Development and Performance Evaluation of a High Temperature-Resistant Isolation Membrane Retarded Acid Solution System
-
摘要:
为了解决碳酸盐岩储层酸压改造时存在的酸液黏度过高、泵注排量低等问题,以丙烯酰胺(AM)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)和含氟单体(ZTA)为单体,采用自由基水溶液聚合方法合成了隔离膜高温缓速剂;以AM、AMPS和甲基丙烯酰氧乙基三甲基氯化铵(DMC)为单体,采用反相乳液聚合法合成了耐酸降阻剂。隔离膜缓速剂和降阻剂的红外、热重和XRD衍射分析测试结果表明符合分子结构设计,热分解温度分别为209.13和243.70 ℃。通过优化隔离膜缓速剂和耐酸降阻剂的加量和测试配伍性,形成了抗高温隔离膜缓速酸液体系,其黏度小于5 mPa·s;在140 ℃温度下,用20%盐酸配制隔离膜缓速酸液体系的酸岩反应速率为4.31 μmol/(cm2·s),比胶凝酸体系降低了34.8%,用15%盐酸配制隔离膜缓速酸液体系的降阻率为62.7%。研究结果表明,抗高温隔离膜缓速酸液体系的缓速和降阻性能良好,适用于塔河油田酸压酸化。
Abstract:In order to solve the problems of high viscosity of acid solution and low pump displacement in acid fracturing stimulation of carbonate reservoirs, the isolation membrane retarder for high temperatures was synthesized by free radical aqueous polymerization with acrylamide (AM), 2-acrylamido-2-methylpropane sulfonic acid (AMPS), and fluorine-containing monomer (ZTA) as monomers. An acid-resistant drag reducer was prepared by inverse emulsion polymerization, with AM, AMPS, and methacryloyloxyethyl trimethylammonium chloride (DMC) as monomers. The results of infrared, thermogravimetric, and X-ray diffraction (XRD) analysis of the isolation membrane retarder and drag reducer showed that they conformed to the molecular structure design, and their thermal decomposition temperatures were 209.13 °C and 243.70 °C, respectively. A retarded acid solution system with a high temperature-resistant isolation membrane was formed through compatibility testing and optimization on the concentration of isolation membrane retarder and acid-resistant drag reducer. The viscosity of the acid solution system was less than 5 mPa·s. In a 20% hydrochloric acid system, the average acid rock reaction rate was 4.31 μmol/(cm2·s) at 140 °C, which was 34.8% lower than the gelled acid system, and a drag reduction rate of the acid solution system (15% hydrochloric acid) was 62.7%. The results showed that the developed retarded acid solution system with high temperature-resistant isolation membrane resulted in good retarding and drag reduction performance and could be used for acid fracturing and acidizing in Tahe Oilfield.
