Processing math: 100%

国内钻井液技术现状与发展建议

王中华

王中华. 国内钻井液技术现状与发展建议[J]. 石油钻探技术,2023, 51(4):114-123. DOI: 10.11911/syztjs.2023028
引用本文: 王中华. 国内钻井液技术现状与发展建议[J]. 石油钻探技术,2023, 51(4):114-123. DOI: 10.11911/syztjs.2023028
WANG Zhonghua. Current situation and development suggestions for drilling fluid technologies in China [J]. Petroleum Drilling Techniques,2023, 51(4):114-123. DOI: 10.11911/syztjs.2023028
Citation: WANG Zhonghua. Current situation and development suggestions for drilling fluid technologies in China [J]. Petroleum Drilling Techniques,2023, 51(4):114-123. DOI: 10.11911/syztjs.2023028

国内钻井液技术现状与发展建议

基金项目: 中国石化集团公司科技攻关项目“抗高温聚多糖水基钻井液技术研究”(编号:JP22300)和中国石化科技攻关项目“特深层安全高效钻井关键技术”(编号:P21081-2)联合资助
详细信息
    作者简介:

    王中华(1965—),男,河南柘城人,1985年毕业于郑州大学化学专业,正高级工程师,享受国务院政府特殊津贴,主要从事钻井液技术研究与管理工作。系本刊编委。E-mail:wangzh.oszy@sinopec.com

  • 中图分类号: TE254

Current Situation and Development Suggestions for Drilling Fluid Technologies in China

  • 摘要:

    近年来,通过持续研究和现场实践,国内钻井液技术取得了新的进展。为系统了解国内钻井液技术研究与应用情况,促进钻井液体系完善与性能提高,综述了国内近期的强抑制性聚合醇钻井液、胺基抑制钻井液、有机盐钻井液和超高温钻井液、微泡钻井液、强封堵钻井液、环保钻井液和无土/固相水基钻井液等水基钻井液体系,全油基钻井液、油包水乳化钻井液和无土相油基钻井液等油基钻井液体系,以及烃类合成基钻井液、生物质合成基钻井液等合成基钻井液体系的研究与应用情况,指出了钻井液研究与现场应用中存在的问题,分析了问题产生的原因,并从现场需要和钻井液研究、应用与规范出发提出了钻井液技术发展建议,对国内钻井液技术的开发与应用具有一定的参考借鉴价值。

    Abstract:

    Thanks to continuous research and field practice in recent years, new progress has been made in drilling fluid technologies in China. In order to systematically understand the research and application of drilling fluid technologies in China and improve drilling fluid systems and performance, research and application of water-based drilling fluid systems recently emerging in China, including polyalcohol drilling fluid with strong inhibitive ability, amine inhibiting drilling fluid, organic salt drilling fluid, ultra-high temperature drilling fluid, micro-bubble drilling fluid, strong plugging drilling fluid, environmentally friendly drilling fluid, and soil-free/solid-free water-based drilling fluid. Furthermore, oil-based drilling fluid systems, such as all-oil-based drilling fluid, water-in-oil emulsion drilling fluid, and soil-free oil-based drilling fluid were summarized, and synthetic-based drilling fluid systems including hydrocarbon synthetic-based drilling fluid and biomass synthetic-based drilling fluid were studied. The problems in the research and field application of drilling fluid were identified, and the causes of these problems were analyzed. Suggestions for developing drilling fluid technologies were put forward according to the field needs and drilling fluid research, application, and specification, which are of certain reference value for the development and application of drilling fluid technologies in China.

  • 随着固井技术的发展,超低密度水泥浆得到广泛应用[1-2],尤其是针对低压易漏、密度窗口窄的层位,超低密度水泥浆解决了水泥返高不够、固井漏失等问题,并显著提高了固井质量[3]。如东胜气田储层是典型的低压、低渗、致密层段,由于地层承压能力低,钻井、固井过程中易发生漏失,杭锦旗区块刘家沟组、石千峰组等地层的承压当量密度最低达1.10 kg/L,通过应用超低密度水泥浆,降低了固井漏失率,保证了水泥返高。但超低密度水泥浆的应用也给固井质量评价带来了一系列难题[4-5]。首先是超低密度水泥环的强度、声学特性与测井响应的关系不明确,一方面,随着水泥环密度的降低,其强度和声速也降低,套管与水泥环交界面的声耦合性就会变差,声幅测井响应表现为套管波变强,地层波变弱[6-8];另一方面,漂珠等减轻材料对水泥环的强度和声学特性有一定的影响。其次是超低密度水泥浆固井质量评价指标不明确[9-11],现有标准《固井质量评价方法》(SY/T 6592—2016)只给出了水泥浆密度在1.30 kg/L以上的固井质量评价相对声幅,对于密度低于1.30 kg/L的超低密度水泥浆无明确的评价指标[6];国内外学者针对低密度水泥浆固井质量评价方法进行了大量研究,但未系统研究超低密度水泥浆固井质量评价方法。为此,笔者通过开展室内试验研究,揭示超低密度水泥石的强度和声学特性,结合理论分析,开展了超低密度水泥浆固井质量评价方法研究,得出了科学的评价指标,可准确评价超低密度水泥浆固井质量,为后续作业决策提供科学依据,为安全成井提供技术支持。

    试验材料主要包括G级油井水泥、漂珠1、漂珠2、漂珠3、微硅、降滤失剂、分散剂和水等,全部材料及配方均与现场保持一致。

    试验仪器主要包括高速搅拌器、密度计、六速旋转黏度仪、稠化仪、高温高压滤失仪、恒温养护釜、抗压强度测试仪和声速测试仪等。

    首先,设计不同密度的水泥浆配方(设计的7种配方见表1),并配制得到水泥浆;然后,按照《油井水泥性能试验方法》(SY/T 6466—2016)测试和验证不同密度水泥浆的基础性能,包括密度、流变性、滤失量和稠化时间等[12];最后,将配制好的水泥浆体注入多组5cm×5cm×5cm养护模具中,分别置于25,50和80 ℃的水浴中养护18,24,48,72,120,240和720 h后,测量养护试块的抗压强度、纵波声速和横波声速。

