Research Progress and the Prospect of Intelligent Drilling and Completion Technologies
-
摘要:
智能钻完井技术是钻完井工程与人工智能、大数据、云计算等先进技术的有机融合,可实现油气钻完井过程的精细表征、决策优化和闭环调控,有望大幅提升钻完井效率、储层钻遇率和油气采收率,是油气领域的研究前沿和热点。从工程实际出发构建了油气钻完井人工智能应用场景,根据钻完井工程与人工智能技术的融合深度划分了智能钻完井技术的发展层次;分析了国内外智能钻完井理论与技术的研究现状,结合人工智能技术和钻完井工程的发展趋势提出了中长期发展规划,并凝练了智能钻完井技术研究面临的难题和重点攻关方向,以期为推进我国智能钻完井技术的基础理论研究和推广应用提供参考。
Abstract:Intelligent drilling and completion technologies are the integration of drilling and completion engineering with Artificial Intelligence (AI), Big Data, cloud computing, and other advanced technologies. They can achieve fine characterization, optimal decision-making, and closed-loop control of oil and gas drilling and completion and are expected to significantly improve drilling and completion efficiency, reservoir drilling rate, and oil and gas recovery efficiency. Therefore, they are the research frontier and hot spot in the oil and gas field. In this paper, the application scenario system of AI in oil and gas drilling and completion was constructed from the engineering practice. Then, the development level of intelligent drilling and completion technologies was divided according to the integration degree of drilling and completion engineering with AI. Furthermore, the research status of intelligent drilling and completion theories and technologies both in China and abroad was discussed, with a medium- and long-term development plan being proposed according to the development trend of AI and drilling and completion engineering. Finally, the problems and key directions of intelligent drilling and completion technologies were summarized. The paper serves as a reference for accelerating the basic theoretical research and application of intelligent drilling and completion technologies in China.
-
水平井多级滑套分段压裂是低渗透油气藏的主要增产方式之一,其具有效率高、施工连续、增产效果好等优点[1]。双向锚定封隔器是多级滑套分段压裂的核心工具,主要用于完井管柱的送入、双向锚定和重叠段环空的封隔,其性能直接影响压裂施工的成败[2–3]。
常规双向锚定封隔器在现场应用过程中存在一些问题:操作不当或发生井下落物时可能会提前坐挂、坐封;进行环空封压能力测试时,经常出现高压密封失效的问题;常规双向锚定封隔器多为永久式,一旦坐封将无法解封起出,只能进行套铣或钻除,甚至可能造成油气井报废[4–9]。为了进一步提高双向锚定封隔器的可靠性,笔者研制了可解挂式双向锚定悬挂封隔器,开展了高承载技术、高压密封技术、防提前坐封技术和解挂技术等关键技术研究,并进行了可解挂式双向锚定悬挂封隔器进的性能测试及现场应用,均取得了预期效果。
1. 可解挂双向锚定悬挂封隔器的结构及原理
可解挂双向锚定悬挂封隔器的设计要点为:1)送入工具要具备防提前坐封功能,同时具备机械、液压双作用丢手功能,以确保悬挂封隔器安全下入及顺利丢手;2)采用合金卡瓦,以保证悬挂封隔器的锚定能力,同时增加解挂功能,在出现提前坐挂情况时,确保可解挂并提出封隔器;3)采用整体式卡瓦结构,以增大卡瓦接触面积、降低对套管的损伤,提供重载锚定,并保证在解挂后有效回收卡瓦;4)采用三胶筒结构,以增强对套管的适应性。
基于上述设计要点,研制了用于多级滑套分段压裂的可解挂双向锚定悬挂封隔器,结构如图1所示。该封隔器由送入工具、防提前坐封装置、悬挂封隔单元和解挂单元组成,具备重载锚定、高压封隔、防提前坐封和机械液压双作用丢手等功能。
该封隔器的工作原理是:采用送入工具将锚定封隔器及尾管送至预定位置,投入憋压球进行管内憋压,剪断封隔器启动销钉,液缸推动回接筒挤压胶筒,胶筒挤压卡瓦;卡瓦锚定完成后继续憋压,坐封胶筒;胶筒坐封后起出管串,再次下入回接插头进行回接锁定;解挂时,首先下入解挂工具,解挂工具与封隔器锚定,然后上提管串,回接筒不再挤压胶筒和卡瓦,胶筒及卡瓦复位,实现解挂。
2. 封隔器关键技术研究
2.1 高承载技术
分段压裂施工过程中,锚定封隔器首先要具备尾管悬挂功能,同时要防止压裂过程中井底高压导致的管串向上窜动,因此,封隔器要具备双向锚定功能。封隔器的锚定卡瓦主要有分瓣式和整体式2种,相较于分瓣式卡瓦,整体式卡瓦与套管内壁的接触面积更大,轴向应力分布更加合理,可以降低对套管的损伤。
常规永久式锚定封隔器无解挂功能,一旦出现提前坐挂情况,必须能够快速钻除,因此一般采用铸铁制造整体卡瓦。由于铸铁的强度和硬度偏低,卡瓦锚定效果不理想,存在锚定能力低的问题。为提高卡瓦锚定效果,同时保证解挂后有效复位,选用合金钢制造卡瓦,并采用整体式卡瓦结构(见图2)。卡瓦设多条应力槽,坐挂时卡瓦扩张支撑井壁,解挂后复位。通过结构设计和材料热处理工艺优化,可提高锚定性能和下入安全性能。