-
Keywords:
- retarded acid /
- free radical polymerization /
- retarder /
- drag reducer /
- acid rock reaction rate
-
北黄海太阳盆地是位于中国黄海海域北部的一个以中、新生代为主的沉积盆地,自下而上发育中上侏罗统、下白垩统、渐新统和新近系,油气资源勘探处于初期[1-3]。该区域部署的井均为预探井,完钻井深在4 000 m左右,采用尾管固井方式完井,前期已完成6口井,钻进过程中频繁发生漏失且有大量煤层掉块,采用常规性能的尾管悬挂器和水泥浆固井,固井过程中环空憋堵严重,均有漏失发生,固井质量不合格,需要进一步优化配套的尾管固井技术。
针对北黄海太阳盆地尾管固井的技术难点,优化前期钻井液堵漏和通井洗井措施以提高地层承压能力并保障井眼清洁,将尾管悬挂器卡瓦由外置改为内嵌,增大“喇叭口”处过流面积,并在尾管悬挂器顶部安装封隔器隔离裸眼环空,在水泥浆中加入基体抗侵降滤失剂和纤维材料增强浆体内聚力和触变性,形成了适用与该区域的复杂深井小间隙尾管固井技术。现场应用未发生憋堵和漏失,固井质量合格,应用效果良好。
1. 固井技术难点
北黄海太阳盆地的预探井采用五开井身结构,四开采用ϕ311.1 mm钻头钻至井深2 500 m左右,下入ϕ244.5 mm套管,五开采用ϕ215.9 mm钻头钻至井深4 000 m左右,下入ϕ177.8 mm尾管固井,封固中上侏罗统。五开尾管固井技术难点如下:
1)尾管固井时砾石层漏失和煤层掉块造成环空憋堵。上侏罗统以黑色泥岩、杂色粉砂质泥岩为主,局部夹砾石层;中侏罗统以灰色泥岩、灰白色砂岩为主,局部夹煤层。五开钻进过程中,砾石层漏失严重,最大漏失速度达27 L/h,煤层掉块严重,掉块尺寸最大达70 mm×20 mm×15 mm,前期已经完钻的6口井,均在尾管固井过程中发生环空憋堵和井下漏失。
2)小间隙尾管固井加剧了环空憋堵和井下漏失。ϕ215.9 mm井眼下入ϕ177.8 mm尾管,属于小间隙尾管固井,“喇叭口”处单边间隙5 mm左右,固井前循环与固井过程中煤层掉块在小间隙上、下堆积,使环空憋堵和井下漏失加剧[4-6]。
3)固井施工排量受限,顶替效率低。受环空憋堵和井下漏失影响,固井施工排量难以提高,前期固井最大顶替排量13~15 L/s,裸眼段环空返速0.65~0.76 m/s,顶替效率较低,固井质量均不合格。
2. 固井关键技术
2.1 井眼准备
上侏罗统砾石层粒间微裂缝是井下漏失的主要原因,固井前在钻井液中加入纤维堵漏材料,通过先静止后循环的堵漏方式提高地层承压能力。对于引起环空憋堵的煤层掉块,固井前采用大于尾管串刚度的钻具组合通井,并结合实测井径在缩径和遇阻井段进行短起下,采用高黏钻井液充分循环,通井到底,大排量循环洗井2个循环周期以上,起钻前调整钻井液的防塌和护壁性能[7-10]。
2.2 封隔式内嵌卡瓦尾管悬挂器
在进行尾管固井时,尾管悬挂器处的环空过流面积最小,为了降低五开尾管固井时的环空憋堵风险,选择尾管悬挂器时,将有效环空过流面积作为重要指标。尾管悬挂器从上到下主要由防砂罩、回接筒、扶正块、卡瓦和液缸组成。回接筒的外径大且长度一般在3 m左右,占尾管悬挂器长度的一半,此处环空过流面积最小,因此,回接筒的外径越小越好。尾管悬挂器坐挂后卡瓦处的过流面积变小,使环空憋堵风险增大,因此,坐挂后卡瓦处的过流面积越大越好,且坐挂前后过流面积变化率越低越好。如图1所示,将卡瓦内嵌入尾管悬挂器本体,为缩小回接筒外径创造了条件,利用卡瓦侧面承载,坐挂后卡瓦被锥套托起,与尾管悬挂器芯体形成内过流通道,显著增大了卡瓦处的过流面积[11-17]。回接筒外径由210 mm缩至206 mm,过流面积由35 cm2增至45 cm2,增大了28.57%。坐挂后卡瓦处的环空过流面积由31 cm2增至45 cm2,增大了45.16%,坐挂前后卡瓦处的环空过流面积由49 cm2变为45 cm2,变化率仅8.16 %。
如图2所示,压缩扩张式封隔器通过压胀胶筒密封环空,将其安装在尾管悬挂器顶部,尾管固井碰压后,通过胀封挡块和回接筒将下压载荷传递至封隔器胶筒,使其受挤压变形,分隔密封尾管悬挂器与套管环空,隔离尾管悬挂器上部环空液柱压力,实现下部环空相对密闭真空,有效降低尾管固井取出中心管后循环出多余水泥浆期间和候凝期间的漏失风险[18-19]。
