Research Progress and the Prospect of Intelligent Drilling and Completion Technologies
-
摘要:
智能钻完井技术是钻完井工程与人工智能、大数据、云计算等先进技术的有机融合,可实现油气钻完井过程的精细表征、决策优化和闭环调控,有望大幅提升钻完井效率、储层钻遇率和油气采收率,是油气领域的研究前沿和热点。从工程实际出发构建了油气钻完井人工智能应用场景,根据钻完井工程与人工智能技术的融合深度划分了智能钻完井技术的发展层次;分析了国内外智能钻完井理论与技术的研究现状,结合人工智能技术和钻完井工程的发展趋势提出了中长期发展规划,并凝练了智能钻完井技术研究面临的难题和重点攻关方向,以期为推进我国智能钻完井技术的基础理论研究和推广应用提供参考。
Abstract:Intelligent drilling and completion technologies are the integration of drilling and completion engineering with Artificial Intelligence (AI), Big Data, cloud computing, and other advanced technologies. They can achieve fine characterization, optimal decision-making, and closed-loop control of oil and gas drilling and completion and are expected to significantly improve drilling and completion efficiency, reservoir drilling rate, and oil and gas recovery efficiency. Therefore, they are the research frontier and hot spot in the oil and gas field. In this paper, the application scenario system of AI in oil and gas drilling and completion was constructed from the engineering practice. Then, the development level of intelligent drilling and completion technologies was divided according to the integration degree of drilling and completion engineering with AI. Furthermore, the research status of intelligent drilling and completion theories and technologies both in China and abroad was discussed, with a medium- and long-term development plan being proposed according to the development trend of AI and drilling and completion engineering. Finally, the problems and key directions of intelligent drilling and completion technologies were summarized. The paper serves as a reference for accelerating the basic theoretical research and application of intelligent drilling and completion technologies in China.
-
大位移井最早出现于20世纪20年代,美国首次在加利福尼亚州从陆地钻大位移井以开发海上油气田[1]。随后,挪威北海西Sleipneer、Statfjord和Oseberg,美国Pedernales和Dos Guadras,英国Wytch Farm和Gullbaks等油田都进行了大位移井油气开发工程实践,初步形成了一套较为成熟的大位移井工程技术,并获得了良好的经济效益和社会效益[2–3]。进入21世纪后,随着钻井技术突飞猛进的发展和油气勘探开发需求的不断增加,大位移井钻井技术得到了长足发展,大位移井井深或水平位移的世界纪录也被不断刷新[3–10]。目前,创世界纪录的大位移井主要集中于英国的Wytch Farm油田、俄罗斯的萨哈林地区和美国的墨西哥湾地区等。我国大位移井钻井完井技术研究也取得很大进展[11–19],并相继在南海东部西江24–1油田和流花11–1油田钻成了XJ24–3–A14大位移井(水平位移8 063 m,创造了当时水平位移最大世界纪录)[3]和B3ERW4大位移井(水垂比4.58,创造当时水垂比最大国内纪录)[20–21]。
全球大位移井钻井实践表明,虽然大位移井井深、水平位移或水垂比的世界纪录被不断刷新,但是每一项大位移井世界纪录都受当时的主客观约束条件影响,大位移井钻井延伸极限仍难以预测和控制。在特定的主观和客观约束条件下,任何一口大位移井的钻井作业井深(亦称“测深”)都存着一个极限值,称之为大位移井钻井延伸极限。图1所示为世界主要定向井的垂深和水平位移统计结果[22],其中数据点的外包络线(即图中红色曲线)为当前约束条件下能够达到的大位移井钻井延伸极限,其中横向极限(即水平位移)随着垂深增大呈现出“迅速增大—稳定—线性降低”的基本变化趋势。实际上,随着钻井技术与装备水平的不断提高,外包络线也在不断拓展。
随着油气资源勘探开发约束条件的变化,对大位移井、特别是大位移水平井及丛式井的需求越来越大,所面临的技术挑战也越来越大。为了合理评估和降低大位移井的工程作业风险,国内外开展了大位移井钻井延伸极限研究,以期在工程技术和经济效益合理的基础上,尽可能提高大位移井钻井延伸极限。为此,笔者在总结大位移井工程技术发展现状的基础上,重点介绍了大位移井钻井延伸极限的理论研究进展,以期为推动我国大位移井钻井技术发展提供指导和借鉴。
1. 大位移井钻井延伸极限研究概述
国外对大位移井钻井延伸极限的相关研究与应用比较早。1994年,R. Meertens等人[23]从井身结构设计及钻井风险的角度,对英国TA–05大位移井的延伸极限进行了分析。1995年,J. Wu等人[24]研究了油管在下入过程中的屈曲行为,进而推导出油管在水平段的下入极限,认为螺旋屈曲是限制油管下入极限的首要因素。2003年,L. A. S. Rocha等人[25–26]指出,随着井深的增加,所钻地层破裂压力的增加幅度不能与环空压耗保持同步,因此大位移井钻井存在一个延伸极限值。其他国外学者基于大位移井工程实例,分析了地层、钻井装备和水力条件等相关因素对延伸极限的影响[27–32]。
国内学者也开展了大量的大位移井钻井延伸极限理论研究。高德利等人[1, 9]首次系统提出了大位移井钻井延伸极限的基本理论概念,指出在大位移井钻井工程中需要考虑裸眼延伸极限、机械延伸极限和水力延伸极限等3种极限状态,引领了国内大位移井钻井延伸极限的理论研究。汪志明等人[33]建立了大位移井钻井水力延伸极限的计算模型,分析了地层、钻井泵、环空压耗及岩屑床高度等因素对水力延伸极限的影响;闫铁等人[34]应用大位移水平井整体钻柱摩阻分析的间隙元理论,给出了大位移水平井机械延伸极限的计算模型;Chen Xuyue和Gao Deli[35]给出了海洋超大位移井钻井裸眼延伸极限的计算模型;其他学者也从不同的角度研究了不同因素对大位移井钻井延伸极限的影响[36–41]。
2. 大位移井钻井延伸极限理论研究
大位移井钻井延伸极限研究前期主要针对工程实践进行分析总结,近年来开展了较多理论研究并取得了一些创新成果[1]。通过开展大位移井钻井延伸极限理论研究,可以定量预测大位移井钻井延伸能力,以期规避工程作业风险,防止钻井恶性事故的发生;同时,可以对大位移井工程设计进行了优化,以提高定向钻井的水平位移延伸作业能力。
2.1 大位移井钻井延伸极限的概念