    表  1  声学和强度特性试验用超低密度水泥浆配方
    Table  1.  Formula of ultra-low-density cement slurry for measurement of acoustic and strength properties
    配方密度/(kg·L−1 水泥浆各成分含量,%
    G级水泥漂珠1漂珠2微珠3微硅早强剂降滤失剂减阻剂
    11.1010030034302504.505.000.30
    21.1510030030302454.004.500.30
    31.2010027250201804.004.000.30
    41.2510025220201404.003.500.25
    51.331003600101203.301.400.20
    61.5010015005704.004.000.30
    71.90100 00004400.500.10
    下载: 导出CSV 
    | 显示表格

    温度是影响超低密度水泥石强度和声学特性发展规律的重要因素[13-15]。以密度1.33 kg/L的超低密度水泥浆为例,按照1.2节所述试验方法,得出各项试验数据,并绘制得到水泥石抗压强度和纵横波声速发展曲线(见图1图2)。从图1图2可以看出,水泥石的抗压强度、纵波声速和横波声速均与养护时间正相关,且在较短时间内抗压强度和声速就会达到较大值,之后抗压强度和声速增大趋势变缓并逐渐趋于稳定。水泥石抗压强度和声速的发展速率与温度同样呈正相关关系,即温度越高,水泥石抗压强度和声速趋于稳定的时间越短。水泥石在50和80 ℃温度下养护 72 h后,其抗压强度和声速基本可达到养护720 h时的85%以上;但在25 ℃温度下养护200 h时的抗压强度和声速才能达到养护720 h时的85%以上;养护200 h以后,抗压强度和声速不同养护温度下的发展规律基本一致。

    图  1  密度 1.33 kg/L水泥石抗压强度发展曲线
    Figure  1.  Compressive strength of cement stone with a density of 1.33 kg/L
    图  2  密度1.33 kg/L水泥石纵横波声速发展曲线
    Figure  2.  Acoustic velocities of P-waves and S-waves of cement stone with density of 1.33 kg/L

    以上研究表明,温度是影响水泥水化反应速率的重要因素,温度越高,水化反应速率越大,这就导致前期水泥石的抗压强度和声速变化速率受温度影响较大;但不同温度条件下的水泥水化产物类型基本相同,随着养护时间增长,水泥水化反应趋于稳定,表现为不同温度条件下抗压强度和纵横波声速的变化速率较小,且无限接近水泥石的最终抗压强度和声速,即养护后期其抗压强度和声速受温度影响不大[11]

    密度是影响超低密度水泥石强度和声学特性变化规律的另一重要因素。在养护温度80 ℃、养护时间72 h条件下,按照1.2节所述试验方法,测量表1中7个配方所对应水泥石的抗压强度和声速,根据所得数据绘制得到水泥石抗压强度和声速随水泥浆密度的变化曲线,见图3图4。由图3图4可以看出,在其他条件相同的情况下,超低密度水泥石的抗压强度和声速与水泥浆密度正相关,即水泥浆密度越高,抗压强度和纵横波声速越大。

    图  3  抗压强度与水泥浆密度的关系曲线
    Figure  3.  Relationship between compressive strength and cement slurry density
    图  4  纵横波声速与水泥浆密度的关系曲线
    Figure  4.  Relationship between cement slurry density and acoustic velocities of P-waves and S-waves

    分析认为,水泥浆的密度越高,水泥浆中的水泥含量越高,而漂珠等减轻材料含量就会越少,且水泥石更加致密,孔隙度更低,导致其抗压强度和纵横波声速随水泥浆密度升高而升高[13]

    水泥石抗压强度与声速正相关,通常抗压强度越高,对应的声速也越高。统计分析不同养护条件下的全部试验数据,对不同密度超低密度水泥浆形成水泥石的抗压强度和纵横波声速进行拟合,结果如图5图6所示。从图5图6可以看出,超低密度水泥石抗压强度与纵波、横波声速均呈指数关系。

    图  5  纵波声速与抗压强度的关系曲线
    Figure  5.  Relationship between acoustic velocity of P-wave and compressive strength
    图  6  横波声速与抗压强度的关系曲线
    Figure  6.  Relationship between acoustic velocity of S-wave and compressive strength

    图5图6的水泥石抗压强度与纵波、横波声速进行拟合,可得:

    p=aebvp (1)
    p=cedvs (2)

    式中:p为水泥石的抗压强度,MPa;vp为水泥石的纵波声速,m/s;vs为水泥石的横波声速,m/s。

    根据试验所得数据,得出抗压强度与纵横波声速的拟合关系,见表2

    表  2  纵横波声速与抗压强度的拟合关系式
    Table  2.  Fitting relationship between compressive strength and acoustic velocity of P-waves and S-waves
    序号密度/(kg·L–1声波速度与抗压强度关系式相关系数
    1 1.10 p=0.002e0.0039vp R2=0.989 5
    p=0.0019e0.0034vs R2=0.964 9
    2 1.15 p=0.0055e0.0034vp R2=0.941 7
    p=0.0145e0.0055vs R2=0.937 0
    3 1.20 p=0.0019e0.0035vp R2=0.891 2
    p=0.021e0.0045vs R2=0.860 7
    4 1.25 p=0.0618e0.0021vp R2=0.920 6
    p=0.0356e0.0041vs R2=0.955 4
    5 1.33 p=0.0035e0.0034vp R2=0.900 6
    p=0.0017e0.0067vs R2=0.911 3
    下载: 导出CSV 
    | 显示表格

    分析认为,水泥水化过程中,固相水化产物含量逐渐增多,孔隙度不断减小,抗压强度和声速均增大。水化反应前期,固相含量增加迅速,水泥石的孔隙度快速减小,造成声速快速增大,但此时水泥石整体骨架结构较弱,且水泥水化产物本身强度偏低,造成抗压强度的发展速率要慢于声速;水泥水化反应中后期,水泥石的固相含量已经趋于稳定,孔隙度变化小,但是水化产物本身的强度更高,水泥石的骨架结构也变得较强,导致水泥石声速增加较小,而抗压强度增幅较大。同时,减轻材料的种类和加量会对水泥石的强度和声速产生一定的影响,表现为不同体系水泥浆形成水泥石的强度和声学特性存在一定的差别[14]