该封隔器要求卡瓦重载锚定解挂后可进行回收,卡瓦本体具备较高韧性的同时,卡瓦牙要具备较高的耐磨性和硬度,因此选用20CrMnTi钢作为制造卡瓦的材料,进行后期热处理,采用局部渗碳回火处理方式,使卡瓦肋部获得大量的回火马氏体组织、齿部获得大量的淬火马氏体组织,在保证卡瓦本体具有较高韧性的同时,保证卡瓦牙具有较高的硬度,以满足卡瓦的锚定性能、耐冲击性能和可回收性能要求。
采用有限元方法研究整体式卡瓦在压裂施工过程中的性能,分析卡瓦结构、卡瓦材料等对卡瓦坐挂、解挂性能的影响。根据卡瓦的工作原理,建立有限元模型,并对其边界进行处理:1)约束卡瓦,使其只具有沿周向运动的自由度;2)建立卡瓦与锥套、卡瓦与套管内壁、锥套与本体之间的接触。制造卡瓦的材料为20CrMnTi钢,本体及套管的材料为35CrMo合金结构钢(见表1)。分别在卡瓦两侧施加约束,分析卡瓦受力及变形情况。压裂时胶筒需要承受70 MPa的压差,由卡瓦进行锚定。因此,从卡瓦上端面施加671.3 kN的压力,计算卡瓦受力。
表 1 整体式卡瓦材料的参数Table 1. Materials parameters of integrated slip材料 弹性模量/GPa 泊松比 屈服强度/MPa 20CrMnTi 207 0.25 850 35CrMo 206 0.30 758 根据第四强度理论计算von Mises应力,结果如图3所示。扩张过程中最大受力位置位于卡瓦肋部,应力为257.5 MPa,满足设计安全系数大于2.0的要求,卡瓦受力较为均匀。
2.2 高压密封技术
分段压裂施工时施工压力较高,为保护上层套管,降低施工风险,防止环空压力传递至井口,需要对套管重叠段进行封隔,要求封隔器具备高压密封性能。
传统双向锚定封隔器胶筒大多采用一体式胶筒,通过挤压胶筒,使其变形与外层套管产生接触应力,实现环空封隔。这种胶筒结构简单,胶筒较短,如果封隔井段出现固相沉积或者套管变形,容易封压失效,因此其井况适应性较差,密封可靠性不高。
可解挂双向锚定封隔器采用三胶筒密封结构,胶筒之间采用V形配合,两两保护(见图4)。胶筒采用2种不同硬度的橡胶,中间胶筒硬度较低,作为主要的密封部件;两侧胶筒硬度较高,保护中间胶筒的同时,进行双重密封。为防止坐封及密封过程中胶筒挤压外凸,胶筒两侧有防突环,防突环周向有多条割缝,胶筒坐封过程中紧贴胶筒外侧,保护胶筒。为防止因防突环遇阻引起的胶筒提前坐封,防突环与锥套采用了一体化设计。
2.3 防提前坐封技术
压裂管柱入井后会因与井壁磕碰或者落物等原因导致封隔器提前坐挂,为保证下入安全,设计了防提前坐封装置,既能保证封隔器不会提前坐挂,又能保证封隔器到位后正常坐挂、坐封。
防提前坐封装置位于回接筒和送入工具之间,结构如图5所示。其左端的支撑爪连接送入工具本体,其右端支撑挡块连接回接筒,确保回接筒的运动与坐封工具同步,即使回接筒外部环空出现落物并遇阻,也不会提前坐封。封隔器达到预定位置坐挂坐封时,管内憋压坐封,剪断启动销钉,液缸推动支撑组件向右移动,支撑爪和支撑挡块回收,送入工具和回接筒之间产生相对轴向运动,防提前坐封装置不再起作用。
2.4 解挂技术
封隔器入井过程中若中途遇阻并提前坐挂坐封,可下入专门的解挂工具将封隔器解挂解封。设计的解挂工具结构如图6所示,初始状态下,由解挂套和支撑卡簧支撑封隔器及尾管,当解挂工具下至封隔器位置,其外表面的马牙扣与封隔器回接筒锚定。解挂工具伸缩定位块与封隔器的解挂套锚定。上提管串,剪断解挂剪钉,解挂套与支撑卡簧产生相对运动,支撑卡簧失去支撑后回收,不再对封隔器产生锁紧作用,封隔器本体可以上下移动,胶筒和卡瓦回弹,实现解挂。该解挂形式不受压差和尾管悬重的影响,同时不影响压裂施工作业[10]。
3. 封隔器性能测试
为了验证可解挂双向锚定悬挂封隔器的性能,模拟现场环境,分别进行了锚定性能、封压性能、防提前坐封装置性能和整机解挂解封性能测试。
3.1 封隔器锚定性能
为了测试封隔器锚定单元的锚定性能,研制了锚定性能测试装置。卡瓦外径为149.0 mm,试验套管内径为159.0 mm。采用机械加载坐挂,坐挂载荷为120 kN,坐挂后卸载,环空加压检测卡瓦锚定性能,加载至1 200 kN,保持30 min(见图7),卡瓦无滑移。对支撑封头反向加载1 200 kN,保持30 min,卡瓦滑移2.0 mm,满足性能要求。卸载,卡瓦回弹,回弹后外径151.0 mm,满足设计要求。
3.2 封隔器密封性能
为了测试封隔器锚定单元的密封性能,研制了密封性能测试装置。封隔器胶筒外径148.0 mm,试验套管内径为159.0 mm。试验装置上下各有一个加压封头,可分别进行加压,采用机械加载方式坐封胶筒。为模拟现场井况,将试验装置放入到加热装置中,加热至80 ℃,机械加载49 kN,完成坐封。之后环空加压,逐级加压至35,50,70和80 MPa,稳压15 min无压降(见图8)。泄压后,逐级加温至100,120,140和160 ℃,保温10 h,分别从两端加压,均能实现80 MPa密封,共密封34 h。泄压、卸载,胶筒回弹,检测胶筒外径为152.0 mm,满足设计要求。
3.3 防提前坐封装置性能
模拟现场施工中的遇阻井况,测试防提前坐封装置对封隔器的保护作用。将封隔器底部进行固定,加工工装单独支撑回接筒部分,采用拉伸试验机推动回接筒,检测防提前坐封装置抗剪性能。装置加载载荷分别为20,50,100,200,300和500 kN,封隔器均未坐封。试验结果表明,防提前坐封装置可有效保护封隔器,即使在遇阻500 kN的情况下封隔器仍不会坐封。管内憋压15 MPa,封隔器开始正常坐封,防提前坐封装置失效。
3.4 封隔器解挂解封性能
为模拟现场封隔器解挂、解封操作,在模拟试验井进行入井性能测试。试验套管内径为159.0 mm,封隔器最大外径为152.0 mm。利用管串将封隔器下至预定位置,管内憋压至25 MPa,先坐挂坐封,正转机械丢手,起出送入工具。下入解挂工具至封隔器位置,悬重减小50 kN时解挂工具与封隔器锚定;上提解挂工具,至悬重增大200 kN时剪断解挂剪钉;继续缓慢上提,将封隔器起出井口,顺利实现解挂、解封。
4. 现场应用
可解挂双向锚定悬挂封隔器在鄂尔多斯盆地20多口井进行了应用,均顺利实现坐挂、坐封,并对环空起到有效的密封作用,确保了压裂施工作业的正常进行,解决了常规双向锚定封隔器存在的密封失效和提前坐挂等问题。下面以X67井为例介绍可解挂双向锚定悬挂封隔器的应用情况。