2.3 基体抗侵纤维防漏水泥浆
为降低五开尾管固井时井下漏失的风险,提高水泥浆的防漏堵漏性能,在水泥浆中加入基体抗侵降滤失剂BCG-200L和纤维防漏剂BCE-220S。BCG-200L对水泥浆具有较好的增黏和提切作用,使浆体有较强的内聚力和一定的触变性,可有效增加水泥浆向地层渗流的阻力[20-21];BCE-220S中的纤维材料表面经亲水处理,纤维束在水泥浆中不结团,能够形成均匀的网状结构,对渗透性地层和微裂缝发育的地层有较好的堵漏效果[22-23]。基体抗侵纤维防漏水泥浆的配方为胜潍G级加砂水泥+5.0%基体抗侵降滤失剂BCG-200L+2.5 %纤维防漏剂BCE-220S+0.1 %消泡剂G603+0.5 %缓凝剂BXR-200L+0.5 %减阻剂BCD-210L+44.0%淡水。
2.3.1 防漏性能评价
测试基体抗侵纤维防漏水泥浆在70~130 ℃下的流变参数评价其内聚力和触变性,结果见表1。由表1可知,在测试温度下,基体抗侵纤维防漏水泥浆有较高的塑性黏度、动切力和静切力差,塑性黏度为120~150 mPa·s,动切力为20.1~26.6 Pa,静切力差为21.4~24.1 Pa,说明BCG-200L有较好的增黏和提切作用,水泥浆内聚力较强、触变性较好。
表 1 基体抗侵纤维防漏水泥浆的流变性能Table 1. Rheological properties of anti-leakage cement slurry with matrix invasion-resistant fiber温度/℃ 塑性黏度/
(mPa·s)动切力/
Pa静切力/
Pa静切力差/
Pa70 150 26.6 7.1/31.2 24.1 90 144 24.3 6.3/29.2 22.9 110 123 21.5 5.5/27.2 21.7 130 120 20.1 5.1/26.5 21.4 2.3.2 堵漏性能评价
利用堵漏测试仪测试不同尺寸缝隙孔板的水泥浆漏失量,评价其堵漏性能。堵漏测试仪在降滤失仪基础上改造而成,其结构如图3所示。采用不同尺寸的孔缝孔板(见图4)和不同尺寸的裂缝孔板(见图5),对进气口持续施加定量压力,推动活塞向下运动,挤压水泥浆通过孔板,测量30 min内的漏失量,漏失量越少说明水泥浆堵漏能力越强。如表2所示,对孔缝直径为0.5~3.0 mm的孔板施加7.0 MPa的压力,基体抗侵纤维水泥浆的漏失量为10~41 mL,均小于50 mL。对裂缝直径为0.5~3.0 mm的孔板施加3.5 MPa的压力,基体抗侵纤维水泥浆的漏失量为14~49 mL,也均小于50 mL。而未加纤维的水泥浆全部漏失,说明基体抗侵纤维水泥浆的堵漏性能较好。
表 2 基体抗侵纤维防漏水泥浆的堵漏性能Table 2. Performance of anti-leakage cement slurry with matrix invasion-resistant fiber缝隙类型 尺寸/mm 堵漏压力/MPa 漏失量/mL 孔缝 0.5 7.0 10 1.0 7.0 11 2.0 7.0 27 3.0 7.0 41 裂缝 0.5 3.5 14 1.0 3.5 19 2.0 3.5 35 3.0 3.5 49 3. 现场应用
北黄海太阳盆地的4口井应用了复杂深井小间隙尾管固井技术,均取得了良好的应用效果,固井施工未发生憋堵和漏失,固井质量合格。下面以S21-2井为例介绍现场应用情况和效果。S21-2井是部署在北黄海太阳盆地的一口预探井,四开ϕ244.5 mm套管下至井深2 606 m,五开使用密度1.20 kg/L的有机盐钻井液,采用ϕ215.9 mm钻头钻至井深3 640 m,钻进过程中频繁发生渗漏和憋堵,2 939~2 974 m井段的砾石层发生了漏失,最大漏失速度为13 L/h,累计漏失钻井液90 L,3 177~3 199 m井段返出大量煤层掉块,掉块尺寸最大达45 mm×15 mm×10 mm。