    超低密度水泥石声学特性的差异性会影响测井响应,进而对固井质量评价指标的科学性造成一定影响[16],因此通过对比不同胶结指数下的声幅,对超低密度水泥浆固井质量评价相对声幅进行了定量校正。该超低密度水泥浆固井质量评价相对声幅改进算法原理为:根据不同密度水泥石的强度和声学特性进行模拟计算,找出不同胶结情况下超低密度水泥浆固井测井响应和常规密度水泥浆固井测井响应的差别,结合常规密度水泥浆固井质量评价指标,对超低密度水泥浆固井质量评价相对声幅进行校正。其具体过程如下:

    1)计算水泥完全胶结时的泄露兰姆波衰减率,计算公式为[16]

    αT=3.30ρh[(59002vp21)12+(59002vs21)12] (3)

    式中:αT为泄漏兰姆波衰减率,dB/m;ρ为固井水泥浆密度,g/cm3h为套管平板厚度,cm。

    为了建立固井质量评价相对声幅与抗压强度的关系,将式(1)、式(2)代入式(3),得到修正后的泄露兰姆波衰减率表达式:

    αT=3.30ρh[(5900b2(lnplna)21)12+(5900d2(lnplnc)21)12] (4)

    2)计算胶结中等的上限和下限声幅。分别计算胶结指数为0.8和0.6时的测井声幅:

    Af0.8=100.8(6.25+αT)l20A0 (5)
    Af0.6=100.6(6.25+αT)l20A0 (6)

    式中:l为测井源距,m;Af0.8为胶结指数为0.8时接收到的理论声幅,mV;Af0.6为胶结指数为0.6时接收到的理论声幅,mV;A0为发射器发射声波的声幅,mV。

    3)计算校正系数。根据式(1)—式(6),分别计算待校核密度水泥浆固井的理论测井声幅和常规密度水泥浆固井的理论测井声幅,并进行对比分析,得到改进系数:

    λ0.8=A3A1 (7)
    λ0.6=A4A2 (8)

    式中:λ0.8为胶结指数为0.8时对应的胶结质量中等下限的改进系数;λ0.6为胶结指数为0.6时对应的胶结质量中等上限的改进系数;A1为胶结指数为0.8时常规密度水泥浆固井接收到的理论声幅,mV;A2为胶结指数为0.6时常规密度水泥浆固井接收到的理论声幅,mV;A3为胶结指数为0.8时待校核密度水泥浆固井接收到的理论声幅,mV;A4为胶结指数为0.6时待校核密度水泥浆接收到的理论声幅,mV。

    4)校正超低密度水泥浆固井质量评价相对声幅。综合考虑改进系数和常规密度水泥浆固井质量评价相对声幅,得出改进后的超低密度水泥浆固井质量评价相对声幅。相对声幅≤0.15λ0.8时,为优质;0.15λ0.8<相对声幅≤0.30λ0.6时,为中等;相对声幅>0.30λ0.6时,为不合格。

    以东胜气田三级井身结构为参考,选取计算参数如下:测井源距1.00 m,套管外径177.8 mm,套管壁厚10.36 mm。结合表2中超低密度水泥石抗压强度与声速关系的拟合关系式,校正超低密度水泥浆固井质量评价相对声幅,得到基于抗压强度的超低密度水泥浆固井质量评价相对声幅校正图版(见图7)。

    图  7  基于抗压强度的超低密度水泥固井质量评价相对声幅校正图版
    Figure  7.  Calibration type-curve of relative acoustic amplitude for cementing quality evaluation of ultra-low-density cement based on compressive strength

    图7可以看出:1)对于同一密度水泥浆,固井质量评价相对声幅随抗压强度升高而减小,即抗压强度越高,相对声幅越小,但当抗压强度升至一定值时,相对声幅趋于稳定;2)相同抗压强度条件下,固井质量评价相对声幅随着水泥浆密度升高而减小,即水泥浆密度越高,相对声幅越小。

    为了验证该方法的可靠性,用其校核密度为1.33 kg/L的超低密度水泥浆固井质量评价相对声幅,按照井底温度为80 ℃、测井时间为72 h计算,此时评价中等的相对声幅在23.0%~43.5%,与行业标准《固井质量评价方法》(SY/T 6592—2016)给出的评价中等的相对声幅22%~45%较为接近,且校核后的评价相对声幅范围更小,具有较好的针对性。

    实际应用时,首先根据井内温度设置水泥石试块养护条件;然后根据现场测井时间安排,测量同等养护时间下水泥石的抗压强度;最后根据图版校核评价相对声幅。如东胜气田72井区某井为二开结构定向井,二开钻井过程中多次发生漏失,为了防止固井漏失,采用密度1.15 kg/L的水泥浆作为领浆,封固0~2 332 m井段,固井过程中未见明显漏失,水泥浆一次上返至地面。根据测井时间为72 h和井底温度为70℃等固井质量评价条件,可知室内同等养护条件下水泥石的抗压强度约为7.3 MPa,应用校核图版,得到超低密度水泥浆封固段固井质量评价优质的相对声幅为不大于27%,评价中等的相对声幅为27%~44%,评价差的相对声幅大于44%。

    采用此评价相对声幅进行该段固井质量评价,0~340 m井段相对声幅平均为41%,评价为中等;340~1 060 m井段相对声幅平均为32%,评价为中等;1 060~1 990 m井段相对声幅平均为20%,评价为优质;1 990~2 332 m井段相对声幅平均为10%,评价为优质。超低密度水泥浆固井的优质井段占比达46.7%,固井质量整体评价为优质。该井固井施工过程中未见漏失,后期测试、采气等作业环节中未发现管外气窜和井口带压现象,说明固井质量满足生产要求。

    1)通过室内试验,揭示了超低密度水泥石的抗压强度、纵横波声速与温度和密度等参数正相关,且超低密度水泥石的纵横波声速与抗压强度存在较好的指数关系。但对于不同密度的水泥浆体系,回归出的关系式存在着一定的差异。

    2)根据理论分析结果,建立了校核超低密度水泥浆固井质量评价相对声幅的方法,并给出了具体操作步骤,操作简单、方便,与水泥浆的对应性强。

    3)建立了基于抗压强度的超低密度水泥浆固井质量评价相对声幅校核图版,明确了相对声幅与抗压强度和密度的关系,现场应用方便,可根据测井时间和井内环境精确计算出超低密度浆固井质量评价相对声幅,提高固井质量评价的准确性和时效性。

  • [1] 王亚宁,郑和,陈文可,等. YJJS-Ⅰ高性能水基钻井液技术的研究与应用[J]. 复杂油气藏,2022,15(3):24–29.

