Loading [MathJax]/jax/output/SVG/jax.js

深层硬脆性泥页岩井壁稳定力学化学耦合研究进展与思考

金衍, 薄克浩, 张亚洲, 卢运虎

金衍,薄克浩,张亚洲,等. 深层硬脆性泥页岩井壁稳定力学化学耦合研究进展与思考[J]. 石油钻探技术,2023, 51(4):159-169. DOI: 10.11911/syztjs.2023024
引用本文: 金衍,薄克浩,张亚洲,等. 深层硬脆性泥页岩井壁稳定力学化学耦合研究进展与思考[J]. 石油钻探技术,2023, 51(4):159-169. DOI: 10.11911/syztjs.2023024
JIN Yan, BO Kehao, ZHANG Yazhou, et al. Advancements and considerations of chemo-mechanical coupling for wellbore stability in deep hard brittle shale [J]. Petroleum Drilling Techniques,2023, 51(4):159-169. DOI: 10.11911/syztjs.2023024
Citation: JIN Yan, BO Kehao, ZHANG Yazhou, et al. Advancements and considerations of chemo-mechanical coupling for wellbore stability in deep hard brittle shale [J]. Petroleum Drilling Techniques,2023, 51(4):159-169. DOI: 10.11911/syztjs.2023024

深层硬脆性泥页岩井壁稳定力学化学耦合研究进展与思考

基金项目: 国家自然科学基金项目“深层脆性页岩井壁失稳的化学断裂机理与控制研究”(编号:52074314)资助
详细信息
    作者简介:

    金衍(1972—),男,浙江临海人,1994年毕业于石油大学(华东)石油工程专业,1998年获石油大学(华东)油气井工程专业硕士学位,2001年获石油大学(北京)油气井工程专业博士学位,教授,博士生导师,主要从事油气井岩石力学与工程方面的研究工作。系本刊编委。E-mail:jiny@cup.edu.cn

  • 中图分类号: TE28

Advancements and Considerations of Chemo-Mechanical Coupling for Wellbore Stability in Deep Hard Brittle Shale

  • 摘要:

    深层及超深层油气资源正逐步成为我国重点勘探开发的关键领域,但钻井过程中深层硬脆性泥页岩地层井壁失稳问题频发,严重制约着深层及超深层油气资源高效开发。力学化学耦合作用下的深层硬脆性泥页岩井壁稳定问题,是一个涉及微观、细观及宏观跨尺度演化的复杂问题。阐述了力学化学耦合作用下硬脆性泥页岩井壁失稳的基本原理,并分别从微观、细观和宏观尺度,总结了硬脆性泥页岩与入井流体间的作用机理、细观结构损伤演化的定量表征、泥页岩水化宏观力学劣化效应及井壁稳定性定量分析方面的研究进展,从考虑化学效应的断裂力学角度,提出了探索硬脆性泥页岩井壁稳定性问题的新思路。

    Abstract:

    The oil and gas resources from deep and ultra-deep reservoirs in China are the most important target of exploration and development. However, pervasive and ubiquitous wellbore instability in hard brittle deep shale seriously compromises the efficient development of deep and ultra-deep oil and gas resources. Wellbore instability in deep hard brittle shale under the chemo-mechanical coupling is a complicated problem involving multi-scale evolution among micro-scale, meso-scale and macro-scale. The basic principle of wellbore instability in hard brittle shale under chemo-mechanical coupling was briefly introduced. In addition, the previous studies on the mechanism between hard brittle shale and drilling fluid, quantitative description of the evolution of damage in mesocosm structures, macroscopic mechanical deterioration of shale after hydration, and quantitative analysis of wellbore stability, were reviewed in terms of micro-scale, meso-scale and macro-scale. Moreover, a new idea was proposed for wellbore stability in hard brittle shale from the perspective of fracture mechanics considering chemical effects.