X67井位于鄂尔多斯盆地伊陕斜坡东北部,完钻井深4 112.00 m,水平段长1 200.00 m,上层套管为ϕ177.8 mm套管,尾管为ϕ114.3 mm套管,悬挂器下深2 597.00 m,可解挂双向锚定悬挂封隔器下入位置的井斜角为43°左右,共完成12段的分段压裂。下入送入管柱前采用刮管器进行刮管,然后采用通井规通井,下入送入管柱投入憋压球,依次憋压至15,20,25和28 MPa并稳压5 min,完成可解挂双向锚定悬挂封隔器的坐挂、坐封,验挂、验封后管柱正转完成丢手,采用ϕ88.9 mm油管连接回接插头进行回接作业,管柱到位后丢手,调节井口油管长度安装采油树,进行压裂施工,入井砂量406.9 m3,入井液量3 695.0 m3,施工最高泵压61 MPa,管柱锚定及环空封压可靠,顺利完成压裂施工作业。该井压裂后无阻流量8.70×104m3/d,与该区块平均无阻流量6.85×104m3/d相比,提高了27.0%。
5. 结论与建议
1)研制了可解挂双向锚定悬挂封隔器,现场应用表明,该封隔器可实现管串的送入、双向锚定、环空封隔及解挂,解决常规双向锚定封隔器存在的问题,确保现场施工的安全性。
2)可解挂双向锚定悬挂封隔器具有更好的锚定性能、封压性能和下入安全性能。其中:整体式合金卡瓦的锚定能力可达1 200 kN以上;V形交叠式胶筒的密封压力达到80 MPa以上;防提前坐封装置可有效防止回接筒及胶筒提前动作,实现封隔器的安全下入。
3)建议研发不同规格的可解挂双向锚定悬挂封隔器,进一步增强其在不同井况下的适应能力。
-
表 1 国内外典型的智能完井系统
Table 1 Typical intelligent well completion system at home and abroad
智能完井系统 年份 公司 驱动方式 技术特点 SCRAMS 1997 哈里伯顿 液压 只需1根液压管线和1根电缆管线即可完成流量控制 MultiNodeTM 2014 贝克休斯 电力 单根特制电缆将井下所有节点连接到地面控制系统 Simply Intelligent 2014 威德福 液压 可以实现分辨率为0.5 m的全井温度以及井下剖面监测 Manara 2015 斯伦贝谢 电力 能够实现井下永久监控,并对分支井眼的不同目的层进行流量控制 EIC-Riped 2017 中国石油 电力 信号传输距离4 km,可做到100级流量调节 SureCONNECT 2020 贝克休斯 电力 无需干预的井筒产液监测控制,实现数据驱动的生产智能决策 -
[1] 匡立春,刘合,任义丽,等. 人工智能在石油勘探开发领域的应用现状与发展趋势[J]. 石油勘探与开发,2021,48(1):1–11. doi: 10.11698/PED.2021.01.01 KUANG Lichun, LIU He, REN Yili, et al. Application and development trend of artificial intelligence in petroleum exploration and development[J]. Petroleum Exploration and Development, 2021, 48(1): 1–11. doi: 10.11698/PED.2021.01.01
[2] 贾承造. 全国油气勘探开发形势与发展前景[J]. 中国石油石化,2022(20):14–17. JIA Chengzao. National oil and gas exploration and development situation and development prospects[J]. China Petrochem, 2022(20): 14–17.
[3] 李根生,宋先知,田守嶒. 智能钻井技术研究现状及发展趋势[J]. 石油钻探技术,2020,48(1):1–8. doi: 10.11911/syztjs.2020001 LI Gensheng, SONG Xianzhi, TIAN Shouceng. Intelligent drilling technology research status and development trends[J]. Petroleum Drilling Techniques, 2020, 48(1): 1–8. doi: 10.11911/syztjs.2020001
[4] 闫铁,许瑞,刘维凯,等. 中国智能化钻井技术研究发展[J]. 东北石油大学学报,2020,44(4):15–21. doi: 10.3969/j.issn.2095-4107.2020.04.003 YAN Tie, XU Rui, LIU Weikai, et al. Research and development of intelligent drilling technology in China[J]. Journal of Northeast Petroleum University, 2020, 44(4): 15–21. doi: 10.3969/j.issn.2095-4107.2020.04.003
[5] 李宗田,肖勇,李宁, 等. 低油价下的页岩油气开发工程技术新进展[J]. 断块油气田,2021,28(5):577–585. doi: 10.6056/dkyqt202105001 LI Zongtian, XIAO Yong, LI Ning, et al. New progress in shale oil and gas development engineering technology under low oil prices [J]. Fault-Block Oil & Gas Field, 2021, 28(5): 577–585. doi: 10.6056/dkyqt202105001
[6] LI Gensheng, SONG Xianzhi, TIAN Shouceng, et al. Intelligent drilling and completion: a review[J]. Engineering, 2022, 18: 33–48. doi: 10.1016/j.eng.2022.07.014
[7] 杨传书,李昌盛,孙旭东,等. 人工智能钻井技术研究方法及其实践[J]. 石油钻探技术,2021,49(5):7–13. doi: 10.11911/syztjs.2020136 YANG Chuanshu, LI Changsheng, SUN Xudong, et al. Research method and practice of artificial intelligence drilling technology[J]. Petroleum Drilling Techniques, 2021, 49(5): 7–13. doi: 10.11911/syztjs.2020136
[8] 王敏生,光新军. 智能钻井技术现状与发展方向[J]. 石油学报,2020,41(4):505–512. WANG Minsheng, GUANG Xinjun. Status and development trends of intelligent drilling technology[J]. Acta Petrolei Sinica, 2020, 41(4): 505–512.