    WANG Yaning, ZHENG He, CHEN Wenke, et al. Research and application of YJJS-1 high-performance water-based drilling fluid technology[J]. Complex Hydrocarbon Reservoirs, 2022, 15(3): 24–29.

    [2] 赵素娟,游云武,刘浩冰,等. 涪陵焦页18-10HF井水平段高性能水基钻井液技术[J]. 钻井液与完井液,2019,36(5):564–569. doi: 10.3969/j.issn.1001-5620.2019.05.007

    ZHAO Sujuan, YOU Yunwu, LIU Haobing, et al. High performance drilling fluid for horizontal drilling in the Well Jiaoyel8-10HF in Fuling Shale Gas Field[J]. Drilling Fluid & Completion Fluid, 2019, 36(5): 564–569. doi: 10.3969/j.issn.1001-5620.2019.05.007

    [3] 赵虎,孙举,司西强,等. ZY-APD高性能水基钻井液研究及在川南地区的应用[J]. 天然气勘探与开发,2019,42(3):139–145.

    ZHAO Hu, SUN Ju, SI Xiqiang, et al. ZY-APD high-performance water-based drilling fluid and its application to southern Sichuan Basin[J]. Natural Gas Exploration and Development, 2019, 42(3): 139–145.

    [4] 邱春阳,周建民,张海青,等. 车古潜山油藏抗高温无固相钻井液技术[J]. 断块油气田,2020,27(3):390–393.

    QIU Chunyang, ZHOU Jianmin, ZHANG Haiqing, et al. Solid-free anti-temperature drilling fluid technology for buried-hill pool in Chegu Block[J]. Fault-Block Oil & Gas Field, 2020, 27(3): 390–393.

    [5] 林永学,王伟吉,金军斌. 顺北油气田鹰1井超深井段钻井液关键技术[J]. 石油钻探技术,2019,47(3):113–120. doi: 10.11911/syztjs.2019068

    LIN Yongxue, WANG Weiji, JIN Junbin. Key drilling fluid technology in the ultra deep section of Well Ying-1 in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(3): 113–120. doi: 10.11911/syztjs.2019068

    [6] 徐运波,于雷,黄元俊,等. 抗高温无固相钻井液在埕北潜山油藏的应用[J]. 中国石油大学胜利学院学报,2020,34(1):33–40. doi: 10.3969/j.issn.1673-5935.2020.01.007

    XU Yunbo, YU Lei, HUANG Yuanjun, et al. Application of high temperature resistant solid free drilling fluid in Chengbei buried hill reservoir[J]. Journal of Shengli College China University of Petroleum, 2020, 34(1): 33–40. doi: 10.3969/j.issn.1673-5935.2020.01.007

    [7] 陈彬,张伟国,姚磊,等. 基于井壁稳定及储层保护的钻井液技术[J]. 石油钻采工艺,2021,43(2):184–188. doi: 10.13639/j.odpt.2021.02.008

    CHEN Bin, ZHANG Weiguo, YAO Lei, et al. Drilling fluid technology based on well stability and reservoir protection[J]. Oil Drilling & Production Technology, 2021, 43(2): 184–188. doi: 10.13639/j.odpt.2021.02.008

    [8] 董晓强,方俊伟,李雄,等. 顺北4XH井抗高温高密度钻井液技术研究及应用[J]. 石油钻采工艺,2022,44(2):161–167.

    DONG Xiaoqiang, FANG Junwei, LI Xiong, et al. Research and application of a high-temperature high-density drilling fluid system in Well Shunbei-4XH[J]. Oil Drilling & Production Technology, 2022, 44(2): 161–167.

    [9] 宣扬,刘珂,郭科佑,等. 顺北超深水平井环保耐温低摩阻钻井液技术[J]. 特种油气藏,2020,27(3):163–168. doi: 10.3969/j.issn.1006-6535.2020.03.027

    XUAN Yang, LIU Ke, GUO Keyou, et al. Environmental anti-temperature low friction drilling fluid technology of ultra-deep horizontal well in Shunbei Oil & Gas Field[J]. Special Oil & Gas Reservoirs, 2020, 27(3): 163–168. doi: 10.3969/j.issn.1006-6535.2020.03.027

    [10] 王星媛,陆灯云,吴正良. 抗220℃高密度油基钻井液的研究与应用[J]. 钻井液与完井液,2020,37(5):550–554.

    WANG Xingyuan, LU Dengyun, WU Zhengliang. Study and application of a high density oil base drilling fluid with high temperature resistance of 220℃[J]. Drilling Fluid & Completion Fluid, 2020, 37(5): 550–554.

    [11] 白彬珍,曾义金,葛洪魁. 顺北56X特深水平井钻井关键技术[J]. 石油钻探技术,2022,50(6):49–55. doi: 10.11911/syztjs.2022114

    BAI Binzhen, ZENG Yijin, GE Hongkui. Key technologies for the drilling of ultra-deep horizontal Well Shunbei 56X[J]. Petroleum Drilling Techniques, 2022, 50(6): 49–55. doi: 10.11911/syztjs.2022114

    [12] 张锦宏. 中国石化页岩油工程技术现状与发展展望[J]. 石油钻探技术,2021,49(4):8–13. doi: 10.11911/syztjs.2021072

    ZHANG Jinhong. Present status and development prospects of Sinopec shale oil engineering technologies[J]. Petroleum Drilling Techniques, 2021, 49(4): 8–13. doi: 10.11911/syztjs.2021072

    [13] 王中华. 油基钻井液技术[M]. 北京: 中国石化出版社, 2019: 132 − 319.