在特定的主观和客观约束条件下,任何一口大位移井的钻井作业井深都存着一个极限值,称之为大位移井钻井延伸极限,包括裸眼延伸极限、机械延伸极限和水力延伸极限等3种极限。其中,裸眼延伸极限是指裸眼井底被压破或渗漏时的大位移井井深,主要取决于实钻地层的安全钻井密度窗口及钻井环空多相流循环压耗;机械延伸极限包括大位移井钻柱作业极限和下套管作业极限,主要取决于大位移井的导向控制模式(滑动导向或旋转导向)、管材强度、井眼约束、管柱载荷和钻机功率等;水力延伸极限是指在能够保持钻井流体正常循环及井眼清洁的前提下,钻井水力允许的井深,主要取决于钻井机泵、钻柱、地面管汇、水力参数和机械钻速等。在大位移井钻井优化设计与风险控制时,应该根据具体的主观和客观约束条件定量评估大位移井钻井的裸眼、机械及水力等延伸极限值,取其最小值作为大位移井钻井延伸极限。
2.2 大位移井钻井延伸极限预测模型
2.2.1 大位移井钻井裸眼延伸极限
2009年,笔者考虑实钻地层和钻井环空多相流的综合影响,建立了大位移井钻井裸眼延伸极限预测模型[9]:
DM=kDV=ΔρfmρdpDV (1) 式中:
DM 为大位移井钻井裸眼延伸极限,m;k 为测垂比(即测深与垂深之比);Dv 为大位移井垂深,m;Δρfm 为所钻地层的安全密度窗口,g/cm3;ρdp 为环空多相流循环压耗的当量密度,g/cm3。2013年,考虑环空岩屑浓度、安全余量及环空波动压力等参数的影响,分别建立了破岩、管柱上提和下放时的大位移井钻井裸眼延伸极限预测模型,使预测结果更符合实际工况[42-43],并取三者最小值作为许用值。其中,破岩钻进过程中裸眼延伸极限预测模型为:
DM=ρf−ρm−Cs(ρs−ρm)−ΔEρdpDV (2) 式中:
ρf 为地层破裂压力当量密度,g/cm3;ρm 为钻井液密度,g/cm3;ρs 为岩屑密度,g/cm3;Cs 为环空岩屑浓度;ΔE 为安全余量,g/cm3。2016年,基于上述预测模型,笔者通过引入水平段环空多相流循环压耗梯度,得到了大位移水平井水平段裸眼延伸极限和井深延伸极限的预测模型[44–46]:
{DH=0.00981[ρf−ρsCs−ρm(1−Cs)]DV−(Δpv+j∑i=1Δpdi)(Δp/ΔL)hDM=Dv+j∑i=1Ddi+Dh (3) 式中:
DH 为大位移水平井水平段延伸极限,m;Δpv 为垂直段环空压耗,MPa;Δpdi 为若干斜井段环空压耗,MPa;(Δp/ΔL)h 为水平段环空压耗梯度,MPa/m;Ddi 为若干斜井段井深,m。笔者利用式(3)中的裸眼延伸极限预测模型对钻井安全密度窗口进行了修正[47],对比了不同钻井液流变模式下大位移井钻井裸眼延伸极限的变化情况[48],并研究了连续油管钻井裸眼延伸极限,扩展了预测模型的应用范围[49–50]。
2.2.2 大位移井钻井机械延伸极限
笔者基于机械延伸极限的定义,综合考虑地面和井下诸多约束因素的影响,并结合各种钻井作业工况,建立了旋转钻井机械延伸极限的定量预测模型,并绘制了不同井眼钻井机械延伸极限的预测图版,并以扩大钻井机械延伸极限为宗旨,提出了相应的钻井优化设计原则和方法,主要包括井眼轨道、导向钻具组合及井下减阻工具的优化设计准则,以改进常规钻井工程设计存在的不足[51–54]。大位移井钻井机械延伸极限的目标函数可表达为:
L(p∗,d,c)=maxp⊂PL(p,d,c) (4) 式中:
L 为目标井深函数,m;L(⋅) 通常以隐函数的形式表达,具体为井下管柱整体力学模型;p 为约束参数,包括大钩载荷、转盘扭矩、钻头钻压和钻头扭矩等参数;d 为设计参数,包括管柱组合、井眼轨道和减阻接头等参数;P 为约束参数p 的许用空间,以约束条件的形式给出;p∗ 为最优约束参数,在最优约束参数下井深取得最大值;c 为操作工况,包含滑动和旋转钻进模式下的管柱上提和下入作业。式(4)的数学含义是,对于某一特定的钻井系统,在某一设计参数
d 及操作工况c 下,约束参数p 在其约束空间P 内所能取得的井眼长度最大值。钻井作业过程中,钻井管柱主要存在地面约束、钻头约束和管柱失效约束等3类约束条件。
1)地面约束条件。上提过程中大钩轴向拉力不能高于额定提拉载荷,下放过程中大钩载荷不小于零;钻机扭矩不高于额定扭矩。
2)钻头约束条件。钻头破岩存在门限钻压和门限扭矩,管柱上提过程中可能存在卡钻载荷。
3)管柱失效约束条件。管柱屈服强度与等效应力之比不小于所要求的安全系数,管柱磨损小于所要求的允许量等。
井下管柱轴向运动按运动方向分为上提和下放,按管柱是否旋转分成滑动和旋转,这2种分类组合形成了4种作业工况:滑动上提、滑动下放、旋转上提和旋转下放。
结合目标函数和约束条件,将每种作业工况下的机械延伸极限问题转换为约束优化问题,求解即可得到延伸极限的计算结果。滑动钻进的延伸极限为滑动上提和滑动下入的最小值;旋转钻进的延伸极限为旋转上提和旋转下入的最小值。
2.3 大位移井钻井延伸极限分布规律
对比理论计算结果[22](见图2)和图1所示的统计资料可知,理论延伸极限(旋转钻进)与统计延伸极限具有相似规律:横向延伸极限随着井眼垂深呈现出“迅速增大—稳定—线性降低”的趋势,分别对应浅井、中深井和深井的情形。从图2可以看出,旋转钻进模式下的横向延伸极限明显高于滑动钻进模式下的横向延伸极限。
利用大位移井钻井延伸极限预测模型进行分析,可得到如下规律:
1)对于浅井(稳斜角较大的定向井、水平井)而言,延伸极限对应的作业工况是管柱下入。滑动钻进时,大斜度井段管柱螺旋屈曲引起的高摩阻,是限制延伸极限的首要因素。对于水平井,单纯增大造斜点的深度对提高机械延伸极限的作用很小;对于三段式定向井,随着井斜角由90°逐渐减小,管柱的摩阻降低,导致横向延伸极限随着垂深增大而迅速增大。为了提高延伸极限,可以采取旋转导向钻进、优化稳斜角、降低摩阻系数和抑制管柱屈曲等技术措施。
2)对于深井(稳斜角较小的定向井、直井)而言,延伸极限对应的作业工况是管柱上提,限制延伸极限的主要因素是上提载荷超过大钩额定载荷或者过载导致管柱失效。随着井斜角由0°逐渐增大,管柱上提阻力与稳斜角密切相关,横向延伸极限
DH 随着垂深DV 的增大,大致以1/μ1 (μ1 为平均滑动摩阻系数)的速率线性降低。为了提高延伸极限,可提升大钩额定载荷或者采用高抗拉强度管柱。3)对于中深井(井深介于浅井和深井之间,井斜角的数值居中)而言,管柱下入或上提是延伸极限对应的作业工况,随着垂深的增大由管柱下入过渡到管柱上提。管柱上的高摩阻、管柱上提过载(超过大钩额定载荷和管柱抗拉强度)及管柱旋转过载(超过转盘额定扭矩以及管柱抗扭强度),是限制延伸极限的因素。对于滑动钻进而言,前两者起主要作用;对旋转钻进而言,管柱旋转过载不可忽略。在这些因素的综合影响下,横向延伸极限随着垂深的增大呈现出先增大后降低的趋势,且稳斜角在临界值
αh=arctan(1/μ1) 附近时达到横向延伸极限。为了提高机械延伸极限,首先需要利用机械延伸极限预测模型分析主要限制因素,然后从优选稳斜角、抑制管柱屈曲、降低摩阻、提高钻机性能和管柱强度等方面进行优化。3. 基于延伸极限的钻井工程设计方法
为了延长油气储层中水平段长度以提高单井产量及最终采收率,或为了钻达更远处的地下目标,需要进一步提高大位移井的延伸极限,因而需要建立基于大位移井延伸极限的钻井优化设计方法。
3.1 钻井液密度和排量优化设计方法
钻井液密度优化设计的原则:一是最优钻井液密度必须满足修正的安全密度窗口;二是大位移水平井可以在该最优钻井液密度下获得最大延伸极限。任意钻井液密度下都存在一个大位移水平井水平段延伸极限
Lh(ρ) ,它是该井水平段裸眼延伸极限Lh−op 和水力延伸极限Lh−hy 的最小值:Lh(ρ)=min (5) 以获得最大水平段延伸极限
{L_{{\rm{hmax}}}} 为目标,确定最优钻井液密度{\rho _{{\rm{opt}}}} 。图3列出了几种可能的情形,其中{L_{{\rm{h - op}}}} 利用式(3)得到,{L_{{\rm{h - hy}}}} 利用文献[50]中方法求解。具体步骤如下:1)若
{L_{{\rm{h - op}}}} 曲线和{L_{{\rm{h - hy}}}} 曲线有交点(见图3(a)),则交点的X轴坐标值为最优钻井液密度{\rho _{{\rm{opt}}}} ,交点的Y轴坐标值为水平段延伸极限的最大值{L_{{\rm{hmax}}}} 。2)若
{L_{{\rm{h - op}}}} 曲线和{L_{{\rm{h - hy}}}} 曲线无交点且{L_{{\rm{h - hy}}}} 一直大于{L_{{\rm{h - op}}}} (见图3(b)),则{L_{{\rm{h - hy}}}} 的最大值为水平段延伸极限的最大值{L_{{\rm{hmax}}}} ,该点的X轴坐标值为最优钻井液密度{\rho _{{\rm{opt}}}} 。3)若
