Synthesis and Property Evaluation of an Amphoteric Polymer Fracturing Fluid Thickener
-
摘要:
针对目前国内外水基压裂液所用聚合物稠化剂大多耐盐性能较差的问题,在丙烯酰胺(AM)链上引入阴离子单体2-丙烯酰胺-2-甲基丙磺酸(AMPS)和阳离子单体甲基丙烯酰氧乙基三甲基氯化铵(DMC),合成了一种两性聚丙烯酰胺AMPAM。通过分析单体总质量分数、3种单体质量比、引发剂加量和pH值对AMPAM相对分子质量和增黏性能的影响,确定了合成AMPAM的最佳条件。评价了AMPAM的耐盐性能、溶解性能和增黏性能,以及以矿化度30 g/L NaCl溶液配制的AMPAM压裂液的性能,结果表明:以高矿化度盐水配制的0.5%AMPAM溶液的表观黏度为20 mPa·s;AMPAM加量不超过0.6%时,在20 min内可以完全溶解;盐水AMPAM压裂液的耐温耐剪切性能、携砂性能和破胶性能均符合水基压裂液通用技术条件。研究结果表明,两性聚丙烯酰胺AMPAM具有良好的耐盐性能,可以作为盐水聚合物压裂液的稠化剂。
Abstract:At present, most of the polymer thickeners used in water-based fracturing fluid both in China and abroad have poor salt resistance. Therefore, amphoteric polyacrylamide (AMPAM) was synthesized by introducing anionic monomer (2-acrylamido-2-methylpropane sulfonic acid (AMPS)) and cationic monomer (methacryloyloxyethyl trimethyl ammonium chloride (DMC)) into the acrylamide (AM) chain. The effects of the total mass fraction of monomers, mass ratio of monomers, initiator dosage, and pH value on the relative molecular mass and thickening property of AMPAM were studied, and the optimal conditions for AMPAM synthesis were determined. In addition, the salt resistance, solubility, and thickening property of AMPAM, as well as the performance of AMPAM fracturing fluid prepared with NaCl solution with salinity of 30 g/L were evaluated. The results show that the apparent viscosity of AMPAM solution of 0.5% prepared with high-salinity brine was 20 mPa·s, and the AMPAM was completely dissolved within 20 min when its dosage did not exceed 0.6%. The temperature and shear resistance, as well as sand-carrying and gel-breaking properties of AMPAM fracturing fluid prepared with brine meet the general technical requirements of water-based fracturing fluid. The results show that AMPAM has excellent salt resistance and can be used as a thickener for brine polymer fracturing fluid.
-
Keywords:
- polymer; fracturing fluid /
- thickener /
- amphoteric polyacrylamide /
- salt resistance
-
-
表 1 AMPAM压裂液的破胶性能
Table 1 Gel breaking property of AMPAM fracturing fluid
温度/℃ 破胶时间/h 破胶黏度/(mPa·s) 残渣含量/(mg·L−1) 60 8.0 3.17 177.3 90 4.0 2.39 109.1 120 2.5 2.16 92.3 150 1.0 2.23 80.9 -
[1] 何春明,陈红军,刘超,等. 高温合成聚合物压裂液体系研究[J]. 油田化学,2012,29(1):65–68. doi: 10.19346/j.cnki.1000-4092.2012.01.015 HE Chunming, CHEN Hongjun, LIU Chao, et al. Study of high temperature synthetic polymer fracturing fluid[J]. Oilfield Chemistry, 2012, 29(1): 65–68. doi: 10.19346/j.cnki.1000-4092.2012.01.015
[2] 陈大钧, 陈馥. 油气田应用化学[M]. 北京: 石油工业出版社, 2006. CHEN Dajun, CHEN Fu. Applied chemistry of oil and gas fields [M]. Beijing: Petroleum Industry Press, 2006.