    WANG Zhonghua. Oil based drilling fluid technology[M]. Beijing: China Petrochemical Press, 2019: 132 − 319.

    [14] 陈海宇,王新东,林晶,等. 新疆吉木萨尔页岩油超长水平段水平井钻井关键技术[J]. 石油钻探技术,2021,49(4):39–45. doi: 10.11911/syztjs.2021036

    CHEN Haiyu, WANG Xindong, LIN Jing, et al. Key drilling techniques for horizontal wells with ultra-long horizontal section in the shale oil reservoir in Jimusar, Xinjiang[J]. Petroleum Drilling Techniques, 2021, 49(4): 39–45. doi: 10.11911/syztjs.2021036

    [15] 韩来聚,杨春旭. 济阳坳陷页岩油水平井钻井完井关键技术[J]. 石油钻探技术,2021,49(4):22–28. doi: 10.11911/syztjs.2021073

    HAN Laiju, YANG Chunxu. Key technologies for drilling and completion of horizontal shale oil wells in the Jiyang Depression[J]. Petroleum Drilling Techniques, 2021, 49(4): 22–28. doi: 10.11911/syztjs.2021073

    [16] 李乾,杜明锋,黄达,等. 甲酸盐聚合醇钻井液在WZ油田储层段应用的研究分析[J]. 海洋石油,2021,41(4):73–79. doi: 10.3969/j.issn.1008-2336.2021.04.073

    LI Qian, DU Mingfeng, HUANG Da, et al. Research and analysis on the application of formate polyol drilling fluid in the reservoir section of WZ Oilfield[J]. Offshore Oil, 2021, 41(4): 73–79. doi: 10.3969/j.issn.1008-2336.2021.04.073

    [17] 蒋巍. 海上硅酸钠聚合醇钻井液的研制[J]. 石油化工高等学校学报,2019,32(4):52–57. doi: 10.3969/j.issn.1006-396X.2019.04.009

    JIANG Wei. Research on sodium silicate polyalcohol drilling fluid for marine[J]. Journal of Petrochemical Universities, 2019, 32(4): 52–57. doi: 10.3969/j.issn.1006-396X.2019.04.009

    [18] 张文哲,李伟,王波,等. 延长油田致密油藏水平井强封堵钻井液优选与现场应用[J]. 油田化学,2019,36(2):191–195. doi: 10.19346/j.cnki.1000-4092.2019.02.001

    ZHANG Wenzhe, LI Wei, WANG Bo, et al. Optimization and application of strong plugging drilling fluid for horizontal well in tight oil of Yanchang Oilfield[J]. Oilfield Chemistry, 2019, 36(2): 191–195. doi: 10.19346/j.cnki.1000-4092.2019.02.001

    [19] 杨军虎,赵林,仝继昌,等. 一种深水低温复合醇钻井液实验研究[J]. 西部探矿工程,2019,31(12):35–37. doi: 10.3969/j.issn.1004-5716.2019.12.011

    YANG Junhu, ZHAO Lin, TONG Jichang, et al. Experimental study on a deep-water low-temperature compound alcohol drilling fluid[J]. West-China Exploration Engineering, 2019, 31(12): 35–37. doi: 10.3969/j.issn.1004-5716.2019.12.011

    [20] 张坤,王磊磊,董殿彬,等. 多元聚胺钻井液研究与应用[J]. 钻井液与完井液,2020,37(3):301–305. doi: 10.3969/j.issn.1001-5620.2020.03.006

    ZHANG Kun, WANG Leilei, DONG Dianbin, et al. Study on and application of a polyamine drilling fluid[J]. Drilling Fluid & Completion Fluid, 2020, 37(3): 301–305. doi: 10.3969/j.issn.1001-5620.2020.03.006

    [21] 翟科军,蓝强,高伟,等. 低活度高钙聚胺钻井液在准北101井的应用[J]. 钻井液与完井液,2020,37(4):444–449. doi: 10.3969/j.issn.1001-5620.2020.04.007

    ZHAI Kejun, LAN Qiang, GAO Wei, et al. Application of a low activity high calcium content polyamine drilling fluid on Well Zhunbei101[J]. Drilling Fluid & Completion Fluid, 2020, 37(4): 444–449. doi: 10.3969/j.issn.1001-5620.2020.04.007

    [22] 于得水,徐泓,吴修振,等. 满深1井奥陶系桑塔木组高性能防塌水基钻井液技术[J]. 石油钻探技术,2020,48(5):49–54. doi: 10.11911/syztjs.2020070

    YU Deshui, XU Hong, WU Xiuzhen, et al. High performance anti-sloughing water based drilling fluid technology for Well Manshen 1 in the Ordovician Sangtamu Formation[J]. Petroleum Drilling Techniques, 2020, 48(5): 49–54. doi: 10.11911/syztjs.2020070

    [23] 张伟国,狄明利,卢运虎,等. 南海西江油田古近系泥页岩地层防塌钻井液技术[J]. 石油钻探技术,2019,47(6):40–47. doi: 10.11911/syztjs.2019103

    ZHANG Weiguo, DI Mingli, LU Yunhu, et al. Anti-sloughing drilling fluid technology for the Paleogene shale stratum of the Xijiang Oilfield in the South China Sea[J]. Petroleum Drilling Techniques, 2019, 47(6): 40–47. doi: 10.11911/syztjs.2019103

    [24] 郝少军,徐珍焱,郭子枫,等. 昆2加深井超高温聚胺有机盐钻井液技术[J]. 钻井液与完井液,2019,36(4):449–453. doi: 10.3969/j.issn.1001-5620.2019.04.009

    HAO Shaojun, XU Zhenyan, GUO Zifeng, et al. Ultra-high temperature polyamine organic salt drilling fluid for deepened Well Kun-2[J]. Drilling Fluid & Completion Fluid, 2019, 36(4): 449–453. doi: 10.3969/j.issn.1001-5620.2019.04.009

    [25] 赵虎. ZY-APD高性能水基钻井液在常压页岩气井的应用[J]. 精细石油化工进展,2020,21(2):12–15. doi: 10.13534/j.cnki.32-1601/te.2020.02.004