{L_{{\rm{h - op}}}} 曲线和{L_{{\rm{h - hy}}}} 曲线无交点且{L_{{\rm{h - op}}}} 一直大于{L_{{\rm{h - hy}}}} (见图3(c)),则{L_{{\rm{h - op}}}} 最大值为水平段延伸极限的最大值{L_{{\rm{hmax}}}} ,该点的X轴坐标值为最优钻井液密度{\rho _{{\rm{opt}}}} 。4)若
{L_{{\rm{h - op}}}} 曲线和{L_{{\rm{h - hy}}}} 曲线无交点(见图3(d)),且任意钻井液密度下{L_{{\rm{h - op}}}} 为零或{L_{{\rm{h - hy}}}} 为零,则钻井液安全密度窗口不存在,不存在最优钻井液密度{\rho _{{\rm{opt}}}} 。最优排量和最优钻井液密度的设计方法基本相同,只是将式(6)—式(9)中的
\rho 替换为Q 即可。3.2 大位移井管柱优化设计方法
笔者提出了一种将大位移井分成下部大斜度井段和上部常规井段进行管柱优化设计的方法。下部大斜度井段的井斜角比较大,水平延伸距离长,裸眼段长,因此钻进该井段时管柱高摩阻和高扭矩问题比较突出,是限制大位移井延伸极限的主要原因。同时,大斜度井段穿过油气储层,对固井质量要求高,因此设计目标中需要包含套管居中度约束。为此,采用加权目标函数的方法,目标函数中包括摩阻、扭矩和套管居中度等参数,其计算公式为:
\mathop {\max }\limits_{d \subset D} J\left( d \right) = \mathop {\max }\limits_{d \subset D} \left[ {{\lambda _{\rm{f}}}{J_{\rm{f}}}\left( d \right) + {\lambda _{\rm{r}}}{J_{\rm{r}}}\left( d \right) + {\lambda _{\rm{c}}}{J_{\rm{c}}}\left( d \right)} \right] (6) 式中:
J 为总目标函数;{J_{\rm{f}}} ,{J_{\rm{r}}} 和{J_{\rm{c}}} 为与管柱摩阻扭矩、套管居中度及成本相关的子目标函数;{\lambda _{\rm{f}}} ,{\lambda _{\rm{r}}} 和{\lambda _{\rm{c}}} 为相应的权重系数;d 为设计参数。式(6)可采用先局部后整体的方法进行求解[52]。其计算思路为:1)将大斜度井段的管柱分成若干局部井段;2)从靠近钻头的局部井段进行优化设计,得到该井段管柱的最优设计参数;3)沿着井深减小的方向依次对各个局部井段进行优化设计;4)综合各个局部井段的设计参数,得到大斜度井段管柱的整体最优设计结果。
上部常规井段与常规定向井的井眼轨迹参数类似,但下部大斜度井段的存在导致上部常规井段管柱受力状况更加复杂,因此常规定向井管柱设计方法难以满足大位移井上部常规井段的要求。为了同时考虑各种作业工况,可采用延伸极限作为目标函数,即[52]:
{L_{\lim }}\left( d^* \right) = \mathop {\max }\limits_{d \subset D} {L_{\lim }}\left( d \right) (7) 式中:d*为最优设计参数;
{L_{\lim }} 为井眼延伸极限,m,利用式(4)计算。通常而言,方程的求解耗时比较长,可采用延伸极限的近似求解公式作为目标函数进行计算[52]。
4. 应用实例
萨哈林地区Z–42井创造了井深(12 700 m)最深和水平位移(11 739 m)最长的世界纪录[19],其垂深为2 338 m,水垂比高达5.02,属于高难度大位移水平井,其设计井眼轨道如图4所示。该井采用四开井身结构,水平段长度约为3 500 m,完井周期约为70 d。分析Z–42井施工报告可知,四开裸眼段钻进过程中的高扭矩和完井筛管在裸眼水平段内滑动下入的高摩阻是限制该井水平延伸的2个重要因素。针对这2种工况,利用本文的理论模型,分析不同技术措施对提高延伸极限的作用。
4.1 水平段旋转钻进极限分析
Z–42井四开ϕ215.9 mm水平段应用旋转导向工具钻进,钻具组合中包括ϕ149.2 mm加重钻杆和普通钻杆、ϕ168.3 mm钻杆等。其中,ϕ149.2 mm钻杆的上扣扭矩为96 kN·m,ϕ168.3 mm钻杆的上扣扭矩为108 kN·m,钻机额定扭矩为95 kN·m,可见,钻机额定扭矩是限制ϕ215.9 mm井眼延伸极限的主要因素,因此,提升钻机性能是提高井眼延伸极限的可行措施之一。利用式(4)进行计算,得到了不同钻机额定扭矩和摩阻系数下的井眼延伸极限(见图5)。由图5可以看出,在相同摩阻系数下,提升钻机性能可大幅度提高井眼延伸极限,能满足该井井深12 700 m的钻井需求。
4.2 完井管柱下入极限分析
Z–42井完井管柱主要包括1 499 m的ϕ168.3 mm筛管和2 149 m的ϕ139.7 mm筛管,筛管上部与钻柱连接,采用滑动方式下入。完井管柱在超长套管段和裸眼段内将产生高摩阻,导致下入困难。为此,该井完井作业时在筛管与钻柱之间安装了旋转接头,保证管柱下入过程中上部钻柱处于旋转状态,而下部筛管处于不旋转状态,从而大幅度降低管柱在套管段的摩阻及筛管下入作业难度。
利用式(4)进行计算,得到了安装和不安装旋转接头、安装和不安装减阻接头条件下的完井管柱延伸极限(见图6)。由图6可以看出,如果摩阻系数偏大且不安装旋转接头,完井管柱将无法下至井底;安装旋转接头可明显改善井下管柱的受力状况,完井管柱可顺利下到井底;同时安装旋转接头和减阻接头,可进一步提高完井管柱的下入极限。
5. 结束语
大位移井广泛应用于海洋、滩海、湖泊及山地等复杂地区油气资源的高效开发,相关的科技进步与工程实践在国内外备受关注。大位移井钻井延伸极限预测和控制与相应的技术、装备、作业环境及作业参数等诸多因素密切相关,是一个复杂的约束优化问题,需要不断加强研究与实践。显然,大位移井钻井延伸极限并不是固定值,将随着大位移定向钻井技术与装备的创新发展而不断提高。开展大位移井钻井延伸极限理论研究,力求实现工程作业极限的定量预测分析,揭示限制作业极限的主要因素及其影响规律,以便为工程作业的风险分析、优化设计及安全控制提供科学依据。
-
表 1 国内外典型的智能完井系统
Table 1 Typical intelligent well completion system at home and abroad
智能完井系统 年份 公司 驱动方式 技术特点 SCRAMS 1997 哈里伯顿 液压 只需1根液压管线和1根电缆管线即可完成流量控制 MultiNodeTM 2014 贝克休斯 电力 单根特制电缆将井下所有节点连接到地面控制系统 Simply Intelligent 2014 威德福 液压 可以实现分辨率为0.5 m的全井温度以及井下剖面监测 Manara 2015 斯伦贝谢 电力 能够实现井下永久监控,并对分支井眼的不同目的层进行流量控制 EIC-Riped 2017 中国石油 电力 信号传输距离4 km,可做到100级流量调节 SureCONNECT 2020 贝克休斯 电力 无需干预的井筒产液监测控制,实现数据驱动的生产智能决策 -
[1] 匡立春,刘合,任义丽,等. 人工智能在石油勘探开发领域的应用现状与发展趋势[J]. 石油勘探与开发,2021,48(1):1–11. doi: 10.11698/PED.2021.01.01 KUANG Lichun, LIU He, REN Yili, et al. Application and development trend of artificial intelligence in petroleum exploration and development[J]. Petroleum Exploration and Development, 2021, 48(1): 1–11. doi: 10.11698/PED.2021.01.01
[2] 贾承造. 全国油气勘探开发形势与发展前景[J]. 中国石油石化,2022(20):14–17. JIA Chengzao. National oil and gas exploration and development situation and development prospects[J]. China Petrochem, 2022(20): 14–17.
