 本站查看
    32. 李尚劼,赵星,黄继庆,刘维. 不同斧型钻齿切削刃角下的破岩方式. 金刚石与磨料磨具工程. 2021(06): 85-90 . 百度学术
    33. 邹德永,陈雅辉,赵方圆,崔煜东. 斧形PDC齿破岩规律数值模拟研究. 特种油气藏. 2021(06): 137-143 . 百度学术
    34. 彭齐,周英操,周波,刘川福,刘宇. 凸脊型非平面齿PDC钻头的研制与现场试验. 石油钻探技术. 2020(02): 49-55 . 本站查看
    35. 李宁,周波,文亮,韩雨恬,王天博,卢宗武. 塔里木油田库车山前砾石层提速技术研究. 钻采工艺. 2020(02): 143-146 . 百度学术
    36. 张茂林,罗科海,王青. 准噶尔盆地东部深层火成岩钻井提速技术应用. 西部探矿工程. 2020(09): 104-106+110 . 百度学术

    其他类型引用(18)

图(12)
计量
  • 文章访问数:  376
  • HTML全文浏览量:  59
  • PDF下载量:  135
  • 被引次数: 54
出版历程
  • 收稿日期:  2023-04-03
  • 修回日期:  2023-06-29
  • 录用日期:  2023-07-18
  • 网络出版日期:  2023-07-19
  • 刊出日期:  2023-08-24

目录

/

返回文章
返回