  • 致密砂岩油藏储层普遍具有岩性致密、孔渗条件差、喉道半径小、孔喉比大及连通性差等特点[1-6],压裂液进入储层后更易堵塞储层孔喉,产生吸附滞留及固相堵塞等一些不可逆的伤害[7-9]。近年来,研发适用于致密油藏压裂液时,如何改善压裂液的性能及研究功能性压裂液已成为该领域的一个重要研究方向[10-11]。纳米材料具有独特的物化性质,如尺寸效应、较强的吸附力和表面可改性等特点,能够深入储层内部而不受孔喉尺寸的制约[12-20]。另外,通过对纳米粒子的设计和修饰,可以使其对致密油藏原有的表界面性质、剩余油等产生一定的积极作用,因此,近年来被广泛应用到水基压裂液中。水基压裂液添加纳米材料后可以降低压裂液的滤失量、提高压裂液的携砂性能、降低表界面张力、提高驱油效果和返排率等[10-11],从而提高压裂改造的增产效果。T. Huang 和J. B. Crews等人[21-24]提出引入纳米颗粒降低VES清洁压裂液的滤失量和提高压裂液的耐温性;M. R. Gurluk等人[25]在VES清洁压裂液中添加氧化镁及氧化锌纳米颗粒,制备得到纳米改性清洁压裂液,纳米颗粒的加入提高了压裂液的耐温性。杨兆中等人[26]开展了纳米颗粒在高温条件下对VES泡沫压裂液性能影响的研究,发现纳米SiO2颗粒的加入提高了压裂液的高温抗剪切性、黏弹性、稳定性和携砂性。段瑶瑶等人[27]通过优选疏水缔合高分子聚合物和纳米材料颗粒ZnO,研发了纳米复合清洁压裂液,该压裂液具有更好的耐温性能及耐剪切性能,较好的降滤失性、黏弹性及携砂性。压裂液中添加纳米材料后可以改善压裂液的性能,具有良好的应用前景,但目前大部分纳米材料在压裂液中的应用研究仍集中在配方优化和效果评价层面,对于纳米材料在压裂液中的作用机理尚未进行深入研究,研究报道也相对较少,而纳米材料在压裂液中的作用机理是指导研发具有高效驱油和返排效果纳米压裂液的理论依据和基础,因此开展该方面研究显得尤为重要。

    为此,笔者筛选了具有代表性的纳米材料,将纳米材料分散在SRFP型聚合物清洁压裂液体系中,通过纳米材料在砂岩表面的吸附结构模型及吸附动力学模型,从微观层面观察纳米材料的形态特征、分析纳米材料与压裂液及与岩石表面之间的相互作用,研究纳米材料改善压裂液性能及驱油效果的机理。

    以正硅酸乙酯(TEOS)为硅源,采用溶胶–凝胶法合成纳米SiO2,合成反应方程式为:

    nSi(OC2H5)4+4nH2O=nSi(OH)4+4nC2H5OH() (1)
    nSi(OH)4=nSiO2+2nH2O() (2)

    纳米SiO2的具体合成步骤:1)将4.6 mL TEOS、100 mL无水乙醇加入到250 mL烧杯中混合,并用磁力搅拌器在常温下搅拌1 h,配成A液;2)在圆底烧瓶中将0.4 mL去离子水、7.6 mL浓氨水(NH3的质量分数为25%)与80 mL无水乙醇混合,并用磁力搅拌器在常温下搅拌1 h,配成B液;3)将A液用酸式滴定管逐滴加入到圆底烧瓶B液中,在室温条件下搅拌20 h;4)将步骤3)所得液体在–0.095 MPa、35 ℃条件下,进行旋转蒸发浓缩至6 mL,用酸式滴定管将该液体以0.05 mL/s的速度加入到10 mL甲苯溶液中,并高速搅拌2 min后离心,用无水乙醇洗涤后离心3次自然挥发得到白色纳米SiO2。单分散纳米SiO2球形颗粒的形成过程如图1所示。

    图  1  单分散纳米SiO2球形颗粒的形成过程
    Figure  1.  Formation process of monodisperse spherical nano-SiO2 particles

    以辛基三甲氧基硅烷和制备得到的纳米SiO2为原料,采用油浴回流法合成纳米材料SiO2-C8,其化学反应式为式(1)。

    具体制备方法为:向含有0.6 mmol(0.2 mL)辛基三甲氧基硅烷的甲苯(6.0 mL)中加入1.0 g 纳米SiO2,油浴(温度105 ℃)回流4 h后,将所得产物进行离心分离,并用甲苯洗涤后干燥,即得到疏水纳米材料SiO2-C8

    纳米SiO2表面键合季铵盐(QAS),合成纳米材料SiO2-QAS,其化学反应式为式(2)。

    具体制备方法为:1)纳米SiO2与γ-氯丙基三甲氧基硅烷反应。将5.0 g纳米SiO2加入到40 mL甲苯中,搅拌30 min,慢慢加入2 mL水,并且在搅拌状态下滴加0.0341 mol(6.3 mL)γ-氯丙基三甲氧基硅烷,加热到85 ℃,反应6 h,过滤得到用γ-氯丙基三甲氧基硅烷改性的纳米SiO2,将得到的产物在索氏抽提器中用甲苯抽提24 h,除去未反应的γ-氯丙基三甲氧基硅烷,在60 ℃温度下真空干燥。2)纳米SiO2季铵盐衍生物的合成。将用γ-氯丙基三甲氧基硅烷改性的纳米SiO2在乙腈中搅拌反应30 min,在搅拌状态下滴加0.03 mol(9.2 mL)N,N-二甲基十四烷基叔胺,加热反应一段时间,用乙腈抽提24 h,真空干燥,得到纯净的用N,N-二甲基十四烷基叔胺改性的疏水带电纳米材料SiO2-QAS。