[9] 彭超,邓津辉,谭忠健,等. 基于测井资料的渤中34-9油田火成岩地层抗钻特性评价[J]. 石油钻采工艺,2022,44(2):186–190. PENG Chao, DENG Jinhui, TAN Zhongjian, et al. Well logging-based anti-drilling property evaluation of igneous rock in Bozhong 34-9 Oilfield[J]. Oil Drilling & Production Technology, 2022, 44(2): 186–190.
[10] HEGDE C, DAIGLE H, GRAY K E. Performance comparison of algorithms for real-time rate-of-penetration optimization in drilling using data-driven models[J]. SPE Journal, 2018, 23(5): 1706–1722. doi: 10.2118/191141-PA
[11] 孟昭. PDC钻头井下工况评价方法研究[D]. 北京: 中国石油大学(北京), 2020. MENG Zhao. Study on evaluation method of PDC bit downhole working condition[D]. Beijing: China University of Petroleum (Beijing), 2020.
[12] REN Chuanjie, HUANG Wenjun, GAO Deli. Predicting rate of penetration of horizontal drilling by combining physical model with machine learning method in the China Jimusar Oil Field[R]. SPE 212294, 2022.
[13] PACIS F J, ALYAEV S, AMBRUS A, et al. Transfer learning approach to prediction of rate of penetration in drilling[C]//Computational Science–ICCS 2022. Cham: Springer, 2022: 358−371.
[14] WEI Jun, LIAO Hualin, WANG Huajian, et al. Experimental investigation on the dynamic tensile characteristics of conglomerate based on 3D SHPB system[J]. Journal of Petroleum Science and Engineering, 2022, 213: 110350. doi: 10.1016/j.petrol.2022.110350
[15] WANG Han, CHEN Dong, YE Zhihui, et al. Intelligent planning of drilling trajectory based on computer vision[R]. SPE 197362, 2019.
[16] SNYDER J, SALMON G. Intelligent rotary steerable system, coupled with an instrumented bit, delivers section plan in deepwater GOM project[R]. SPE 204680, 2021.
[17] 吴思源,李守定,陈冬,等. 大闭环伺服控制随钻智能导向钻井方法[J]. 地球物理学报,2021,64(11):4215–4226. doi: 10.6038/cjg2021O0449 WU Siyuan, LI Shouding, CHEN Dong, et al. An intelligent-while-drilling steering method of global closed-loop servo control[J]. Chinese Journal of Geophysics, 2021, 64(11): 4215–4226. doi: 10.6038/cjg2021O0449
[18] 田岚. 石油天然气钻井工程风险识别与评价方法[J]. 钻采工艺,2010,33(2):31–33. TIAN Lan. Risk identification and evaluation method in drilling engineering[J]. Drilling & Production Technology, 2010, 33(2): 31–33.
[19] NOSHI C I, NOYNAERT S F, SCHUBERT J J. Casing failure data analytics: A novel data mining approach in predicting casing failures for improved drilling performance and production optimization[R]. SPE 191570, 2018.
[20] AGWU O E, AKPABIO J U, ALABI S B, et al. Artificial intelligence techniques and their applications in drilling fluid engineering: a review[J]. Journal of Petroleum Science and Engineering, 2018, 167: 300–315. doi: 10.1016/j.petrol.2018.04.019
[21] 胜亚楠. 钻井工程风险评估与控制技术研究[D]. 青岛: 中国石油大学(华东), 2019. SHENG Yanan. Research on risk assessment and control technology of drilling engineering[D]. Qingdao: China University of Petroleum(East China), 2019.
[22] FANG Chunfei, WANG Zheng, SONG Xianzhi, et al. A novel cementing quality evaluation method based on convolutional neural network[J]. Applied Sciences, 2022, 12(21): 10997. doi: 10.3390/app122110997
[23] 郑双进,程霖,龙震宇,等. 基于GA-SVR算法的顺北区块固井质量预测[J]. 石油钻采工艺,2021,43(4):467–473. ZHENG Shuangjin, CHENG Lin, LONG Zhenyu, et al. Predicting the cementing quality in Shunbei Block based on GA-SVR algorithm[J]. Oil Drilling & Production Technology, 2021, 43(4): 467–473.
[24] WUTHERICH K, SRINIVASAN S, RAMSEY L, et al. Engineered diversion: using well heterogeneity as an advantage to designing stage specific diverter strategies[R]. SPE 189827, 2018.
[25] SOROUSH H, BELYADI H, KANG H, et al. Early prediction and prevention of tip screen-out using deep learning[R]. ARMA-2022 − 0052, 2022.
[26] GUO Wei, ZHANG Xiaowei, KANG Lixia, et al. Investigation of flowback behaviours in hydraulically fractured shale gas well based on physical driven method[J]. Energies, 2022, 15(1): 325. doi: 10.3390/en15010325
[27] 宋俊强,李晓山,王硕,等. 致密油藏压裂水平井产量预测[J]. 新疆石油地质,2022,43(5):580–586. SONG Junqiang, LI Xiaoshan, WANG Shuo, et al. Production prediction of fractured horizontal wells in tight oil reservoirs[J]. Xinjiang Petroleum Geology, 2022, 43(5): 580–586.