[3] 李根生,宋先知,田守嶒. 智能钻井技术研究现状及发展趋势[J]. 石油钻探技术,2020,48(1):1–8. doi: 10.11911/syztjs.2020001 LI Gensheng, SONG Xianzhi, TIAN Shouceng. Intelligent drilling technology research status and development trends[J]. Petroleum Drilling Techniques, 2020, 48(1): 1–8. doi: 10.11911/syztjs.2020001
[4] 闫铁,许瑞,刘维凯,等. 中国智能化钻井技术研究发展[J]. 东北石油大学学报,2020,44(4):15–21. doi: 10.3969/j.issn.2095-4107.2020.04.003 YAN Tie, XU Rui, LIU Weikai, et al. Research and development of intelligent drilling technology in China[J]. Journal of Northeast Petroleum University, 2020, 44(4): 15–21. doi: 10.3969/j.issn.2095-4107.2020.04.003
[5] 李宗田,肖勇,李宁, 等. 低油价下的页岩油气开发工程技术新进展[J]. 断块油气田,2021,28(5):577–585. doi: 10.6056/dkyqt202105001 LI Zongtian, XIAO Yong, LI Ning, et al. New progress in shale oil and gas development engineering technology under low oil prices [J]. Fault-Block Oil & Gas Field, 2021, 28(5): 577–585. doi: 10.6056/dkyqt202105001
[6] LI Gensheng, SONG Xianzhi, TIAN Shouceng, et al. Intelligent drilling and completion: a review[J]. Engineering, 2022, 18: 33–48. doi: 10.1016/j.eng.2022.07.014
[7] 杨传书,李昌盛,孙旭东,等. 人工智能钻井技术研究方法及其实践[J]. 石油钻探技术,2021,49(5):7–13. doi: 10.11911/syztjs.2020136 YANG Chuanshu, LI Changsheng, SUN Xudong, et al. Research method and practice of artificial intelligence drilling technology[J]. Petroleum Drilling Techniques, 2021, 49(5): 7–13. doi: 10.11911/syztjs.2020136
[8] 王敏生,光新军. 智能钻井技术现状与发展方向[J]. 石油学报,2020,41(4):505–512. WANG Minsheng, GUANG Xinjun. Status and development trends of intelligent drilling technology[J]. Acta Petrolei Sinica, 2020, 41(4): 505–512.
[9] 彭超,邓津辉,谭忠健,等. 基于测井资料的渤中34-9油田火成岩地层抗钻特性评价[J]. 石油钻采工艺,2022,44(2):186–190. PENG Chao, DENG Jinhui, TAN Zhongjian, et al. Well logging-based anti-drilling property evaluation of igneous rock in Bozhong 34-9 Oilfield[J]. Oil Drilling & Production Technology, 2022, 44(2): 186–190.
[10] HEGDE C, DAIGLE H, GRAY K E. Performance comparison of algorithms for real-time rate-of-penetration optimization in drilling using data-driven models[J]. SPE Journal, 2018, 23(5): 1706–1722. doi: 10.2118/191141-PA
[11] 孟昭. PDC钻头井下工况评价方法研究[D]. 北京: 中国石油大学(北京), 2020. MENG Zhao. Study on evaluation method of PDC bit downhole working condition[D]. Beijing: China University of Petroleum (Beijing), 2020.
[12] REN Chuanjie, HUANG Wenjun, GAO Deli. Predicting rate of penetration of horizontal drilling by combining physical model with machine learning method in the China Jimusar Oil Field[R]. SPE 212294, 2022.
[13] PACIS F J, ALYAEV S, AMBRUS A, et al. Transfer learning approach to prediction of rate of penetration in drilling[C]//Computational Science–ICCS 2022. Cham: Springer, 2022: 358−371.
[14] WEI Jun, LIAO Hualin, WANG Huajian, et al. Experimental investigation on the dynamic tensile characteristics of conglomerate based on 3D SHPB system[J]. Journal of Petroleum Science and Engineering, 2022, 213: 110350. doi: 10.1016/j.petrol.2022.110350
[15] WANG Han, CHEN Dong, YE Zhihui, et al. Intelligent planning of drilling trajectory based on computer vision[R]. SPE 197362, 2019.
[16] SNYDER J, SALMON G. Intelligent rotary steerable system, coupled with an instrumented bit, delivers section plan in deepwater GOM project[R]. SPE 204680, 2021.
[17] 吴思源,李守定,陈冬,等. 大闭环伺服控制随钻智能导向钻井方法[J]. 地球物理学报,2021,64(11):4215–4226. doi: 10.6038/cjg2021O0449 WU Siyuan, LI Shouding, CHEN Dong, et al. An intelligent-while-drilling steering method of global closed-loop servo control[J]. Chinese Journal of Geophysics, 2021, 64(11): 4215–4226. doi: 10.6038/cjg2021O0449
[18] 田岚. 石油天然气钻井工程风险识别与评价方法[J]. 钻采工艺,2010,33(2):31–33. TIAN Lan. Risk identification and evaluation method in drilling engineering[J]. Drilling & Production Technology, 2010, 33(2): 31–33.
[19] NOSHI C I, NOYNAERT S F, SCHUBERT J J. Casing failure data analytics: A novel data mining approach in predicting casing failures for improved drilling performance and production optimization[R]. SPE 191570, 2018.