[3] 程代淑,董丽,刘占国. HYY-98型油基冻胶压裂液及其应用[J]. 石油钻采工艺,2000,22(4):81–82. doi: 10.13639/j.odpt.2000.04.032 CHENG Daishu, DONG Li, LIU Zhanguo. HYY-98 oil-based gel fracturing fluid and its application[J]. Oil Drilling & Production Technology, 2000, 22(4): 81–82. doi: 10.13639/j.odpt.2000.04.032
[4] 李小刚,宋峙潮,宋瑞,等. 泡沫压裂液研究进展与展望[J]. 应用化工,2019,48(2):412–417. doi: 10.3969/j.issn.1671-3206.2019.02.039 LI Xiaogang, SONG Zhichao, SONG Rui, et al. Research progresses and expectation on foam fracture fluid[J]. Applied Chemistry, 2019, 48(2): 412–417. doi: 10.3969/j.issn.1671-3206.2019.02.039
[5] 杜涛,姚奕明,蒋廷学,等. 合成聚合物压裂液最新研究及应用进展[J]. 精细石油化工进展,2016,17(1):1–5. doi: 10.13534/j.cnki.32-1601/te.2016.01.001 DU Tao, YAO Yiming, JIANG Tingxue, et al. Recent progress of research on synthetic polymer fracturing fluids and their appli-cation[J]. Advances in Fine Petrochemicals, 2016, 17(1): 1–5. doi: 10.13534/j.cnki.32-1601/te.2016.01.001
[6] 于洋,郭粉娟,李立,等. 自缔合压裂液优选及应用[J]. 断块油气田,2021,28(4):566–570. doi: 10.6056/dkyqt202104025 YU Yang, GUO Fenjuan, LI Li, et al. TOptimization and application of self-association fracturing fluid[J]. Fault Block Oil & Gas Field, 2021, 28(4): 566–570. doi: 10.6056/dkyqt202104025
[7] 张伟,任登峰,周进,等. 耐温耐盐低伤害压裂液聚合物稠化剂的研制及应用[J]. 特种油气藏,2022,29(6):159–167. ZHANG Wei, REN Dengfeng, ZHOU Jin,et al. Development and application of polymer thickener for fracturing fluid with high temperature and salt resistance and low damage[J]. Special Oil & Gas Reserviors, 2022, 29(6): 159–167.
[8] 王超,崔明月,张旭,等. 缓速交联超高温合成聚合物压裂液稠化剂研究[J]. 钻井液与完井液,2022,39(3):390–396. WANG Chao, CUI Mingyue, ZHANG Xu, et al. Study on fracturing fluid formulated with ultra-high temperature retarded crosslinking polymers[J]. Drilling Fluid & Completion Fluid, 2022, 39(3): 390–396.
[9] 吕振虎,邬国栋,郑苗,等. 基于溶胀–熟化机理的疏水缔合聚合物速溶压裂液技术[J]. 石油钻探技术,2019,47(4):104–109. LYU Zhenhu, WU Guodong, ZHENG Miao, et al. An instantly dissolving fracturing fluid technology using hydrophobic associating polymers based on swelling-curing mechanisms[J]. Petroleum Drilling Techniques, 2019, 47(4): 104–109.
[10] 周成裕,陈馥,黄磊光. 一种疏水缔合物压裂液稠化剂的室内研究[J]. 石油与天然气化工,2008,37(1):62–64. doi: 10.3969/j.issn.1007-3426.2008.01.017 ZHOU Chengyu, CHEN Fu, HUANG Leiguang. A laboratory study on one kind of hydrophobic association fracturing fluid gelati-nizer[J]. Chemical Engineering of Oil & Gas, 2008, 37(1): 62–64. doi: 10.3969/j.issn.1007-3426.2008.01.017
[11] DAI Caili, XU Zhongliang, WU Yining, et al. Design and study of a novel thermal-resistant and shear-stable amphoteric polyacrylamide in high-salinity solution[J]. Polymers, 2017, 9(7): 296.