[28] 于潇伟,和鹏飞,金庭浩. 中国某海油气田智能完井方案设计研究[J]. 石油化工应用,2021,40(9):89–93. doi: 10.3969/j.issn.1673-5285.2021.09.019 YU Xiaowei, HE Pengfei, JIN Tinghao. Study on intelligent well completion scheme design of an offshore oil and gas field in China[J]. Petrochemical Industry Application, 2021, 40(9): 89–93. doi: 10.3969/j.issn.1673-5285.2021.09.019
[29] 舒成龙. 基于井下压力和温度数据的水平井智能完井产液状况分析[D]. 青岛: 中国石油大学(华东), 2015. SHU Chenglong. Fluid production analysis of intelligent completion horizontal wells based on wellbore pressure and temperature data[D]. Qingdao: China University of Petroleum (East China), 2015.
[30] SHISHAVAN R A, HUBBELL C, PEREZ H, et al. Combined rate of penetration and pressure regulation for drilling optimization by use of high-speed telemetry[J]. SPE Drilling & Completion, 2015, 30(1): 17–26.
[31] RITTO T G, SOIZE C, SAMPAIO R. Robust optimization of the rate of penetration of a drill-string using a stochastic nonlinear dynamical model[J]. Computational Mechanics, 2010, 45(5): 415–427. doi: 10.1007/s00466-009-0462-8
[32] BOURGOYNE A T, Jr, YOUNG F S, Jr. A multiple regression approach to optimal drilling and abnormal pressure detection[J]. SPE Journal, 1974, 14(4): 371–384.
[33] HEGDE C, SOARES C, GRAY K. Rate of penetration (ROP) modeling using hybrid models: deterministic and machine learning[R]. URTEC-2896522-MS, 2018.
[34] ETESAMI D, ZHANG W J, HADIAN M. A formation-based approach for modeling of rate of penetration for an offshore gas field using artificial neural networks[J]. Journal of Natural Gas Science and Engineering, 2021, 95: 104104. doi: 10.1016/j.jngse.2021.104104
[35] PAYETTE G S, SPIVEY B J, WANG L, et al. A real-time well-site based surveillance and optimization platform for drilling: Technology, basic workflows and field results[R]. SPE 184615, 2017.
[36] 宋先知,裴志君,王潘涛,等. 基于支持向量机回归的机械钻速智能预测[J]. 新疆石油天然气,2022,18(1):14–20. doi: 10.12388/j.issn.1673-2677.2022.01.002 SONG Xianzhi, PEI Zhijun, WANG Pantao, et al. Intelligent prediction for rate of penetration based on support vector machine regression[J]. Xinjiang Oil & Gas, 2022, 18(1): 14–20. doi: 10.12388/j.issn.1673-2677.2022.01.002
[37] ZANG Chuanzhen, LU Zongyu, YE Shanlin, et al. Drilling parameters optimization for horizontal wells based on a multiobjective genetic algorithm to improve the rate of penetration and reduce drill string drag[J]. Applied Sciences, 2022, 12(22): 11704. doi: 10.3390/app122211704
[38] ZHANG Chengkai, SONG Xianzhi, SU Yinao, et al. Real-time prediction of rate of penetration by combining attention-based gated recurrent unit network and fully connected neural networks [J]. Journal of Petroleum Science and Engineering, 2022, 213: 110396. doi: 10.1016/j.petrol.2022.110396
[39] 宋先知, 裴志君, 李根生, 等. 机械钻速预测方法及装置: CN202110786598.1[P]. 2022-02-18. SONG Xianzhi, PEI Zhijun, LI Gensheng, et al. Mechanical penetration rate prediction method and device: CN202110786598.1[P]. 2022-02-18.
[40] RASHIDI B, HARELAND G, WU Zebing. Performance, simulation and field application modeling of rollercone bits[J]. Journal of Petroleum Science and Engineering, 2015, 133: 507–517. doi: 10.1016/j.petrol.2015.06.003
[41] HELMY M W, KHALAF F, DARWISH T A. Well design using a computer model[J]. SPE Drilling & Completion, 1998, 13(1): 42–46.
[42] ATASHNEZHAD A, WOOD D A, FEREIDOUNPOUR A, et al. Designing and optimizing deviated wellbore trajectories using novel particle swarm algorithms[J]. Journal of Natural Gas Science and Engineering, 2014, 21: 1184–1204. doi: 10.1016/j.jngse.2014.05.029
[43] 刘绘新,孟英峰. 定向井最优井身轨迹研究[J]. 天然气工业,2004,24(2):64–67. doi: 10.3321/j.issn:1000-0976.2004.02.019 LIU Huixin, MENG Yingfeng. Study on optimal hole trajectory of directional drilling[J]. Natural Gas Industry, 2004, 24(2): 64–67. doi: 10.3321/j.issn:1000-0976.2004.02.019
[44] ABBAS A K, ALAMEEDY U, ALSABA M, et al. Wellbore trajectory optimization using rate of penetration and wellbore stability analysis[R]. SPE 193755, 2018.
[45] BISWAS K, VASANT P M, GAMEZ VINTANED J A, et al. Cellular automata-based multi-objective hybrid grey wolf optimization and particle swarm optimization algorithm for wellbore trajectory optimization[J]. Journal of Natural Gas Science and Engineering, 2021, 85: 103695. doi: 10.1016/j.jngse.2020.103695
[46] YU Le, PORWAL A, HOLDEN E J, et al. Towards automatic lithological classification from remote sensing data using support vector machines[J]. Computers & Geosciences, 2012, 45: 229–239.