[20] AGWU O E, AKPABIO J U, ALABI S B, et al. Artificial intelligence techniques and their applications in drilling fluid engineering: a review[J]. Journal of Petroleum Science and Engineering, 2018, 167: 300–315. doi: 10.1016/j.petrol.2018.04.019
[21] 胜亚楠. 钻井工程风险评估与控制技术研究[D]. 青岛: 中国石油大学(华东), 2019. SHENG Yanan. Research on risk assessment and control technology of drilling engineering[D]. Qingdao: China University of Petroleum(East China), 2019.
[22] FANG Chunfei, WANG Zheng, SONG Xianzhi, et al. A novel cementing quality evaluation method based on convolutional neural network[J]. Applied Sciences, 2022, 12(21): 10997. doi: 10.3390/app122110997
[23] 郑双进,程霖,龙震宇,等. 基于GA-SVR算法的顺北区块固井质量预测[J]. 石油钻采工艺,2021,43(4):467–473. ZHENG Shuangjin, CHENG Lin, LONG Zhenyu, et al. Predicting the cementing quality in Shunbei Block based on GA-SVR algorithm[J]. Oil Drilling & Production Technology, 2021, 43(4): 467–473.
[24] WUTHERICH K, SRINIVASAN S, RAMSEY L, et al. Engineered diversion: using well heterogeneity as an advantage to designing stage specific diverter strategies[R]. SPE 189827, 2018.
[25] SOROUSH H, BELYADI H, KANG H, et al. Early prediction and prevention of tip screen-out using deep learning[R]. ARMA-2022 − 0052, 2022.
[26] GUO Wei, ZHANG Xiaowei, KANG Lixia, et al. Investigation of flowback behaviours in hydraulically fractured shale gas well based on physical driven method[J]. Energies, 2022, 15(1): 325. doi: 10.3390/en15010325
[27] 宋俊强,李晓山,王硕,等. 致密油藏压裂水平井产量预测[J]. 新疆石油地质,2022,43(5):580–586. SONG Junqiang, LI Xiaoshan, WANG Shuo, et al. Production prediction of fractured horizontal wells in tight oil reservoirs[J]. Xinjiang Petroleum Geology, 2022, 43(5): 580–586.
[28] 于潇伟,和鹏飞,金庭浩. 中国某海油气田智能完井方案设计研究[J]. 石油化工应用,2021,40(9):89–93. doi: 10.3969/j.issn.1673-5285.2021.09.019 YU Xiaowei, HE Pengfei, JIN Tinghao. Study on intelligent well completion scheme design of an offshore oil and gas field in China[J]. Petrochemical Industry Application, 2021, 40(9): 89–93. doi: 10.3969/j.issn.1673-5285.2021.09.019
[29] 舒成龙. 基于井下压力和温度数据的水平井智能完井产液状况分析[D]. 青岛: 中国石油大学(华东), 2015. SHU Chenglong. Fluid production analysis of intelligent completion horizontal wells based on wellbore pressure and temperature data[D]. Qingdao: China University of Petroleum (East China), 2015.
[30] SHISHAVAN R A, HUBBELL C, PEREZ H, et al. Combined rate of penetration and pressure regulation for drilling optimization by use of high-speed telemetry[J]. SPE Drilling & Completion, 2015, 30(1): 17–26.
[31] RITTO T G, SOIZE C, SAMPAIO R. Robust optimization of the rate of penetration of a drill-string using a stochastic nonlinear dynamical model[J]. Computational Mechanics, 2010, 45(5): 415–427. doi: 10.1007/s00466-009-0462-8
[32] BOURGOYNE A T, Jr, YOUNG F S, Jr. A multiple regression approach to optimal drilling and abnormal pressure detection[J]. SPE Journal, 1974, 14(4): 371–384.
[33] HEGDE C, SOARES C, GRAY K. Rate of penetration (ROP) modeling using hybrid models: deterministic and machine learning[R]. URTEC-2896522-MS, 2018.
[34] ETESAMI D, ZHANG W J, HADIAN M. A formation-based approach for modeling of rate of penetration for an offshore gas field using artificial neural networks[J]. Journal of Natural Gas Science and Engineering, 2021, 95: 104104. doi: 10.1016/j.jngse.2021.104104
[35] PAYETTE G S, SPIVEY B J, WANG L, et al. A real-time well-site based surveillance and optimization platform for drilling: Technology, basic workflows and field results[R]. SPE 184615, 2017.
[36] 宋先知,裴志君,王潘涛,等. 基于支持向量机回归的机械钻速智能预测[J]. 新疆石油天然气,2022,18(1):14–20. doi: 10.12388/j.issn.1673-2677.2022.01.002 SONG Xianzhi, PEI Zhijun, WANG Pantao, et al. Intelligent prediction for rate of penetration based on support vector machine regression[J]. Xinjiang Oil & Gas, 2022, 18(1): 14–20. doi: 10.12388/j.issn.1673-2677.2022.01.002
[37] ZANG Chuanzhen, LU Zongyu, YE Shanlin, et al. Drilling parameters optimization for horizontal wells based on a multiobjective genetic algorithm to improve the rate of penetration and reduce drill string drag[J]. Applied Sciences, 2022, 12(22): 11704. doi: 10.3390/app122211704
[38] ZHANG Chengkai, SONG Xianzhi, SU Yinao, et al. Real-time prediction of rate of penetration by combining attention-based gated recurrent unit network and fully connected neural networks [J]. Journal of Petroleum Science and Engineering, 2022, 213: 110396. doi: 10.1016/j.petrol.2022.110396
[39] 宋先知, 裴志君, 李根生, 等. 机械钻速预测方法及装置: CN202110786598.1[P]. 2022-02-18. SONG Xianzhi, PEI Zhijun, LI Gensheng, et al. Mechanical penetration rate prediction method and device: CN202110786598.1[P]. 2022-02-18.
[40] RASHIDI B, HARELAND G, WU Zebing. Performance, simulation and field application modeling of rollercone bits[J]. Journal of Petroleum Science and Engineering, 2015, 133: 507–517. doi: 10.1016/j.petrol.2015.06.003
[41] HELMY M W, KHALAF F, DARWISH T A. Well design using a computer model[J]. SPE Drilling & Completion, 1998, 13(1): 42–46.
[42] ATASHNEZHAD A, WOOD D A, FEREIDOUNPOUR A, et al. Designing and optimizing deviated wellbore trajectories using novel particle swarm algorithms[J]. Journal of Natural Gas Science and Engineering, 2014, 21: 1184–1204. doi: 10.1016/j.jngse.2014.05.029
[43] 刘绘新,孟英峰. 定向井最优井身轨迹研究[J]. 天然气工业,2004,24(2):64–67. doi: 10.3321/j.issn:1000-0976.2004.02.019 LIU Huixin, MENG Yingfeng. Study on optimal hole trajectory of directional drilling[J]. Natural Gas Industry, 2004, 24(2): 64–67. doi: 10.3321/j.issn:1000-0976.2004.02.019
[44] ABBAS A K, ALAMEEDY U, ALSABA M, et al. Wellbore trajectory optimization using rate of penetration and wellbore stability analysis[R]. SPE 193755, 2018.
[45] BISWAS K, VASANT P M, GAMEZ VINTANED J A, et al. Cellular automata-based multi-objective hybrid grey wolf optimization and particle swarm optimization algorithm for wellbore trajectory optimization[J]. Journal of Natural Gas Science and Engineering, 2021, 85: 103695. doi: 10.1016/j.jngse.2020.103695
[46] YU Le, PORWAL A, HOLDEN E J, et al. Towards automatic lithological classification from remote sensing data using support vector machines[J]. Computers & Geosciences, 2012, 45: 229–239.