[12] QUAN Hongping, TIAN Haiyang, HUANG Zhiyu, et al. Salt stimulus response of a carboxyl betaine amphoteric hydrophobic associative polyacrylamide[J]. Russian Journal of Applied Chemistry, 2017, 90(7): 1193–1201. doi: 10.1134/S1070427217070266
[13] 李志臻. 电吸引缔合聚合物压裂液稠化剂的合成及配方研究[D]. 成都: 西南石油大学, 2015. LI Zhizhen. Study on the synthesis and formulation of the thickener for the electroattractive associating polymer fracturing fluid [D]. Chengdu: Southwest Petroleum University, 2015
[14] 马喜平,代磊阳,马启睿. 一种具有优良抑制性能降滤失剂的合成与评价[J]. 精细化工,2014,31(5):633–637. doi: 10.13550/j.jxhg.2014.05.128 MA Xiping, DAI Leiyang, Ma Qirui. Synthesis and evaluation of a fluid loss additive with significant inhibition effect[J]. Fine Chemicals, 2014, 31(5): 633–637. doi: 10.13550/j.jxhg.2014.05.128
[15] 童甲甲. 不同离子型PAM的合成与应用研究[D]. 淮南: 安徽理工大学, 2017. TONG Jiajia. Study on the synthesis and application of different type of polyacrylamide[D]. Huainan: Anhui University of Technology, 2017
[16] 肖光. 两性聚丙烯酰胺的合成及其增强性能的研究[D]. 青岛: 青岛科技大学, 2019. XIAO Guang. Study on synthesis and strength of amphoteric polyacylamide[D]. Qingdao: Qingdao University of Science and Technology, 2019
[17] 董国峰. 一种用于二氧化碳泡沫压裂液的稠化剂研究[D]. 成都: 西南石油大学, 2017. DONG Guofeng. Study on a thickener for carbon dioxide foam fracturing fluid [D]. Chengdu: Southwest Petroleum University, 2017
[18] 王传兴. 两性聚丙烯酰胺分散体系的合成及溶胀特性[D]. 青岛: 青岛科技大学, 2010. WANG Chuanxing. Preparation and swelling properties of amphoterric polyacrylamide dispersion[D]. Qingdao: Qingdao University of Science and Technology, 2010
[19] 吴伟,刘平平,孙昊. AAMS-1疏水缔合聚合物压裂液稠化剂合成与应用[J]. 钻井液与完井液,2016,33(5):114–118. WU Wei, LIU Pingping, SUN Hao. Synthesis and application of a hydrophobically associating polymer viscosifier for fracturing fluids[J]. Drilling Fluid & Completion Fluid, 2016, 33(5): 114–118.
[20] 蓝程程,方波,卢拥军,等. 三异丙醇胺改性黄原胶溶液流变特性[J]. 钻井液与完井液,2019,36(3):371–377. doi: 10.3969/j.issn.1001-5620.2019.03.019 LAN Chengcheng, FANG Bo, LU Yongjun, et al. Rheology of triisopropanolamine modified xanthan water solution[J]. Drilling Fluid & Completion Fluid, 2019, 36(3): 371–377. doi: 10.3969/j.issn.1001-5620.2019.03.019
[21] ZHANG Yang, MAO Jincheng, ZHAO Jinzhou, et al. Preparation of a novel fracturing fluid system with excellent elasticity and low friction[J]. Polymers, 2019, 11(10): 1539–1560. doi: 10.3390/polym11101539
[22] SY/T 6376—2008 压裂液通用技术条件[S]. SY/T 6376—2008 General technical specifications of fracturing fluids[S].
-
期刊类型引用(11)
1. 简旭,李皋,王军,王浩,王松涛,王华平. 气体钻井近钻头超前探测声源评价与优选. 石油钻探技术. 2025(01): 41-48 . 本站查看
2. 郝小龙,高国寅,谭海峰,杨诚,李岳桓. 基于自适应差分脉码调制的远探测声波测井数据井下压缩算法. 石油钻探技术. 2024(06): 148-155 . 本站查看
3. 喻著成,许期聪,邱儒义,雷鸣,周箩鱼. 随钻声波井下全景成像技术现状及展望. 钻采工艺. 2023(03): 171-175 . 百度学术
4. 王伟,郝小龙,周静,杨诚,高国寅. 随钻声波测井井下算法测试系统数据交换接口设计. 西安石油大学学报(自然科学版). 2023(06): 118-123+132 . 百度学术
5. 李辉,谭忠健,耿长喜,邓津辉,张志虎,张立刚,李文元,李浩. 基于随钻录井工程参数的变质岩潜山储层物性预测方法及应用. 特种油气藏. 2023(06): 10-15 . 百度学术
6. 刘西恩,赵腾,车小花. 基于声波垂直入射于井壁的随钻远探测方法及初步数值模拟. 测井技术. 2023(05): 542-550+577 . 百度学术
7. 简旭,李皋,王军,韩旭,黄兵,王松涛. 气体钻井声波超前测距方法与数值模拟. 石油钻探技术. 2022(03): 132-138 . 本站查看
8. 刘西恩,孙志峰,仇傲,李杰,罗博,彭凯旋,罗瑜林. 随钻四极子声波测井仪的设计及试验. 石油钻探技术. 2022(03): 125-131 . 本站查看
9. 郝小龙,高国寅,王伟,杨诚. 声波测井井下处理算法开发的上位机软件设计. 石油化工应用. 2022(09): 101-104 . 百度学术
10. 李皋,黎洪志,简旭,王军,王松涛. 气体钻井超前探测震源工具设计及力学性能模拟研究. 石油钻探技术. 2022(06): 14-20 . 本站查看
11. 孙志峰,卢华涛,李国梁. 随钻声波测井关键技术研究进展. 科学技术与工程. 2022(36): 15849-15859 . 百度学术
其他类型引用(2)