[47] 王延江,杨培杰,史清江,等. 基于支撑向量机的井眼轨迹预测新方法[J]. 石油大学学报(自然科学版),2005,29(5):50–53. WANG Yanjiang, YANG Peijie, SHI Qingjiang, et al. Novel wellbore trajectory prediction method based on support vector machine[J]. Journal of the University of Petroleum, China(Edition of Natural Science), China, 2005, 29(5): 50–53.
[48] 孟庆华,刘清友. 基于小波–神经网络的井眼轨迹预测数学模型研究[J]. 机械设计,2008,25(9):25–27. MENG Qinghua, LIU Qingyou. Study on mathematical model of well bore locus prediction based on wavelet-neural network[J]. Journal of Machine Design, 2008, 25(9): 25–27.
[49] 张红,涂忆柳,冯定,等. 基于Kriging代理模型的造斜率预测方法研究[J]. 科学技术与工程,2017,17(3):61–68. doi: 10.3969/j.issn.1671-1815.2017.03.008 ZHANG Hong, TU Yiliu, FENG Ding, et al. Research on prediction method of build-up rate of deflecting tools based on Kriging surrogate model[J]. Science Technology and Engineering, 2017, 17(3): 61–68. doi: 10.3969/j.issn.1671-1815.2017.03.008
[50] 陈冬, 王涵, 叶智慧, 等. 一种基于随钻数据的地质模型重构方法及装置: CN202211215676.3[P]. 2023-01-06. CHEN Dong, WANG Han, YE Zhihui, et al. A geological model reconstruction method and device based on data while drilling: CN202211215676.3[P]. 2023-01-06.
[51] 刘昊. 一种基于强化学习的井下全闭环智能导钻方法研究[D]. 北京: 中国石油大学(北京), 2020. LIU Hao. Research on a fully closed-loop intelligent drilling guide d method based on reinforcement learning[D]. Beijing: China University of Petroleum(Beijing), 2020.
[52] 李旭,宋少博,高立军,等. 贝克休斯AutoTrak旋转导向指令成功率与涡轮转数配比研究[J]. 西部探矿工程,2022,34(9):90–91. doi: 10.3969/j.issn.1004-5716.2022.09.032 LI Xu, SONG Shaobo, GAO Lijun, et al. Research on the ratio between the success rate of rotation guidance command and turbine speed of Baker Hughes AutoTrak[J]. West-China Exploration Engineering, 2022, 34(9): 90–91. doi: 10.3969/j.issn.1004-5716.2022.09.032
[53] BA S, KIM J, GOEL P, et al. Expanding downlink capabilities using autonomous directional drilling with rotary steerable systems[R]. SPE 211067, 2022.
[54] ABBAS A K, BASHIKH A A, ABBAS H, et al. Intelligent decisions to stop or mitigate lost circulation based on machine learning[J]. Energy, 2019, 183: 1104–1113. doi: 10.1016/j.energy.2019.07.020
[55] 戴永寿,岳炜杰,孙伟峰,等. “三高” 油气井早期溢流在线监测与预警系统[J]. 中国石油大学学报(自然科学版),2015,39(3):188–194. DAI Yongshou, YUE Weijie, SUN Weifeng, et al. Online monitoring and warning system for early kick foreboding on “three high” wells[J]. Journal of China University of Petroleum(Edition of Natural Science), 2015, 39(3): 188–194.
[56] SIRUVURI C, NAGARAKANTI S, SAMUEL R. Stuck pipe prediction and avoidance: a convolutional neural network app-roach[R]. SPE 98378, 2006.
[57] 刘建明,李玉梅,张涛,等. 一种基于PCA-RF的卡钻预测方法[J]. 北京信息科技大学学报(自然科学版),2021,36(1):18–22. LIU Jianming, LI Yumei, ZHANG Tao, et al. Research on PCA-RF-based sticking prediction method[J]. Journal of Beijing Information Science & Technology University, 2021, 36(1): 18–22.
[58] DUAN Shiming, SONG Xianzhi, CUI Yi, et al. Intelligent kick warning based on drilling activity classification[J]. Geoenergy Science and Engineering, 2023, 222: 211408. doi: 10.1016/j.geoen.2022.211408
[59] LIANG Haibo, ZOU Jialing, LIANG Wenlong. An early intelligent diagnosis model for drilling overflow based on GA–BP algorithm[J]. Cluster Computing, 2019, 22(5): 10649–10668.
[60] YIN Qishuai, YANG Jin, TYAGI M, et al. Downhole quantitative evaluation of gas kick during deepwater drilling with deep learning using pilot-scale rig data[J]. Journal of Petroleum Science and Engineering, 2022, 208(Part A): 109136.
[61] 宋先知,姚学喆,李根生,等. 基于LSTM-BP神经网络的地层孔隙压力计算方法[J]. 石油科学通报,2022,7(1):12–23. doi: 10.3969/j.issn.2096-1693.2022.01.002 SONG Xianzhi, YAO Xuezhe, LI Gensheng, et al. A novel method to calculate formation pressure based on the LSTM-BP neural network[J]. Petroleum Science Bulletin, 2022, 7(1): 12–23. doi: 10.3969/j.issn.2096-1693.2022.01.002
[62] ZHU Zhaopeng, SONG Xianzhi, ZHANG Rui, et al. A hybrid neural network model for predicting bottomhole pressure in managed pressure drilling[J]. Applied Sciences, 2022, 12(13): 6728. doi: 10.3390/app12136728
[63] 许争鸣. 深层高温高压钻井环空气液固三相流动规律研究[D]. 北京: 中国石油大学(北京), 2019. XU Zhengming. Study on the flowing characteristics of gas-liquid-solid in annulus during high-temperature and high-pressure deep well drilling[D]. Beijing: China University of Petroleum(Beijing), 2019.