[47] 王延江,杨培杰,史清江,等. 基于支撑向量机的井眼轨迹预测新方法[J]. 石油大学学报(自然科学版),2005,29(5):50–53. WANG Yanjiang, YANG Peijie, SHI Qingjiang, et al. Novel wellbore trajectory prediction method based on support vector machine[J]. Journal of the University of Petroleum, China(Edition of Natural Science), China, 2005, 29(5): 50–53.
[48] 孟庆华,刘清友. 基于小波–神经网络的井眼轨迹预测数学模型研究[J]. 机械设计,2008,25(9):25–27. MENG Qinghua, LIU Qingyou. Study on mathematical model of well bore locus prediction based on wavelet-neural network[J]. Journal of Machine Design, 2008, 25(9): 25–27.
[49] 张红,涂忆柳,冯定,等. 基于Kriging代理模型的造斜率预测方法研究[J]. 科学技术与工程,2017,17(3):61–68. doi: 10.3969/j.issn.1671-1815.2017.03.008 ZHANG Hong, TU Yiliu, FENG Ding, et al. Research on prediction method of build-up rate of deflecting tools based on Kriging surrogate model[J]. Science Technology and Engineering, 2017, 17(3): 61–68. doi: 10.3969/j.issn.1671-1815.2017.03.008
[50] 陈冬, 王涵, 叶智慧, 等. 一种基于随钻数据的地质模型重构方法及装置: CN202211215676.3[P]. 2023-01-06. CHEN Dong, WANG Han, YE Zhihui, et al. A geological model reconstruction method and device based on data while drilling: CN202211215676.3[P]. 2023-01-06.
[51] 刘昊. 一种基于强化学习的井下全闭环智能导钻方法研究[D]. 北京: 中国石油大学(北京), 2020. LIU Hao. Research on a fully closed-loop intelligent drilling guide d method based on reinforcement learning[D]. Beijing: China University of Petroleum(Beijing), 2020.
[52] 李旭,宋少博,高立军,等. 贝克休斯AutoTrak旋转导向指令成功率与涡轮转数配比研究[J]. 西部探矿工程,2022,34(9):90–91. doi: 10.3969/j.issn.1004-5716.2022.09.032 LI Xu, SONG Shaobo, GAO Lijun, et al. Research on the ratio between the success rate of rotation guidance command and turbine speed of Baker Hughes AutoTrak[J]. West-China Exploration Engineering, 2022, 34(9): 90–91. doi: 10.3969/j.issn.1004-5716.2022.09.032
[53] BA S, KIM J, GOEL P, et al. Expanding downlink capabilities using autonomous directional drilling with rotary steerable systems[R]. SPE 211067, 2022.
[54] ABBAS A K, BASHIKH A A, ABBAS H, et al. Intelligent decisions to stop or mitigate lost circulation based on machine learning[J]. Energy, 2019, 183: 1104–1113. doi: 10.1016/j.energy.2019.07.020
[55] 戴永寿,岳炜杰,孙伟峰,等. “三高” 油气井早期溢流在线监测与预警系统[J]. 中国石油大学学报(自然科学版),2015,39(3):188–194. DAI Yongshou, YUE Weijie, SUN Weifeng, et al. Online monitoring and warning system for early kick foreboding on “three high” wells[J]. Journal of China University of Petroleum(Edition of Natural Science), 2015, 39(3): 188–194.
[56] SIRUVURI C, NAGARAKANTI S, SAMUEL R. Stuck pipe prediction and avoidance: a convolutional neural network app-roach[R]. SPE 98378, 2006.
[57] 刘建明,李玉梅,张涛,等. 一种基于PCA-RF的卡钻预测方法[J]. 北京信息科技大学学报(自然科学版),2021,36(1):18–22. LIU Jianming, LI Yumei, ZHANG Tao, et al. Research on PCA-RF-based sticking prediction method[J]. Journal of Beijing Information Science & Technology University, 2021, 36(1): 18–22.
[58] DUAN Shiming, SONG Xianzhi, CUI Yi, et al. Intelligent kick warning based on drilling activity classification[J]. Geoenergy Science and Engineering, 2023, 222: 211408. doi: 10.1016/j.geoen.2022.211408
[59] LIANG Haibo, ZOU Jialing, LIANG Wenlong. An early intelligent diagnosis model for drilling overflow based on GA–BP algorithm[J]. Cluster Computing, 2019, 22(5): 10649–10668.
[60] YIN Qishuai, YANG Jin, TYAGI M, et al. Downhole quantitative evaluation of gas kick during deepwater drilling with deep learning using pilot-scale rig data[J]. Journal of Petroleum Science and Engineering, 2022, 208(Part A): 109136.
[61] 宋先知,姚学喆,李根生,等. 基于LSTM-BP神经网络的地层孔隙压力计算方法[J]. 石油科学通报,2022,7(1):12–23. doi: 10.3969/j.issn.2096-1693.2022.01.002 SONG Xianzhi, YAO Xuezhe, LI Gensheng, et al. A novel method to calculate formation pressure based on the LSTM-BP neural network[J]. Petroleum Science Bulletin, 2022, 7(1): 12–23. doi: 10.3969/j.issn.2096-1693.2022.01.002
[62] ZHU Zhaopeng, SONG Xianzhi, ZHANG Rui, et al. A hybrid neural network model for predicting bottomhole pressure in managed pressure drilling[J]. Applied Sciences, 2022, 12(13): 6728. doi: 10.3390/app12136728
[63] 许争鸣. 深层高温高压钻井环空气液固三相流动规律研究[D]. 北京: 中国石油大学(北京), 2019. XU Zhengming. Study on the flowing characteristics of gas-liquid-solid in annulus during high-temperature and high-pressure deep well drilling[D]. Beijing: China University of Petroleum(Beijing), 2019.
[64] 连志龙,周英操,申瑞臣,等. 无意外风险钻井(NDS)技术探讨[J]. 石油钻采工艺,2009,31(1):90–94. doi: 10.3969/j.issn.1000-7393.2009.01.023 LIAN Zhilong, ZHOU Yingcao, SHEN Ruichen, et al. A discussion on technology of no drilling surprises (NDS)[J]. Oil Drilling & Production Technology, 2009, 31(1): 90–94. doi: 10.3969/j.issn.1000-7393.2009.01.023
[65] 杨传书. 钻井风险评价系统DrillRisk的研发与应用[J]. 石油钻探技术,2017,45(5):60–67. doi: 10.11911/syztjs.201705011 YANG Chuanshu. Development and application of risk-assessment system for drilling operations[J]. Petroleum Drilling Techniques, 2017, 45(5): 60–67. doi: 10.11911/syztjs.201705011
[66] 朱玉玺,倪红梅,王瑞仙,等. 人工神经网络在固井质量预测中的应用[J]. 大庆石油学院学报,2002,26(2):52–55. ZHU Yuxi, NI Hongmei, WANG Ruixian, et al. Application of artificial neutral network to forecasting cementing quality[J]. Journal of Northeast Petroleum University, 2002, 26(2): 52–55.
[67] 倪红梅,王维刚. 免疫神经网络在固井质量预测中的应用研究[J]. 计算机仿真,2009,26(7):267–269. doi: 10.3969/j.issn.1006-9348.2009.07.068 NI Hongmei, WANG Weigang. Application of immune neural network in cementing quality prediction[J]. Computer Simulation, 2009, 26(7): 267–269. doi: 10.3969/j.issn.1006-9348.2009.07.068
[68] VOLETI D K, REDDICHARLA N, GUNTUPALLI S, et al. Smart way for consistent cement bond evaluation and reducing human bias using machine learning[R]. SPE 202742, 2020.
