Safe and Efficient Drilling in Presalt High-Sulfur Reservoirs in the Eastern Gas Fields of Ordos Basin
-
摘要:
鄂尔多斯盆地东部气田盐下高含硫储层主要为奥陶系马家沟组,其碳酸盐岩–膏盐岩互层发育,存在破碎屑岩层、大段膏盐层及压力异常地层,钻井过程中易出现井壁垮塌、井眼缩径、含H2S高压天然气侵、井漏及卡钻等井下故障及复杂情况,导致机械钻速低、安全高效钻进难度较大。为此,开展了“储层专打”井身结构设计,集成高抗H2S井控装备、防喷工具及工具的标准配套,研究应用了“高效PDC钻头+大扭矩单弯螺杆+MWD+随钻震击器”的储层复合钻井防斜防卡打快技术,探索性应用了精细控压钻井技术,优选复配出具有强“抗盐、抗钙、抗泥”能力的高密度饱和盐水钻井液,形成了鄂尔多斯盆地东部气田盐下高含硫井储层安全高效钻井技术。鄂尔多斯盆地东部气田的5口井应用了该技术,平均钻井周期54.3 d,平均机械钻速8.35 m/h,其中三开储层段平均钻井周期11.67 d,较前期完钻的MT1井缩短了52.03%,储层段平均机械钻速6.85 m/h,较MT1井提高了69.97%,平均井径扩大率6.16%,电测一次成功率100%,未发生井下故障和复杂情况。该技术为鄂尔多斯盆地东部气田盐下高含硫气藏安全高效勘探开发提供了技术支撑。
Abstract:The main presalt high-sulfur reservoirs are located in the Ordovician Majiagou Formation, eastern gas field of the Ordos Basin, interbedded and developed with carbonate zone and gypsum zone. In addition, broken clastic rock, large interval of gypsum, and formations with abnormal pressure are observed. Further, wellbore collapse, tight hole, high-pressure natural gas containing H2S invasion, lost circulation, stuck drilling, and other downhole failures and complex situations are easily encountered while drilling, leading to a low rate of penetration (ROP) and difficulties in safe and efficient drilling. Therefore, the casing program optimization design of “special drilling for particular reservoir” was carried out, which integrated high H2S well control equipment, blowout prevention equipment, and equipment standards. Combination drilling, anti-deviation and fast drilling technologies, i.e. “high-efficiency polycrystalline diamond compact (PDC)bit + high-torque single-curved screw +measurement while drilling(MWD) + drilling jar” were studied and applied. A pilot test used precisely managed pressure control drilling technology was carried out. The high-density saturated brine drilling fluid system with strong anti-salt, anti-calcium, and anti-mud was optimized and compounded, forming the technology for safe and efficient drilling of presalt high-sulfur reservoirs in eastern gas fields of Ordos Basin. The technology was applied in five wells, with an average drilling duration of 54.3 d and an average ROP of 8.35 m/h. Specifically, there was an average drilling duration of 11.67 d in the third section, 52.03% shorter than that of the early drilled well, MT1, an average ROP of 6.85 m/h for the reservoir interval, 69.69% higher than that of MT1, and an average hole enlargement ratio of 6.16%. The electrical logging had a success rate of 100% for a first run. There is no downhole failure or complex situation. It provides a technical support for safe and efficient exploration and development of presalt high-sulfur gas reservoirs in the eastern gas fields of Ordos Basin.