[64] 连志龙,周英操,申瑞臣,等. 无意外风险钻井(NDS)技术探讨[J]. 石油钻采工艺,2009,31(1):90–94. doi: 10.3969/j.issn.1000-7393.2009.01.023 LIAN Zhilong, ZHOU Yingcao, SHEN Ruichen, et al. A discussion on technology of no drilling surprises (NDS)[J]. Oil Drilling & Production Technology, 2009, 31(1): 90–94. doi: 10.3969/j.issn.1000-7393.2009.01.023
[65] 杨传书. 钻井风险评价系统DrillRisk的研发与应用[J]. 石油钻探技术,2017,45(5):60–67. doi: 10.11911/syztjs.201705011 YANG Chuanshu. Development and application of risk-assessment system for drilling operations[J]. Petroleum Drilling Techniques, 2017, 45(5): 60–67. doi: 10.11911/syztjs.201705011
[66] 朱玉玺,倪红梅,王瑞仙,等. 人工神经网络在固井质量预测中的应用[J]. 大庆石油学院学报,2002,26(2):52–55. ZHU Yuxi, NI Hongmei, WANG Ruixian, et al. Application of artificial neutral network to forecasting cementing quality[J]. Journal of Northeast Petroleum University, 2002, 26(2): 52–55.
[67] 倪红梅,王维刚. 免疫神经网络在固井质量预测中的应用研究[J]. 计算机仿真,2009,26(7):267–269. doi: 10.3969/j.issn.1006-9348.2009.07.068 NI Hongmei, WANG Weigang. Application of immune neural network in cementing quality prediction[J]. Computer Simulation, 2009, 26(7): 267–269. doi: 10.3969/j.issn.1006-9348.2009.07.068
[68] VOLETI D K, REDDICHARLA N, GUNTUPALLI S, et al. Smart way for consistent cement bond evaluation and reducing human bias using machine learning[R]. SPE 202742, 2020.
[69] SANTOS L, DAHI TALEGHANI A. Machine learning framework to generate synthetic cement evaluation logs for wellbore integrity analysis[R]. ARMA-2021-1769, 2021.
[70] REOLON D, DI MAGGIO F, MORIGGI S, et al. Unlocking data analytics for the automatic evaluation of cement bond scena-rios[R]. SPWLA-5060, 2020.
[71] VIGGEN E M, LØVSTAKKEN L, MÅSØY S E, et al. Better automatic interpretation of cement evaluation logs through feature engineering[J]. SPE Journal, 2021, 26(5): 2894–2913. doi: 10.2118/204057-PA
[72] LEHMAN L V, JACKSON K, NOBLETT B. Big data yields completion optimization: Using drilling data to optimize completion efficiency in a low permeability formation[R]. SPE 181273, 2016.
[73] SCANLAN W P, PIERSKALLA K J, SOBERNHEIM D W, et al. Optimization of Bakken well completions in a multivariate wor-ld[R]. SPE 189868, 2018.
[74] KESHAVARZI R, JAHANBAKHSHI R. Investigation of hydraulic and natural fracture interaction: Numerical modeling or artificial intelligence?[R]. ISRM-ICHF-2013 − 025, 2013.
[75] YANG Ruiyue, QIN Xiaozhou, LIU Wei, et al. A physics-constrained data-driven workflow for predicting coalbed methane well production using artificial neural network[J]. SPE Journal, 2022, 27(3): 1531–1552. doi: 10.2118/205903-PA
[76] HARPEL J, RAMSEY L, WUTHERICH K. Improving the effectiveness of diverters in hydraulic fracturing of the wolfcamp shale[R]. SPE 191600, 2018.
[77] HU Jinqiu, KHAN F, ZHANG Laibin, et al. Data-driven early warning model for screenout scenarios in shale gas fracturing operation[J]. Computers & Chemical Engineering, 2020, 143: 107116.
[78] 盛茂, 李雨峰, 李根生, 等. 模型建立方法、裂缝起裂事件诊断方法和装置: CN202110792084.7[P]. 2021-09-24. SHENG Mao, LI Yufeng, LI Gensheng, et al. Model establishment method, fracture initiation event diagnosis method and device: CN202110792084.7[P]. 2021-09-24.
[79] DURDYYEV G. New technologies and protocols concerning horizontal well drilling and completion[D]. Turin: Politecnico di Torino, 2021.
[80] ZHOU Qiumei, DILMORE R, KLEIT A, et al. Evaluating fracture-fluid flowback in Marcellus using data-mining technologies[J]. SPE Production & Operations, 2016, 31(2): 133–146.
[81] FU Yingkun, DEHGHANPOUR H, EZULIKE D O, et al. Estimating effective fracture pore volume from flowback data and evaluating its relationship to design parameters of multistage-fracture completion[J]. SPE Production & Operations, 2017, 32(4): 423–439.
[82] MAITY D, CIEZOBKA J. An interpretation of proppant transport within the stimulated rock volume at the hydraulic-fracturing test site in the Permian Basin[J]. SPE Reservoir Evaluation & Engineering, 2019, 22(2): 477–491.
[83] 盛茂,李根生,田守嶒,等. 人工智能在油气压裂增产中的研究现状与展望[J]. 钻采工艺,2022,45(4):1–8. SHENG Mao, LI Gensheng, TIAN Shouceng, et al. Research status and prospect of artificial intelligence in reservoir fracturing stimulation[J]. Drilling & Production Technology, 2022, 45(4): 1–8.
[84] NEJAD A M, SHELUDKO S, SHELLEY R F, et al. A case history: evaluating well completions in the Eagle Ford Shale using a data-driven approach[R]. SPE 173336, 2015.
[85] YANG Ruiyue, LIU Wei, QIN Xiaozhou, et al. A physics-constrained data-driven workflow for predicting coalbed methane well production using a combined gated recurrent unit and multi-layer perception neural network model[R]. SPE 205903, 2021.
[86] TARIQ Z, ABDULRAHEEM A, KHAN M R, et al. New inflow performance relationship for a horizontal well in a naturally fractured solution gas drive reservoirs using artificial intelligence technique[R]. OTC 28367, 2018.