[69] SANTOS L, DAHI TALEGHANI A. Machine learning framework to generate synthetic cement evaluation logs for wellbore integrity analysis[R]. ARMA-2021-1769, 2021.
[70] REOLON D, DI MAGGIO F, MORIGGI S, et al. Unlocking data analytics for the automatic evaluation of cement bond scena-rios[R]. SPWLA-5060, 2020.
[71] VIGGEN E M, LØVSTAKKEN L, MÅSØY S E, et al. Better automatic interpretation of cement evaluation logs through feature engineering[J]. SPE Journal, 2021, 26(5): 2894–2913. doi: 10.2118/204057-PA
[72] LEHMAN L V, JACKSON K, NOBLETT B. Big data yields completion optimization: Using drilling data to optimize completion efficiency in a low permeability formation[R]. SPE 181273, 2016.
[73] SCANLAN W P, PIERSKALLA K J, SOBERNHEIM D W, et al. Optimization of Bakken well completions in a multivariate wor-ld[R]. SPE 189868, 2018.
[74] KESHAVARZI R, JAHANBAKHSHI R. Investigation of hydraulic and natural fracture interaction: Numerical modeling or artificial intelligence?[R]. ISRM-ICHF-2013 − 025, 2013.
[75] YANG Ruiyue, QIN Xiaozhou, LIU Wei, et al. A physics-constrained data-driven workflow for predicting coalbed methane well production using artificial neural network[J]. SPE Journal, 2022, 27(3): 1531–1552. doi: 10.2118/205903-PA
[76] HARPEL J, RAMSEY L, WUTHERICH K. Improving the effectiveness of diverters in hydraulic fracturing of the wolfcamp shale[R]. SPE 191600, 2018.
[77] HU Jinqiu, KHAN F, ZHANG Laibin, et al. Data-driven early warning model for screenout scenarios in shale gas fracturing operation[J]. Computers & Chemical Engineering, 2020, 143: 107116.
[78] 盛茂, 李雨峰, 李根生, 等. 模型建立方法、裂缝起裂事件诊断方法和装置: CN202110792084.7[P]. 2021-09-24. SHENG Mao, LI Yufeng, LI Gensheng, et al. Model establishment method, fracture initiation event diagnosis method and device: CN202110792084.7[P]. 2021-09-24.
[79] DURDYYEV G. New technologies and protocols concerning horizontal well drilling and completion[D]. Turin: Politecnico di Torino, 2021.
[80] ZHOU Qiumei, DILMORE R, KLEIT A, et al. Evaluating fracture-fluid flowback in Marcellus using data-mining technologies[J]. SPE Production & Operations, 2016, 31(2): 133–146.
[81] FU Yingkun, DEHGHANPOUR H, EZULIKE D O, et al. Estimating effective fracture pore volume from flowback data and evaluating its relationship to design parameters of multistage-fracture completion[J]. SPE Production & Operations, 2017, 32(4): 423–439.
[82] MAITY D, CIEZOBKA J. An interpretation of proppant transport within the stimulated rock volume at the hydraulic-fracturing test site in the Permian Basin[J]. SPE Reservoir Evaluation & Engineering, 2019, 22(2): 477–491.
[83] 盛茂,李根生,田守嶒,等. 人工智能在油气压裂增产中的研究现状与展望[J]. 钻采工艺,2022,45(4):1–8. SHENG Mao, LI Gensheng, TIAN Shouceng, et al. Research status and prospect of artificial intelligence in reservoir fracturing stimulation[J]. Drilling & Production Technology, 2022, 45(4): 1–8.
[84] NEJAD A M, SHELUDKO S, SHELLEY R F, et al. A case history: evaluating well completions in the Eagle Ford Shale using a data-driven approach[R]. SPE 173336, 2015.
[85] YANG Ruiyue, LIU Wei, QIN Xiaozhou, et al. A physics-constrained data-driven workflow for predicting coalbed methane well production using a combined gated recurrent unit and multi-layer perception neural network model[R]. SPE 205903, 2021.
[86] TARIQ Z, ABDULRAHEEM A, KHAN M R, et al. New inflow performance relationship for a horizontal well in a naturally fractured solution gas drive reservoirs using artificial intelligence technique[R]. OTC 28367, 2018.
[87] BELLO O, YANG D, LAZARUS S, et al. Next generation downhole big data platform for dynamic data-driven well and reservoir management[R]. SPE 186033, 2017.
[88] WANG Xiaoqiu, WANG Zhiming, ZENG Quanshu. A novel autonomous inflow control device: design, stracture optimization, and fluid sensitivity analysis[R]. IPTC 17758, 2014.
[89] 王小秋,汪志明,赵麟. 基于膨胀材料的新型AICD结构设计及其性能实验研究[J]. 石油科学通报,2018,3(3):302–312. WANG Xiaoqiu, WANG Zhiming, ZHAO Lin. A novel AICD structure design and its performance analysis[J]. Petroleum Science Bulletin, 2018, 3(3): 302–312.
[90] 陈玉婷, 赵晨晖, 冯超, 等. 深水高产油气田智能完井与防砂一体化技术的应用[J]. 石油工程建设, 2020, 46(增刊1): 229-232. CHEN Yuting, ZHAO Chenhui, FENG Chao, et al. Integrated application of intelligent well completion and sand control technology for high yield oil and gas fields in deepwater[J]. Petroleum Engineering Construction, 2020, 46(supplement 1): 229-232.
[91] HEGDE C, MILLWATER H, PYRCZ M, et al. Rate of penetration (ROP) optimization in drilling with vibration control[J]. Journal of Natural Gas Science and Engineering, 2019, 67: 71–81. doi: 10.1016/j.jngse.2019.04.017
[92] LOSOYA E Z, GILDIN E, NOYNAERT S F, et al. An open-source enabled drilling simulation consortium for academic and commercial applications[R]. SPE 198943, 2020.
[93] 宋先知, 裴志君, 王潘涛, 等. 基于多目标的油气钻井策略预测方法及装置: CN202110232999.2[P]. 2021-05-14. SONG Xianzhi, PEI Zhijun, WANG Pantao, et al. Prediction method and device of oil and gas drilling strategy based on multi-objective: CN202110232999.2[P]. 2021-05-14.
[94] 徐宝昌, 张学智. 耦合井筒与钻柱的钻井过程全局动态建模与仿真[C]//第40届中国控制会议论文集(15). 上海: 中国自动化学会控制理论专业委员会, 2021: 688 − 693. XU Baochang, ZHANG Xuezhi. Global dynamic modeling and simulation of drilling process coupled with wellbore and drill string[C]//Proceedings of the 40th China control conference (15). Shanghai: Control theory professional committee of China automation society, 2021: 688−693.
[95] MAYANI M G, ROMMETVEIT R, OEDEGAARD S I, et al. Drilling automated realtime monitoring using digital twin[R]. SPE 192807, 2018.
[96] CAYEUX E. Mathematical modelling of the drilling process for real-time applications in drilling simulation, interpretation and assistance[D]. Stavanger: University of Stavanger, 2019.