-
-
表 1 鄂尔多斯盆地东部气田地层三压力剖面预测结果
Table 1 Prediction results of formation three-pressure profiles in the eastern gas fields of Ordos Basin
地层 井深/m 地层孔隙压力梯度/
(MPa·(100 m−1))地层破裂压力梯度/
(MPa·(100 m−1))地层坍塌压力梯度/
(MPa·(100 m−1))三叠系 延长组—和尚沟组 1340 0.50~0.75 2.10~2.20 0.60~0.75 刘家沟组 1620 0.50~0.75 1.35~1.45 0.50~0.75 二叠系 石千峰组 1905 0.50~1.00 1.75~2.15 0.65~0.90 石盒子组 2220 0.50~1.25 1.60~2.05 0.75~0.80 山西组 2340 0.50~0.85 1.60~2.05 0.65~0.75 太原组 2385 0.50~0.90 1.60~2.15 0.75~0.80 石炭系 本溪组 2445 0.50~1.35 1.60~2.05 0.75~0.90 奥陶系 马五1-5亚段 2540 0.75~1.50 1.50~1.75 0.85~0.90 马五6-10亚段 2735 0.75~1.35 1.50~2.00 0.85~0.90 马四1亚段 2780 0.90~1.25 1.50~1.60 0.85~1.05 马四2亚段 2835 0.90~1.25 1.50~1.60 0.85~1.05 马四3亚段 2885 0.90~1.25 1.40~1.90 0.75~0.85 马三段 3085 0.50~1.35 1.55~1.85 0.75~0.85 马二段 3175 0.50~0.90 1.30~1.75 0.75~0.85 马一段 3240 0.50~1.35 1.50~1.75 0.75~0.85 寒武系 张夏组 3290 0.50~1.30 1.60~1.85 0.75~0.85 表 2 2022年完成的5口井与前期同区域邻井MT1井的主要钻井指标对比
Table 2 Comparison of key indicators of five wells completed in 2022 with early adjacent well MT1 in the same area
年份 完井
数量/口平均
井深/m储层井段
平均长度/m储层井段三开
钻井周期/d储层井段机械
钻速/(m·h−1)平均井径
扩大率,%钻井
周期/d钻机月速/
(m·台−1·月−1)机械钻速/
(m·h−1)2022 5 3230 590 11.67 6.85 6.16 54.30 1456.00 8.35 2021 1 3190 805 24.33 4.03 11.70 81.17 1076.32 4.98 表 3 MT6井三开井段钻井液主要性能
Table 3 Main performance of drilling fluid in the third section of Well MT6
井深/m 密度/(kg·L−1) 漏斗黏度/s 滤失量/mL 塑性黏度/(mPa·s) 动切力/Pa 静切力/Pa c(Cl−)/(mg·L−1) pH值 2550 1.40 51 4.8 40 9.0 1.5/3.0 177 500 10.0 2650 1.54 53 4.2 42 10.5 2.0/3.0 184 600 10.5 2750 1.60 65 4.0 45 12.0 3.0/5.0 191 700 10.0 2850 1.73 67 3.8 47 14.0 3.0/5.0 188 100 10.5 2950 1.80 72 4.0 54 16.0 4.0/6.0 195 200 11.0 -
[1] 王国亭,程立华,孟德伟,等. 鄂尔多斯盆地东部奥陶系古岩溶型碳酸盐岩致密储层特征、形成机理与天然气富集潜力[J]. 石油与天然气地质,2018,39(4):685–695. WANG Guoting, CHENG Lihua, MENG Dewei, et al. Characterization and formation of the Ordovician tight paleokarst carbonates in the eastern Ordos Basin and its gas accumulation[J]. Oil & Gas Geology, 2018, 39(4): 685–695.
[2] 罗清清,刘波,姜伟民,等. 鄂尔多斯盆地中部奥陶系马家沟组五段白云岩储层成岩作用及孔隙演化[J]. 石油与天然气地质,2020,41(1):102–115. doi: 10.11743/ogg20200110 LUO Qingqing, LIU Bo, JIANG Weimin, et al. Diagenesis and pore evolution of dolomite reservoir in the 5th member of the Ordovician Majiagou Formation, central Ordos Basin[J]. Oil & Gas Geology, 2020, 41(1): 102–115. doi: 10.11743/ogg20200110
[3] 任海姣,吴伟涛,赵靖舟,等. 鄂尔多斯盆地中部奥陶系马四段天然气成藏主控因素[J]. 特种油气藏,2021,28(2):27–33. REN Haijiao, WU Weitao, ZHAO Jingzhou, et al. Key controlling factors of natural gas accumulation in the Ordovician Ma member 4 in the central Ordos Basin[J]. Special Oil & Gas Reservoirs, 2021, 28(2): 27–33.
[4] 何江川,余浩杰,何光怀,等. 鄂尔多斯盆地长庆气区天然气开发前景[J]. 天然气工业,2021,41(8):23–33. doi: 10.3787/j.issn.1000-0976.2021.08.003 HE Jiangchuan, YU Haojie, HE Guanghuai, et al. Natural gas development prospect in Changqing gas province of the Ordos Basin[J]. Natural Gas Industry, 2021, 41(8): 23–33. doi: 10.3787/j.issn.1000-0976.2021.08.003
[5] 徐延勇,申建,张兵,等. 鄂尔多斯盆地中东部上古生界致密气成藏条件差异性分析[J]. 断块油气田,2022,29(5):577–583. XU Yanyong, SHEN Jian, ZHANG Bing, et al. Analysis on differences of tight gas accumulation conditions of Upper Paleozoic in central and eastern Ordos Basin[J]. Fault-Block Oil & Gas Field, 2022, 29(5): 577–583.
[6] 蒲洪江,兰凯,刘明国,等. 元坝101-1H 酸性气藏超深水平井优快钻井技术[J]. 石油钻采工艺,2015,37(2):12–15. PU Hongjiang, LAN Kai, LIU Mingguo, et al. Fast drilling technology for ultra-deep horizontal Well 101-1H in Yuanba acidic gas reservoir[J]. Oil Drilling & Production Technology, 2015, 37(2): 12–15.