在完钻后通井循环过程中,注入25 L含有纤维堵漏材料的钻井液,静止堵漏12 h。固井前采用双稳通井钻具组合通井,配合2个高黏钻井液段塞,循环2个周期。下入ϕ177.8 mm尾管(尾管串组合:ϕ177.8 mm浮鞋+ϕ177.8 mm套管×1根+ϕ177.8 mm浮箍+ϕ177.8 mm浮箍×1根+ϕ177.8 mm球座+ϕ177.8 mm尾管串+ϕ244.5 mm×ϕ177.8 mm封隔式内嵌卡瓦尾管悬挂器+ϕ127.0 mm钻杆串),尾管封固井段2 566~3 640 m。下入尾管后以10 L/s的排量将井眼中25 L的高黏钻井液循环出井,然后将排量提至22 L/s循环2个周期,尾管坐挂后将排量提至22 L/s继续循环1个周期,循环过程正常。固井施工注入密度1.25 kg/L的纤维防漏隔离液7 L、密度1.90 kg/L的基体抗侵纤维防漏水泥浆25.8 L,注入排量10~15 L/s。释放钻杆胶塞后以22 L/s的排量进行顶替,当水泥浆被顶替出尾管鞋后,逐渐将顶替排量降至10 L/s,碰压正常,中心管上提2 m,下放钻具给封隔器施加150 kN压力,封隔器正常坐封,拔出中心管,循环出多余水泥浆,固井施工结束。固井过程中无漏失或憋堵发生,固井质量良好。
4. 结 论
1)北黄海太阳盆地尾管固井质量差的主要原因为砾石层粒间微裂缝漏失、煤层掉块憋堵环空和尾管固井时的环空间隙小等。
2)固井前循环纤维堵漏钻井液和高黏钻井液可以提高地层承压能力并充分清洁井眼,封隔式内嵌尾管悬挂器能大幅增大“喇叭口”环空过流面积,基体抗侵纤维防漏水泥浆的防漏、堵漏性能较好,这3项技术措施有利于解决太阳盆地尾管固井的技术难点。
3)现场应用结果表明,复杂深井小间隙尾管固井技术可有效提高北黄海太阳盆地复杂深井的固井质量,有较好的区域适用性,可以为类似复杂井的固井施工提供参考。
-
表 1 耐酸降阻剂的降阻性能
Table 1 Drag reduction performance of an acid-resistant drag reducer
类型 排量/(L·min−1) 压差/kPa 降阻率,% 清水 47.4 162 清水+0.08%耐酸降阻剂 47.4 51 68.5 清水+0.10%耐酸降阻剂 47.4 48 70.3 清水+0.12%耐酸降阻剂 47.4 50 69.1 表 2 不同酸液体系的酸岩反应速率
Table 2 Acid rock reaction rates under different acid solution systems
酸液体系 反应前后岩心
质量差/g平均酸岩反应速率/
(μmol·cm−2·s−1)15.0%盐酸 71.635 5 39.70 0.1%耐酸降阻剂+3.0%缓速剂+15.0%盐酸 5.338 8 2.97 0.7%稠化剂+15.0%盐酸 5.765 7 3.20 0.1%耐酸降阻剂+15.0%盐酸 25.297 0 14.00 3.0%缓速剂+15.0%盐酸 10.346 4 5.74 表 3 不同质量分数盐酸配制隔离膜缓速酸液体系反应前后的黏度及酸岩反应速率
Table 3 Acid viscosity and acid rock reaction rate before and after reaction with isolation membrane retarded acid solution systems of different acid concentration
盐酸质量分数,% 酸液初始黏度/(mPa·s) 剩余酸黏度/(mPa·s) 反应前后质量差/g 平均酸岩反应速率/
(μmol·cm−2·s−1)15.0 3.076 8 2.163 8 10.072 3 2.85 20.0 2.983 2 2.188 5 14.112 0 3.92 28.0 3.874 9 2.510 1 24.291 7 6.87 表 4 不同酸液体系的动态酸岩反应速率
Table 4 Dynamic acid rock reaction rates in different acid solution systems
酸液体系 盐酸质量分数,% 岩心消耗
质量/g平均酸岩反应速率/
(μmol·cm−2·s−1)隔离膜
缓速酸15.0 8.86 2.46 20.0 15.51 4.31 28.0 18.37 5.10 胶凝酸 15.0 14.62 4.06 20.0 20.93 5.81 28.0 27.15 7.54 -