    ZHAO Hu. Application of ZY-APD high performance water based drill fluid in ordinary pressure shale gas wells[J]. Advances in Fine Petrochemicals, 2020, 21(2): 12–15. doi: 10.13534/j.cnki.32-1601/te.2020.02.004

    [26] 司西强,王中华,吴柏志. 中国页岩油气水平井水基钻井液技术现状及发展趋势[J]. 精细石油化工进展,2022,23(1):42–50. doi: 10.3969/j.issn.1009-8348.2022.01.010

    SI Xiqiang, WANG Zhonghua, WU Baizhi. Current situation and development trend of water-based drilling fluids technology for shale oil and gas horizontal wells in China[J]. Advances in Fine Petrochemicals, 2022, 23(1): 42–50. doi: 10.3969/j.issn.1009-8348.2022.01.010

    [27] 曾佳,程慧君,杨雪. 高温高密度无黏土低固相钻井液研究[J]. 石油化工应用,2022,41(3):11–14. doi: 10.3969/j.issn.1673-5285.2022.03.003

    ZENG Jia, CHENG Huijun, YANG Xue. Study on high density and clay free low solid drilling fluid with high temperature resistance[J]. Petrochemical Industry Application, 2022, 41(3): 11–14. doi: 10.3969/j.issn.1673-5285.2022.03.003

    [28] 张雄,房炎伟,李卫东,等. 玛东井区长水平井钻井液防塌技术研究[J]. 能源化工,2020,41(4):61–65. doi: 10.3969/j.issn.1006-7906.2020.04.014

    ZHANG Xiong, FANG Yanwei, LI Weidong, et al. Study on anti-sloughing technology for long horizontal well drilling fluid in Madong Oilfield[J]. Energy Chemical Industry, 2020, 41(4): 61–65. doi: 10.3969/j.issn.1006-7906.2020.04.014

    [29] 刘亚龙,张磊,彭军,等. 高性能有机盐水基钻井液在昭通国家级页岩气示范区的应用[J]. 天然气工业,2021,41(增刊1):197–201.

    LIU Yalong, ZHANG Lei, PENG Jun, et al. Application of high-performance organic-salt water-based drilling fluid in Zhaotong National Shale Gas Demonstration Area[J]. Natural Gas Industry, 2021, 41(supplement1): 197–201.

    [30] 郝少军,安小絮,韦西海,等. 碱探1井超高温水基钻井液技术[J]. 钻井液与完井液,2021,38(3):292–297.

    HAO Shaojun, AN Xiaoxu, WEI Xihai, et al. Ultra-high temperature drilling fluid technology for drilling Well Jiantan-1[J]. Drilling Fluid & Completion Fluid, 2021, 38(3): 292–297.

    [31] 刘腾蛟,于洋,曾祥禹,等. 吉林油田长探1井三开钻井液技术[J]. 钻井液与完井液,2021,38(4):479–485.

    LIU Tengjiao, YU Yang, ZENG Xiangyu, et al. Drilling fluid technology for the third interval of Well Changtan-1 in Jilin Oilfield[J]. Drilling Fluid & Completion Fluid, 2021, 38(4): 479–485.

    [32] 张民立,庄伟,徐成金,等. 抗240 ℃高密度复合有机盐钻井液在翼探1井的应用[J]. 钻井液与完井液,2020,37(4):431–437. doi: 10.3969/j.issn.1001-5620.2020.04.005

    ZHANG Minli, ZHUANG Wei, XU Chengjin, et al. Application of ultra-high temperature high density compound organic salt drilling fluid in Well Jitan-1[J]. Drilling Fluid & Completion Fluid, 2020, 37(4): 431–437. doi: 10.3969/j.issn.1001-5620.2020.04.005

    [33] 秦耀军,李晓东,赵长亮,等. 耐240 ℃高温钻井液在青海共和盆地高温干热岩钻探施工中的应用[J]. 地质与勘探,2019,55(5):1302–1313.

    QIN Yaojun, LI Xiaodong, ZHAO Changliang, et al. Application of high temperature (240 ℃) -resistant fluid to a HDR drilling project in the Gonghe Basin, Qinghai Province[J]. Geology and Exploration, 2019, 55(5): 1302–1313.

    [34] 刘自广. 文23枯竭砂岩型储气库微泡钻井液技术[J]. 钻探工程,2022,49(2):117–122.

    LIU Ziguang. Drilling fluid technology for the Wen-23 depleted sandstone gas storage[J]. Drilling Engineering, 2022, 49(2): 117–122.

    [35] 杨倩云,王宝田,张高峰,等. 抗高温强封堵硬胶微泡沫钻井液构建技术[J]. 钻井液与完井液,2021,38(6):721–727.

    YANG Qianyun, WANG Baotian, ZHANG Gaofeng, et al. Formulation of high temperature stiff micro foam drilling fluid with strengthened plugging capacity[J]. Drilling Fluid & Completion Fluid, 2021, 38(6): 721–727.

    [36] 马腾飞,周宇,李志勇,等. 新型低伤害高性能微泡沫钻井液性能评价与现场应用[J]. 油田化学,2021,38(4):571–579. doi: 10.19346/j.cnki.1000-4092.2021.04.001

    MA Tengfei, ZHOU Yu, LI Zhiyong, et al. Evaluation and field application of new microfoam drilling fluid with low-damage and high-performance[J]. Oilfield Chemistry, 2021, 38(4): 571–579. doi: 10.19346/j.cnki.1000-4092.2021.04.001

    [37] 陈晓华,邱正松,冯永超,等. 鄂尔多斯盆地富县区块强抑制强封堵防塌钻井液技术[J]. 钻井液与完井液,2021,38(4):462–468.

    CHEN Xiaohua, QIU Zhengsong, FENG Yongchao, et al. An anti-collapse drilling fluid with strong inhibitive and plugging capacity for use in the Fuxian Block in Ordos Basin[J]. Drilling Fluid & Completion Fluid, 2021, 38(4): 462–468.