[7] 贾佳,夏忠跃,冯雷,等. 鄂尔多斯盆地神府区块小井眼优快钻井关键技术[J]. 石油钻探技术,2022,50(2):64–70. doi: 10.11911/syztjs.2021110 JIA Jia, XIA Zhongyue, FENG Lei, et al. Key technology of optimized and fast slim hole drilling in Shenfu Block, Ordos Basin[J]. Petroleum Drilling Techniques, 2022, 50(2): 64–70. doi: 10.11911/syztjs.2021110
[8] 邓昌松,张宗谭,冯少波,等. 高含硫、大漏、超深水平井钻完井技术:以塔里木油田中古10HC井为例[J]. 石油钻采工艺,2018,40(1):27–32. DENG Changsong, ZHANG Zongtan, FENG Shaobo, et al. Drilling and completion technologies suitable for ultradeep horizontal wells of high sulfur content and serious circulation loss: A case study on Well 10HC of Middle Paleozoic in Tarim Oilfield[J]. Oil Drilling & Production Technology, 2018, 40(1): 27–32.
[9] 乐宏,范宇,李玉飞. 高温高压含硫气井完整性关键技术:以安岳特大型气田为例[J]. 天然气工业,2022,42(3):81–90. YUE Hong, FAN Yu, LI Yufei. Integrity key technologies for high temperature and high pressure sour gas wells: A case study of the supergiant Anyue Gas Field[J]. Natural Gas Industry, 2022, 42(3): 81–90.
[10] 史配铭,倪华峰,石崇东,等. 苏里格致密气藏超长水平段水平井钻井完井关键技术[J]. 石油钻探技术,2022,50(1):13–21. SHI Peiming, NI Huafeng, SHI Chongdong, et al. Key technologies for drilling and completing horizontal wells with ultra-long horizontal sections in the Sulige tight gas reservoirs[J]. Petroleum Drilling Techniques, 2022, 50(1): 13–21.
[11] 刘锋,张晓飞,胡维首,等. 鄂尔多斯下古碳酸盐岩气井绒囊修井液稳气控水技术[J]. 石油钻采工艺,2021,43(3):400–404. LIU Feng, ZHANG Xiaofei, HU Weishou, et al. Fuzzy-ball workover fluid based gas stabilization and water control technology for the gas wells in the Lower Paleozoic carbonate reservoirs of the Ordos Basin[J]. Oil Drilling & Production Technology, 2021, 43(3): 400–404.
[12] 史配铭,李晓明,倪华峰,等. 苏里格气田水平井井身结构优化及钻井配套技术[J]. 石油钻探技术,2021,49(6):29–36. doi: 10.11911/syztjs.2021057 SHI Peiming, LI Xiaoming, NI Huafeng, et al. Casing program optimization and drilling matching technologies for horizontal wells in Sulige Gas Field[J]. Petroleum Drilling Techniques, 2021, 49(6): 29–36. doi: 10.11911/syztjs.2021057
[13] 张顺元,柳丙善,姜治,等. 伊朗阿扎德干复杂碳酸盐岩油气藏钻井提速技术[J]. 天然气工业,2016,36(8):107–115. ZHANG Shunyuan, LIU Bingshan, JIANG Zhi, et al. ROP improvement technologies for complicated carbonate oil and gas reservoirs in the Azadegan Oilfield, Iran[J]. Natural Gas Industry, 2016, 36(8): 107–115.
[14] 宋武强,张彦瑞,李瑾,等. J45断块盐下水平井钻井关键技术[J]. 石油钻采工艺,2020,42(4):402–407. SONG Wuqiang, ZHANG Yanrui, LI Jin, et al. Key technologies for drilling horizontal wells in the subsalt layer of Fault Block J45[J]. Oil Drilling & Production Technology, 2020, 42(4): 402–407.
[15] 张锦虹,宋玥,刘书勤,等. Power-V在克深102井膏盐岩层中的应用[J]. 石油钻采工艺,2015,37(6):13–17. ZHANG Jinhong, SONG Yue, LIU Shuqin, et al. Application of Power-V in gypsum-salt rock[J]. Oil Drilling & Production Technology, 2015, 37(6): 13–17.
[16] 刘湘华,刘彪,杜欢,等. 顺北油气田断裂带超深水平井优快钻井技术[J]. 石油钻探技术,2022,50(4):11–17. LIU Xianghua, LIU Biao, DU Huan, et al. Optimal and fast drilling technologies for ultra-deep horizontal wells in the fault zones of the Shunbei Oil & Gas Field[J]. Petroleum Drilling Techniques, 2022, 50(4): 11–17.