[1] 吴丰,代槿,姚聪,等. 塔河油田奥陶系一间房组与鹰山组断溶体发育模式解剖[J]. 断块油气田,2022,29(1):33–39. WU Feng, DAI Jin, YAO Cong, et al. Developmental mode analysis of the fault-karst reservoir in Yijianfang Formation and Yingshan Formation of Ordovician in Tahe Oilfield[J]. Fault-Block Oil & Gas Field, 2022, 29(1): 33–39.
[2] 米强波. 塔河油田碳酸盐岩储层酸压改造效果[J]. 油气田地面工程,2014,33(4):88–89. MI Qiangbo. Effect of acid fracturing on carbonate reservoir in Tahe Oilfield[J]. Oil-Gas Field Surface Engineering, 2014, 33(4): 88–89.
[3] 钟小军,张锐,吴刚,等. 复杂非均质碳酸盐岩储层酸岩反应动力学特征及酸压对策研究[J]. 钻井液与完井液,2020,37(6):798–802. ZHONG Xiaojun, ZHANG Rui, WU Gang, et al. Study on dynamic characteristics of acid rock reaction and acid fracturing countermeasures in complex heterogeneous carbonate reservoirs[J]. Drilling Fluid & Completion Fluid, 2020, 37(6): 798–802.
[4] 陈力力,刘飞,杨建,等. 四川盆地深层超深层碳酸盐岩水平井分段酸压关键技术[J]. 天然气工业,2022,42(12):56–64. CHEN Lili, LIU Fei, YANG Jian, et al. Horizontal well staged acid fracturing technology for deep and ultra-deep carbonate gas reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2022, 42(12): 56–64.
[5] 闫杰,张涵,郭志杰,等. 高分子聚合物稠化剂的制备及其压裂液应用性能研究[J]. 钻井液与完井液,2022,39(1):107–113. YAN Jie, ZHANG Han, GUO Zhijie, et al. Preparation of a high molecular weight polymer thickening agent and its use in fracturing fluids[J]. Drilling Fluid & Completion Fluid, 2022, 39(1): 107–113.
[6] 张伟,任登峰,李富荣,等. 一种耐高温酸液稠化剂的研制[J]. 钻采工艺,2022,45(6):129–133. ZHANG Wei, REN Dengfeng, LI Furong, et al. Development of a high temperature resistant acid thickener[J]. Drilling & Production Technology, 2022, 45(6): 129–133.
[7] 王磊,薛蓉,赵倩云,等. 油气藏酸液体系研究进展[J]. 应用化工,2018,47(3):548–553. WANG Lei, XUE Rong, ZHAO Qianyun, et al. A critical review of acidizing fluids in reservoirs for recent years[J]. Applied Chemical Industry, 2018, 47(3): 548–553.