    [38] 田增艳,杨贺卫,李晓涵,等. 大港油田页岩油水平井钻井液技术[J]. 石油钻探技术,2021,49(4):59–65. doi: 10.11911/syztjs.2021012

    TIAN Zengyan, YANG Hewei, LI Xiaohan, et al. Drilling fluid technology for horizontal shale oil wells in the Dagang Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 59–65. doi: 10.11911/syztjs.2021012

    [39] 郑成胜,蓝强,张敬辉,等. 玛湖油田MaHW1602水平井低活度钻井液技术[J]. 石油钻探技术,2019,47(6):48–53. doi: 10.11911/syztjs.2019115

    ZHENG Chengsheng, LAN Qiang, ZHANG Jinghui, et al. Low-activity drilling fluid technology for the MaHW1602 horizontal well in the Mahu Oilfield[J]. Petroleum Drilling Techniques, 2019, 47(6): 48–53. doi: 10.11911/syztjs.2019115

    [40] 陈修平,李双贵,于洋,等. 顺北油气田碳酸盐岩破碎性地层防塌钻井液技术[J]. 石油钻探技术,2020,48(2):12–16. doi: 10.11911/syztjs.2020005

    CHEN Xiuping, LI Shuanggui, YU Yang, et al. Anti-collapse drilling fluid technology for broken carbonate formation in Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(2): 12–16. doi: 10.11911/syztjs.2020005

    [41] 雷志永,郭磊,耿铁,等. 环保型可循环利用BIODRILL A水基钻井液评价与应用[J]. 中国海上油气,2022,34(3):139–145. doi: 10.11935/j.issn.1673-1506.2022.03.018

    LEI Zhiyong, GUO Lei, GENG Tie, et al. Evaluation and application of environmentally friendly and recyclable BIODRILL A water-based drilling fluid[J]. China Offshore Oil and Gas, 2022, 34(3): 139–145. doi: 10.11935/j.issn.1673-1506.2022.03.018

    [42] 宿振国,王瑞和,刘均一,等. 高性能环保水基钻井液的研究与应用[J]. 钻井液与完井液,2021,38(5):576–582.

    SU Zhenguo, WANG Ruihe, LIU Junyi, et al. Study and application of environmentally friendly high performance water base drilling fluid[J]. Drilling Fluid & Completion Fluid, 2021, 38(5): 576–582.

    [43] 刘均一,郭保雨,王勇,等. 环保型水基钻井液在胜利油田的研究与应用[J]. 钻井液与完井液,2020,37(1):64–70.

    LIU Junyi, GUO Baoyu, WANG Yong, et al. Study and application of environmentally friendly water base drilling fluid in Shengli Oilfield[J]. Drilling Fluid & Completion Fluid, 2020, 37(1): 64–70.

    [44] 凡帆,刘伟,贾俊. 长北区块无土相防水锁低伤害钻井液技术[J]. 石油钻探技术,2019,47(5):34–39. doi: 10.11911/syztjs.2019104

    FAN Fan, LIU Wei, JIA Jun. Clay-free drilling fluid with anti-water locking and low damage performance used in the Changbei Block[J]. Petroleum Drilling Techniques, 2019, 47(5): 34–39. doi: 10.11911/syztjs.2019104

    [45] 杜坤,李秀灵,王本利,等. 无黏土水基钻井液在长庆油田米38区块水平井的应用[J]. 钻井液与完井液,2021,38(3):331–336.

    DU Kun, LI Xiuling, WANG Benli, et al. Application of a clay-free low solids water based drilling fluid in Block Mi-38 in Changqing Oilfield[J]. Drilling Fluid & Completion Fluid, 2021, 38(3): 331–336.

    [46] 江民盛,阮彪,徐新纽,等. 全白油基钻井液在吉木萨尔凹陷泥岩地层中的应用[J]. 能源化工,2019,40(6):46–50. doi: 10.3969/j.issn.1006-7906.2019.06.011

    JIANG Minsheng, RUAN Biao, XU Xinniu, et al. Application of whole white oil-based drilling fluid in mudstone formation of Jimsar sag[J]. Energy Chemical Industry, 2019, 40(6): 46–50. doi: 10.3969/j.issn.1006-7906.2019.06.011

    [47] 陈浩东,李龙,郑浩鹏,等. 北部湾盆地全油基钻井液技术研究与应用[J]. 探矿工程(岩土钻掘工程),2018,45(12):1–4.

    CHEN Haodong, LI Long, ZHENG Haopeng, et al. Development and application of full oil-based drilling fluids in Beibu gulf basin[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2018, 45(12): 1–4.

    [48] 张立新,刘瑞. 高密度油基钻井液在阳101H3-6井长水平段的应用[J]. 钻探工程,2021,48(7):79–83.

    ZHANG Lixin, LIU Rui. Application of high-density oil-based drilling fluid in the long horizontal section of Well Yang101H3-6[J]. Drilling Engineering, 2021, 48(7): 79–83.

    [49] 王志远,黄维安,范宇,等. 长宁区块强封堵油基钻井液技术研究及应用[J]. 石油钻探技术,2021,49(5):31–38. doi: 10.11911/syztjs.2021039

    WANG Zhiyuan, HUANG Weian, FAN Yu, et al. Technical research and application of oil base drilling fluid with strong plugging property in Changning Block[J]. Petroleum Drilling Techniques, 2021, 49(5): 31–38. doi: 10.11911/syztjs.2021039

    [50] 王建华,闫丽丽,谢盛,等. 塔里木油田库车山前高压盐水层油基钻井液技术[J]. 石油钻探技术,2020,48(2):29–33. doi: 10.11911/syztjs.2020007

    WANG Jianhua, YAN Lili, XIE Sheng, et al. Oil-based drilling fluid technology for high pressure brine layer in Kuqa piedmont of the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 29–33. doi: 10.11911/syztjs.2020007

    [51] 张雄,余进,毛俊,等. 准噶尔盆地玛东油田水平井高性能油基钻井液技术[J]. 石油钻探技术,2020,48(6):21–27. doi: 10.11911/syztjs.2020106

    ZHANG Xiong, YU Jin, MAO Jun, et al. High-performance oil-based drilling fluid technology for horizontal wells in the Madong Oilfield, Junggar Basin[J]. Petroleum Drilling Techniques, 2020, 48(6): 21–27. doi: 10.11911/syztjs.2020106