[17] 白彬珍,曾义金,葛洪魁. 顺北56X特深水平井钻井关键技术[J]. 石油钻探技术,2022,50(6):49–55. BAI Binzhen, ZENG Yijin, GE Hongkui. Key technologies for the drilling of ultra-deep horizontal Well Shunbei 56X[J]. Petroleum Drilling Techniques, 2022, 50(6): 49–55.
[18] 邓柯,刘殿琛,李宬晓. 预弯曲动力学井斜控制技术在长宁构造气体钻井中的应用[J]. 钻采工艺,2020,43(2):38–40. DENG Ke, LIU Dianchen, LI Chengxiao. Application of pre-bending dynamic well inclination control technology in gas drilling in Changning Structure[J]. Drilling & Production Technology, 2020, 43(2): 38–40.
[19] 刘科柔,张辉,王新锐,等. 双稳定器预弯曲钻具组合防斜特性动力学评价方法[J]. 石油钻采工艺,2021,43(3):281–288. LIU Kerou, ZHANG Hui, WANG Xinrui, et al. Dynamic evaluation method of anti-deflection characteristics of double-stabilizer pre-bending BHA[J]. Oil Drilling & Production Technology, 2021, 43(3): 281–288.
[20] 狄勤丰,朱卫平,姚建林,等. 预弯曲动力学防斜打快钻具组合动力学模型[J]. 石油学报,2007,28(6):118–121. doi: 10.3321/j.issn:0253-2697.2007.06.024 DI Qinfeng, ZHU Weiping, YAO Jianlin, et al. Dynamic model of bottom hole assembly used in pre-bending dynamic vertical and fast drilling technology[J]. Acta Petrolei Sinica, 2007, 28(6): 118–121. doi: 10.3321/j.issn:0253-2697.2007.06.024
[21] 赵德,赵维青,卢先刚,等. 西非S深水区块裂缝性碳酸盐岩地层控压钻井技术[J]. 石油钻采工艺,2022,44(1):20–25. doi: 10.13639/j.odpt.2022.01.004 ZHAO De, ZHAO Weiqing, LU Xiangang, et al. Managed pressure drilling technology for fractured carbonate formation in deep water Block S, West Africa[J]. Oil Drilling & Production Technology, 2022, 44(1): 20–25. doi: 10.13639/j.odpt.2022.01.004
[22] 童传新,张海荣,徐璧华,等. 深水井精细控压下套管研究[J]. 西南石油大学学报(自然科学版),2021,43(4):175–182. TONG Chuanxin, ZHANG Hairong, XU Bihua, et al. A study of precisely managed pressure during casing running in deep water wells[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(4): 175–182.
[23] 祝学飞,孙俊,舒义勇,等. ZQ2井盐膏层高密度欠饱和盐水聚磺钻井液技术[J]. 钻井液与完井液,2019,36(6):716–720. ZHU Xuefei, SUN Jun, SHU Yiyong, et al. A high density undersaturated saltwater drilling fluid for salt and gypsum drilling in Well ZQ2[J]. Drilling Fluid & Completion Fluid, 2019, 36(6): 716–720.
[24] 舒义勇,孙俊,祝学飞,等. 中秋区块ZQ2井盐膏层水基钻井液技术[J]. 石油钻采工艺,2019,41(6):703–707. SHU Yiyong, SUN Jun, ZHU Xuefei, et al. Water based drilling fluid technology developed for the salt-gypsum bed in Well ZQ2 of the Zhongqiu Block[J]. Oil Drilling & Production Technology, 2019, 41(6): 703–707.
[25] 赵宏波,杨松,陈国飞,等. 分级堵漏技术在鄂尔多斯盆地东部的应用[J]. 钻井液与完井液,2021,38(5):583–592. ZHAO Hongbo, YANG Song, CHEN Guofei, et al. Study and application of mud loss control technique with graded LCMs in the east of Ordos Basin[J]. Drilling Fluid & Completion Fluid, 2021, 38(5): 583–592.
-
期刊类型引用(3)
1. 游尧,姜韡,田峥,艾飞. PDC钻头旋转齿技术在南海东部西江区块深部地层应用. 海洋石油. 2020(01): 79-83 . 百度学术
2. 袁国栋,王鸿远,陈宗琦,母亚军,席宝滨. 塔里木盆地满深1井超深井钻井关键技术. 石油钻探技术. 2020(04): 21-27 . 本站查看
3. 于洋,南玉民,李双贵,刘景涛,贾厚刚. 顺北油田古生界钻井提速技术. 断块油气田. 2019(06): 780-783 . 百度学术
其他类型引用(3)