[97] 肖立志. 机器学习数据驱动与机理模型融合及可解释性问题[J]. 石油物探,2022,61(2):205–212. doi: 10.3969/j.issn.1000-1441.2022.02.002 XIAO Lizhi. The fusion of data-driven machine learning with mechanism models and interpretability issues[J]. Geophysical Prospecting for Petroleum, 2022, 61(2): 205–212. doi: 10.3969/j.issn.1000-1441.2022.02.002
[98] RAI R, SAHU C K. Driven by data or derived through physics? A review of hybrid physics guided machine learning techniques with cyber-physical system (CPS) focus[J]. IEEE Access, 2020, 8: 71050–71073. doi: 10.1109/ACCESS.2020.2987324
[99] 杨顺辉,郭珍珍,张洪宝,等. 基于集成迁移学习的机械钻速预测[J]. 计算机系统应用,2022,31(10):270–278. YANG Shunhui, GUO Zhenzhen, ZHANG Hongbao, et al. Rate of penetration prediction using ensemble transfer learning[J]. Computer Systems & Applications, 2022, 31(10): 270–278.
[100] CHEN Yuntian, ZHANG Dongxiao. Physics-constrained deep learning of geomechanical logs[J]. IEEE Transactions on Geosci-ence and Remote Sensing, 2020, 58(8): 5932–5943. doi: 10.1109/TGRS.2020.2973171
[101] 陈良臣,傅德印. 面向小样本数据的机器学习方法研究综述[J]. 计算机工程,2022,48(11):1–13. CHEN Liangchen, FU Deyin. Survey on machine learning methods for small sample data[J]. Computer Engineering, 2022, 48(11): 1–13.
[102] GILPIN L H, BAU D, YUAN B Z, et al. Explaining explanations: an overview of interpretability of machine learning[C]//2018 IEEE 5th international conference on data science and advanced analytics (DSAA). Turin: IEEE, 2018: 80−89.
[103] CHOI E, BAHADORI M T, SCHUETZ A, et al. RETAIN: Interpretable predictive model in healthcare using reverse time attention mechanism[EB/OL]. (2016-08-19)[2023-01-15]. https://arxiv. org/abs/1608.05745v1.
[104] BARR KUMARAKULASINGHE N, BLOMBERG T, LIU Jintai, et al. Evaluating local interpretable model-agnostic explanations on clinical machine learning classification models[C]//2020 IEEE 33rd international symposium on computer-based medical systems (CBMS). Rochester: IEEE, 2020: 7-12.
-
期刊类型引用(30)
1. 曹振义,李世超,苗强,马科迪,衣丽伟,樊洪波. 浅层煤层气大平台井眼轨迹整体优化设计技术的应用——以保德区块保8井区为例. 录井工程. 2025(01): 56-62 . 百度学术
2. 吴文兵,刘涛,谢伦,张勇,肖东,苏俊霖,钟杰. 大位移井岩屑床厚度预测模型与现场应用:以CH1-1-XX井钻井为例. 科学技术与工程. 2024(09): 3654-3662 . 百度学术
3. 苟梦姣,陈景杨,翁羽. 大位移井钻井现状及发展趋势. 工程机械. 2024(04): 164-167+14 . 百度学术
4. 高德利,黄文君. 超深井工程理论与技术若干研究进展及发展建议. 石油钻探技术. 2024(02): 1-11 . 本站查看
5. 袁修锦. 东海超深大位移井高效钻井关键技术研究与应用. 石化技术. 2024(06): 191-193 . 百度学术
6. 高德利,鲜保安,毕延森. 水平井尾管完井与钻井一体化设计控制技术. 石油勘探与开发. 2024(04): 878-888 . 百度学术
7. GAO Deli,XIAN Baoan,BI Yansen. Integrated design and control technology of liner completion and drilling for horizontal wells. Petroleum Exploration and Development. 2024(04): 1009-1021 . 必应学术
8. 李浩,付潇,吴永超,江尧. 煤层气长水平段水平井钻完井技术探索. 中国煤层气. 2024(04): 9-14 . 百度学术
9. 高德利,黄文君,刁斌斌,张玉霖. 复杂结构井定向钻井技术现状及展望. 前瞻科技. 2023(02): 11-21 . 百度学术
10. 黄熠,刘和兴,刘智勤,彭巍,徐超. 南海西部浅层大位移水平井钻井关键技术与实践. 中国海上油气. 2023(06): 115-123 . 百度学术
11. 杨进,李磊,宋宇,仝刚,张明贺,张慧. 中国海洋油气钻井技术发展现状及展望. 石油学报. 2023(12): 2308-2318 . 百度学术
12. 赵军,黄文君,高德利. 大位移井钻井管柱作业极限实时预测方法. 石油钻采工艺. 2023(05): 523-531 . 百度学术
13. 王赞,王晓琪,陈立强,吴占民,孙雷. 渤海油田钻井降本增效技术现状与展望. 新疆石油天然气. 2022(01): 66-72 . 百度学术
14. 高德利,张广瑞,王宴滨. 中国海洋深水油气工程技术与装备创新需求预见及风险分析. 科技导报. 2022(13): 6-16 . 百度学术
15. 王赞,王晓琪,陈立强,吴占民,孙雷,姜磊. 大位移井井身结构设计技术研究与应用. 石油工业技术监督. 2022(11): 58-63 . 百度学术
16. 岳景寅,何刚,张敏,吕继平,史冀涛,李长东. 基于熵权法的大位移井井眼轨迹设计方案优选. 石化技术. 2022(12): 94-96 . 百度学术
17. 孙连坡,许杰,谢涛,王文,刘海龙. 渤海浅层大位移井裸眼延伸极限预测. 石油工业技术监督. 2021(01): 48-52 . 百度学术
18. 邓钧耀,刘奕杉,乔磊,王开龙,胡凯. 保德煤层气田黄河压覆区长水平段水平井钻井完井技术. 石油钻探技术. 2021(02): 37-41 . 本站查看
19. 路保平,侯绪田,柯珂. 中国石化极地冷海钻井技术研究进展与发展建议. 石油钻探技术. 2021(03): 1-10 . 本站查看
20. 郭骁,李思洋,周蒙恩,孟庆威,张菲菲. 考虑岩屑影响的大位移井机械延伸极限研究. 石油钻采工艺. 2021(03): 289-294+308 . 百度学术
21. 韦龙贵,王赞,陈立强,李磊,张昌超. 基于熵权法的大位移井井眼轨迹设计方案优选. 石油钻采工艺. 2021(03): 295-301 . 百度学术
22. 高德利,黄文君. 井下管柱力学与控制方法若干研究进展. 力学进展. 2021(03): 620-647 . 百度学术
23. 张强,秦世利,饶志华,田波,左坤. 南海超大水垂比大位移M井钻井关键技术. 石油钻探技术. 2021(05): 19-25 . 本站查看
24. 王赞,王晓琪,陈立强,吴占民. 大位移井轨迹定量评价方法研究与实践. 新疆石油天然气. 2021(04): 79-85 . 百度学术
25. 黄文君,高德利. 大位移井规律性阻卡力学机理与控制措施研究. 石油科学通报. 2020(01): 49-57 . 百度学术
26. 黄文君,石小磊,高德利. 基于钻井延伸极限的管柱分段优化设计方法. 石油机械. 2020(04): 1-8 . 百度学术
27. 许杰,黄文君,刘海龙,王舸,石小磊. 曹妃甸油田浅层大位移井管柱作业极限分析与优化设计. 科学技术与工程. 2020(11): 4316-4322 . 百度学术
28. 于洋,李双贵,高德利,李光乔. 顺北5-5H超深?120.65 mm小井眼水平井钻井技术. 石油钻采工艺. 2020(03): 276-281 . 百度学术
29. 高德利. 深海天然气及其水合物开发模式与钻采技术探讨. 天然气工业. 2020(08): 169-176 . 百度学术
30. 顾岳,高德利,杨进,黄文君,石小磊,周波. 受套管磨损约束的深井钻井延伸极限预测模型. 石油钻采工艺. 2020(05): 543-546 . 百度学术
其他类型引用(16)