[8] MAHESHWARI P, MAXEY J, BALAKOTAIAH V. Reactive-dissolution modeling and experimental comparison of wormhole formation in carbonates with gelled and emulsified acids[J]. SPE Production & Operations, 2016, 31(2): 103–119.
[9] CAIRNS A J, AL-MUNTASHERI G A, SAYED M, et al. Targeting enhanced production through deep carbonate stimulation: Stabilized acid emulsions[R]. SPE 178967, 2016.
[10] ALOTAIBI F, DAHLAN M, KHALDI M, et al. Evaluation of inorganic-crosslinked-based gelled acid system for high-temperature applications[R]. SPE 199258, 2020.
[11] 安娜,罗攀登,李永寿,等. 碳酸盐岩储层深度酸压用固体颗粒酸的研制[J]. 石油钻探技术,2020,48(2):93–97. AN Na, LUO Pandeng, LI Yongshou, et al. Development of solid granular acid for the deep acid-fracturing of carbonate reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(2): 93–97.
[12] 李小刚,秦杨,朱静怡,等. 自生酸酸液体系研究进展及展望[J]. 特种油气藏,2022,29(6):1–10. LI Xiaogang, QIN Yang, ZHU Jingyi, et al. Research progress and prospect of autogenic acid system[J]. Special Oil & Gas Reservoirs, 2022, 29(6): 1–10.
[13] 林永茂,缪尉杰,刘林,等. 川西南靖和1井茅口组立体酸压技术[J]. 石油钻探技术,2022,50(2):105–112. doi: 10.11911/syztjs.2022009 LIN Yongmao, MIAO Weijie, LIU Lin, et al. 3D acid fracturing technology in Maokou Formation of Well Jinghe 1 in southwestern Sichuan[J]. Petroleum Drilling Techniques, 2022, 50(2): 105–112. doi: 10.11911/syztjs.2022009
[14] 吴峙颖,胡亚斐,蒋廷学,等. 孔洞型碳酸盐岩储层压裂裂缝转向扩展特征研究[J]. 石油钻探技术,2022,50(4):90–96. WU Shiying, HU Yafei, JIANG Tingxue, et al. Study on propagation and diversion characteristics of hydraulic fractures in vuggy carbonate reservoirs[J]. Petroleum Drilling Techniques, 2022, 50(4): 90–96.
[15] 胡锋,胡雅洁. 塔河油田关于变粘酸酸压工艺的有效研究[J]. 中国石油和化工标准与质量,2013,33(21):127–128. HU Feng, HU Yajie. Effective research on variable viscosity acid fracturing process in Tahe Oilfield[J]. China Petroleum and Chemical Standard and Quality, 2013, 33(21): 127–128.
[16] 赵永昌. 塔河高温碳酸盐岩储层酸压改造交联酸体系优化研究[D]. 北京: 中国石油大学(北京), 2020. ZHAO Yongchang. Optimization of crosslinked acid system in acid fracturing of Tahe high temperature carbonate reservoir[D]. Beijing: China University of Petroleum(Beijing), 2020.
[17] 王萌,车明光,周长林,等. 一种新型耐高温碳酸盐岩酸压胶凝酸及其应用[J]. 钻井液与完井液,2020,37(5):670–676. WANG Meng, CHE Mingguang, ZHOU Changlin, et al. A novel gelled acid for the acid fracturing of the high-temperature carbonates and its application[J]. Drilling Fluid & Completion Fluid, 2020, 37(5): 670–676.
[18] 穆代峰,贾文峰,姚奕明,等. 胶凝酸与交联酸一体化耐高温缓速酸研究[J]. 钻井液与完井液,2019,36(5):634–638. MU Daifeng, JIA Wenfeng, YAO Yiming, et al. Study on the integration of gelled acid and crosslinked acid to form high temperature retarded acid[J]. Drilling Fluid & Completion Fluid, 2019, 36(5): 634–638.