[87] BELLO O, YANG D, LAZARUS S, et al. Next generation downhole big data platform for dynamic data-driven well and reservoir management[R]. SPE 186033, 2017.
[88] WANG Xiaoqiu, WANG Zhiming, ZENG Quanshu. A novel autonomous inflow control device: design, stracture optimization, and fluid sensitivity analysis[R]. IPTC 17758, 2014.
[89] 王小秋,汪志明,赵麟. 基于膨胀材料的新型AICD结构设计及其性能实验研究[J]. 石油科学通报,2018,3(3):302–312. WANG Xiaoqiu, WANG Zhiming, ZHAO Lin. A novel AICD structure design and its performance analysis[J]. Petroleum Science Bulletin, 2018, 3(3): 302–312.
[90] 陈玉婷, 赵晨晖, 冯超, 等. 深水高产油气田智能完井与防砂一体化技术的应用[J]. 石油工程建设, 2020, 46(增刊1): 229-232. CHEN Yuting, ZHAO Chenhui, FENG Chao, et al. Integrated application of intelligent well completion and sand control technology for high yield oil and gas fields in deepwater[J]. Petroleum Engineering Construction, 2020, 46(supplement 1): 229-232.
[91] HEGDE C, MILLWATER H, PYRCZ M, et al. Rate of penetration (ROP) optimization in drilling with vibration control[J]. Journal of Natural Gas Science and Engineering, 2019, 67: 71–81. doi: 10.1016/j.jngse.2019.04.017
[92] LOSOYA E Z, GILDIN E, NOYNAERT S F, et al. An open-source enabled drilling simulation consortium for academic and commercial applications[R]. SPE 198943, 2020.
[93] 宋先知, 裴志君, 王潘涛, 等. 基于多目标的油气钻井策略预测方法及装置: CN202110232999.2[P]. 2021-05-14. SONG Xianzhi, PEI Zhijun, WANG Pantao, et al. Prediction method and device of oil and gas drilling strategy based on multi-objective: CN202110232999.2[P]. 2021-05-14.
[94] 徐宝昌, 张学智. 耦合井筒与钻柱的钻井过程全局动态建模与仿真[C]//第40届中国控制会议论文集(15). 上海: 中国自动化学会控制理论专业委员会, 2021: 688 − 693. XU Baochang, ZHANG Xuezhi. Global dynamic modeling and simulation of drilling process coupled with wellbore and drill string[C]//Proceedings of the 40th China control conference (15). Shanghai: Control theory professional committee of China automation society, 2021: 688−693.
[95] MAYANI M G, ROMMETVEIT R, OEDEGAARD S I, et al. Drilling automated realtime monitoring using digital twin[R]. SPE 192807, 2018.
[96] CAYEUX E. Mathematical modelling of the drilling process for real-time applications in drilling simulation, interpretation and assistance[D]. Stavanger: University of Stavanger, 2019.
[97] 肖立志. 机器学习数据驱动与机理模型融合及可解释性问题[J]. 石油物探,2022,61(2):205–212. doi: 10.3969/j.issn.1000-1441.2022.02.002 XIAO Lizhi. The fusion of data-driven machine learning with mechanism models and interpretability issues[J]. Geophysical Prospecting for Petroleum, 2022, 61(2): 205–212. doi: 10.3969/j.issn.1000-1441.2022.02.002
[98] RAI R, SAHU C K. Driven by data or derived through physics? A review of hybrid physics guided machine learning techniques with cyber-physical system (CPS) focus[J]. IEEE Access, 2020, 8: 71050–71073. doi: 10.1109/ACCESS.2020.2987324
[99] 杨顺辉,郭珍珍,张洪宝,等. 基于集成迁移学习的机械钻速预测[J]. 计算机系统应用,2022,31(10):270–278. YANG Shunhui, GUO Zhenzhen, ZHANG Hongbao, et al. Rate of penetration prediction using ensemble transfer learning[J]. Computer Systems & Applications, 2022, 31(10): 270–278.
[100] CHEN Yuntian, ZHANG Dongxiao. Physics-constrained deep learning of geomechanical logs[J]. IEEE Transactions on Geosci-ence and Remote Sensing, 2020, 58(8): 5932–5943. doi: 10.1109/TGRS.2020.2973171
[101] 陈良臣,傅德印. 面向小样本数据的机器学习方法研究综述[J]. 计算机工程,2022,48(11):1–13. CHEN Liangchen, FU Deyin. Survey on machine learning methods for small sample data[J]. Computer Engineering, 2022, 48(11): 1–13.
[102] GILPIN L H, BAU D, YUAN B Z, et al. Explaining explanations: an overview of interpretability of machine learning[C]//2018 IEEE 5th international conference on data science and advanced analytics (DSAA). Turin: IEEE, 2018: 80−89.
[103] CHOI E, BAHADORI M T, SCHUETZ A, et al. RETAIN: Interpretable predictive model in healthcare using reverse time attention mechanism[EB/OL]. (2016-08-19)[2023-01-15]. https://arxiv. org/abs/1608.05745v1.
[104] BARR KUMARAKULASINGHE N, BLOMBERG T, LIU Jintai, et al. Evaluating local interpretable model-agnostic explanations on clinical machine learning classification models[C]//2020 IEEE 33rd international symposium on computer-based medical systems (CBMS). Rochester: IEEE, 2020: 7-12.
-
期刊类型引用(3)
1. 毛军,郭肖,庞伟. 高温高压气密封测试封隔器研发及现场试验. 石油钻探技术. 2023(06): 71-76 . 本站查看
2. 郎宝山. 稠油水平井大直径封漏堵水管柱的研制与应用. 特种油气藏. 2020(03): 157-162 . 百度学术
3. 吕维平,郭智栋,唐纯洁,刘新伟,刘家炜,唐勇. 集束连续管分流连接器的研制与应用. 石油机械. 2020(12): 95-100 . 百度学术
其他类型引用(1)