    [52] 李振智,孙举,李晓岚,等. 新型无土相油基钻井液研究与现场试验[J]. 石油钻探技术,2017,45(1):33–38. doi: 10.11911/syztjs.201701006

    LI Zhenzhi, SUN Ju, LI Xiaolan, et al. The development and application of a clay-free oil-based drilling fluid[J]. Petroleum Drilling Techniques, 2017, 45(1): 33–38. doi: 10.11911/syztjs.201701006

    [53] 孙玉学,郭春萍,赵景原,等. 低毒高性能油基钻井液研制与评价[J]. 大庆石油地质与开发,2021,40(2):95–102. doi: 10.19597/j.issn.1000-3754.201912056

    SUN Yuxue, GUO Chunping, ZHAO Jingyuan, et al. Development and evaluation of the low-toxicity high-performance oil-based drilling fluid[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(2): 95–102. doi: 10.19597/j.issn.1000-3754.201912056

    [54] 孙荣华. 全油合成基钻井液在永3-侧平×井的应用[J]. 钻采工艺,2019,42(4):97–99. doi: 10.3969/J.ISSN.1006-768X.2019.04.28

    SUN Ronghua. Application of all-oil synthetic drilling fluid in Well Yong 3-Ceping X[J]. Drilling & Production Technology, 2019, 42(4): 97–99. doi: 10.3969/J.ISSN.1006-768X.2019.04.28

    [55] 狄明利,赵远远,邱文发. FLAT-PRO合成基钻井液在南海东部超深水井的应用[J]. 广东化工,2019,46(20):38–40.

    DI Mingli, ZHAO Yuanyuan, QIU Wenfa. Application of FLAT-PRO synthetic base drilling fluid in ultra-deepwater well in the eastern South China Sea[J]. Guangdong Chemical Industry, 2019, 46(20): 38–40.

    [56] 范宇,钟成旭,牟乃渠,等. 一种生物合成基钻井液在长宁气田的应用[J]. 西南石油大学学报(自然科学版),2020,42(1):133–139.

    FAN Yu, ZHONG Chengxu, MU Naiqu, et al. Application of a biosynthesis-based drilling fluid in the Changning Gas Field[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2020, 42(1): 133–139.

    [57] 解宇宁. 可再生生物合成基钻井液体系研究[J]. 石油钻探技术,2019,47(6):34–39. doi: 10.11911/syztjs.2019097

    XIE Yuning. Research on renewable biosynthetic-based drilling fluid systems[J]. Petroleum Drilling Techniques, 2019, 47(6): 34–39. doi: 10.11911/syztjs.2019097

    [58] 张弌,单海霞,李彬,等. 生物质合成基钻井液性能评价[J]. 油田化学,2019,36(4):594–599.

    ZHANG Yi, SHAN Haixia, LI Bin, et al. Performance evaluation of biomass synthetic base drilling fluid[J]. Oilfield Chemistry, 2019, 36(4): 594–599.

  • 期刊类型引用(14)

    1. 朱雷,潘金林,陈雪莲,马锐,田隆梅,周浩栋. 套管和水泥环尺寸对CBL/VDL测井套管波的影响研究. 石油钻探技术. 2025(01): 136-143 . 本站查看
    2. 陈瑶,谭慧静,王胜,郑秀华,朱文茜,叶有. 地热井固井中硅酸盐水泥体系的技术现状及发展趋势. 钻探工程. 2025(03): 1-11 . 百度学术
    3. 肖红,钱祎鸣. 基于改进DenseNet的固井质量评价新方法. 计算机技术与发展. 2024(01): 193-199 . 百度学术
    4. 郑少军,谷怀蒙,刘天乐,陈宇,蒋国盛,王韧,代天,秦榜伟,徐浩,万涛. 基于紧密堆积理论的深水低密度三元固相水泥浆体系. 天然气工业. 2024(02): 122-131 . 百度学术
    5. 张常瑞,张景富,朱胡佳,谢帅,谢雨辰,王建成. 超低密度水泥浆固井质量改进方法研究. 中国矿业. 2024(05): 181-186 . 百度学术
    6. 肖红,钱祎鸣. 基于CNN-SVM和集成学习的固井质量评价方法. 吉林大学学报(理学版). 2024(04): 960-970 . 百度学术
    7. 尚磊. 超低密度水泥固井质量评价方法研究. 石化技术. 2024(08): 215-217 . 百度学术
    8. 朱雷,陈雪莲,张鑫磊,袁仕俊,王华伟,买振. 基于IBC和CBL/VDL测井的微间隙识别方法. 石油钻探技术. 2024(04): 135-142 . 本站查看
    9. 邹卓峰,张宝权,李辉,王建华,王海涛,管震. 基于图像识别技术的固井质量评价方法研究. 钻探工程. 2024(S1): 104-111 . 百度学术
    10. 张强. 文23储气库储层段钻井液及储层保护技术. 断块油气田. 2023(03): 517-522 . 百度学术
    11. 任强,刘宁泽,罗文丽,高飞,刘景丽,刘岩,杨豫杭,程小伟. 泡沫减重水泥浆体系及其微观孔隙分布. 钻井液与完井液. 2023(03): 376-383 . 百度学术
    12. 丁士东,陆沛青,郭印同,李早元,卢运虎,周仕明. 复杂环境下水泥环全生命周期密封完整性研究进展与展望. 石油钻探技术. 2023(04): 104-113 . 本站查看
    13. 孙晓峰,陶亮,朱志勇,于福锐,孙铭浩,赵元喆,曲晶瑀. 页岩储层水平扩径井段固井顶替效率数值模拟研究. 特种油气藏. 2023(04): 139-145 . 百度学术
    14. 黎红胜,温慧芸,文良凡,郑振国,陈玉平. 哥伦比亚VS-6、VS-8井固井问题分析及其对策. 石油工业技术监督. 2022(10): 63-68 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  742
  • HTML全文浏览量:  913
  • PDF下载量:  283
  • 被引次数: 17
出版历程
  • 收稿日期:  2022-11-23
  • 修回日期:  2023-02-01
  • 网络出版日期:  2023-02-23
  • 刊出日期:  2023-08-24

目录

/

返回文章
返回