[19] 王旭,贾文峰,任倩倩,等. 一种新型乳化胶凝酸的制备与性能评价[J]. 钻井液与完井液,2017,34(5):111–116. WANG Xu, JIA Wenfeng, REN Qianqian, et al. Development and evaluation of a new emulsified gelled acid[J]. Drilling Fluid & Completion Fluid, 2017, 34(5): 111–116.
[20] 杨方政,李春月,侯帆,等. 延迟交联冻胶酸酸压技术在塔河油田的应用[J]. 化工中间体,2014,10(8):25–30. YANG Fangzheng, LI Chunyue, HOU Fan, et al. Delayed crosslinked gel acid fracturing technology in Tahe Oilfield[J]. Chemical Intermediates, 2014, 10(8): 25–30.
[21] 贾光亮,蒋新立,李晔旻. 塔河油田超深井压裂裂缝自生酸酸化研究及应用[J]. 复杂油气藏,2017,10(2):73–75. JIA Guangliang, JIANG Xinli, LI Yemin. Research and application of self-generating acid fracturing technology in Tahe Oilfield[J]. Complex Hydrocarbon Reservoirs, 2017, 10(2): 73–75.
[22] 刘建坤,蒋廷学,周林波,等. 碳酸盐岩储层多级交替酸压技术研究[J]. 石油钻探技术,2017,45(1):104–111. LIU Jiankun, JIANG Tingxue, ZHOU Linbo, et al. Multi-stage alternative acid fracturing technique in carbonate reservoirs stimulation[J]. Petroleum Drilling Techniques, 2017, 45(1): 104–111.
[23] 刘芳慧,张世昆,曹耐. 强渗透缓速酸液体系研究与评价[J]. 钻井液与完井液,2022,39(3):365–372. LIU Fanghui, ZHANG Shikun, CAO Nai. Study and evaluation of highly permeable retarded acids[J]. Drilling Fluid & Completion Fluid, 2022, 39(3): 365–372.
[24] 薛衡,何冰,蒋利平,等. 碳酸盐岩储层水平井靶向酸化研究及应用[J]. 西南石油大学学报(自然科学版),2022,44(4):121–128. XUE Heng, HE Bing, JIANG Liping, et al. Research and application of targeted acidizing tech in horizontal well of carbonate reservoir[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2022, 44(4): 121–128.
[25] 王琨,詹立,苟波. 高温致密碳酸盐岩与胶凝酸酸岩反应速率测试方法研究[J]. 钻采工艺,2018,41(3):41–44. WANG Kun, ZHAN Li, GOU Bo. Method to test rock-acid reaction rate between gelled acid and high temperature tight carbonate rocks[J]. Drilling & Production Technology, 2018, 41(3): 41–44.
[26] 张忆南,梁利喜,刘向君,等. 全直径碳酸盐岩岩心孔隙空间重构方法[J]. 断块油气田,2021,28(3):346–351. ZHANG Yinan, LIANG Lixi, LIU Xiangjun, et al. Pore-space reconstruction method research for full-diameter carbonate cores[J]. Fault-Block Oil & Gas Field, 2021, 28(3): 346–351.
-
期刊类型引用(4)
1. 陈小云. 隔离式冲砂技术工艺在低压漏失煤层气井的应用. 煤炭技术. 2025(02): 91-93 . 百度学术
2. 冯定,纪海涛,张一铎,孙巧雷,周斩,黄成彬. 水平井涡轮振荡冲砂工具设计与仿真. 断块油气田. 2024(02): 363-368 . 百度学术
3. 纪海涛,冯定,孙巧雷,王尚卫,侯学文,黄成彬. 斜井段冲砂砂粒沉降规律及影响因素仿真分析. 石油机械. 2024(10): 108-116 . 百度学术
4. 张聪,王琪,何珊,张永琪,郭晶,范秀波. 煤层气L型水平井氮气泡沫洗井解堵技术. 石油钻采工艺. 2024(06): 743-753+782 . 百度学术
其他类型引用(2)