    利用FTIR、SEM及元素分析仪,对制备出的单分散纳米SiO2、SiO2-C8和SiO2-QAS等3种纳米材料进行表征。由3种纳米材料的红外光谱特征峰可知,SiO2与C8及QAS接枝成功(见图2)。对3种纳米材料进行元素分析,结果:SiO2中C元素的含量为0,H元素的含量为3.797%,N元素的含量为0;SiO2-C8中C元素的含量为4.540%,H元素的含量为2.328%,N元素的含量为0;SiO2-QAS中C元素的含量为11.086%,H元素的含量为5.918%,N元素的含量1.203%。元素分析也表明,SiO2与C8及QAS接枝成功。由扫描电子显微镜扫描纳米SiO2微球的图像可以看出,纳米SiO2微球的平均粒径为50 nm(见图3)。

    图  2  3种纳米材料的红外光谱图
    Figure  2.  Infrared spectrogram of 3 nanomaterials
    图  3  纳米SiO2微球的SEM图像
    Figure  3.  SEM images of nano SiO2 particles

    SRFP型疏水缔合聚合物清洁压裂液主要由SRFP-1增稠剂、SRFC-1交联剂、SRCS-1黏土稳定剂和SRCU-1助排剂组成,具有低残渣、低伤害、黏度可调、配制简单、稳定性好、不变质和成本低等优点 [28-29]

    超声分散是降低纳米粒子团聚的有效方法,超声处理可有效防止团聚而使纳米颗粒在溶液中充分分散,超声波的能量作用于纳米颗粒,会破坏分子之间的物理交联点,降低分子运动阻力。

    采用超声处理与机械搅拌相结合的方法,测试SiO2、SiO2-C8和SiO2-QAS等3种纳米材料在SRFP型清洁压裂液中的分散性,具体测试步骤为:1)分别称取0.3 g 3种纳米材料,并将其加入到30 mL SRFP型清洁压裂液中;2)采用超声处理与机械搅拌相结合的方法,将其分散到SRFP型清洁压裂液中,每间隔1 min观察一下3种纳米材料的分散状况。观察结果表明:SiO2-QAS和SiO2经过超声处理后搅拌4 min就能完全均匀分散到SRFP型清洁压裂液中,SiO2-C8经过超声处理后搅拌5 min也能完全均匀分散到SRFP型清洁压裂液中。

    SiO2、SiO2-C8和SiO2-QAS等3种纳米材料各分别称取0.40,0.20,0.10和0.02 g,采用超声处理和机械搅拌相结合的方法,将其分散到20 mL SRFP型清洁压裂液(加量分别为2.0%,1.0%,0.5%和0.1%)中,测定完全均匀分散的时间,结果见图4图6

    图  4  SiO2纳米微球的分散时间
    Figure  4.  Dispersion time of SiO2 nanoparticles
    图  5  纳米材料SiO2-C8的分散时间
    Figure  5.  Dispersion time of nanomaterial SiO2-C8
    图  6  纳米材料SiO2-QAS的分散时间
    Figure  6.  Dispersion time of nanomaterial SiO2-QAS

    图4图6可以看出:SiO2、SiO2-C8和SiO2-QAS等3种纳米材料的加量为0.1%~1.0%时,随其加量增大,分散时间整体表现出缩短的趋势;3种纳米材料的加量为0.5%~1.0%时分散性最好。

    分别将0.5%的SiO2、SiO2-C8和SiO2-QAS加入到SRFP型清洁压裂液中,使其分散在SRFP型清洁压裂液中,在常温条件下静置24 h后,未观察到纳米颗粒团聚现象。这表明SiO2,SiO2-C8和SiO2-QAS等3种纳米材料在SRFP型清洁压裂液中均具有较好的稳定性。

    为明确SiO2、SiO2-C8和SiO2-QAS等3种纳米材料的疏水性能和SRFP型清洁压裂液加入3种纳米材料的微观性能,测定了SRFP型清洁压裂液加入纳米材料破胶后的表面张力,以判断3种纳米材料分散在SRFP型清洁压裂液中是否能降低其表面张力。结果表明:低黏SRFP型清洁压裂液分别加入0.1%、0.5%、1.0%和2.0%的SiO2、SiO2-C8和SiO2-QAS后,其表面张力大幅度降低(见表1)。另外,测定了低黏SRFP型清洁压裂液加入0.5%纳米材料(SiO2、SiO2-C8和SiO2-QAS)前后的表界面张力(见表2),结果表明,3种纳米材料均可有效降低低黏SRFP型清洁压裂液的表界面张力,界面张力甚至可以降低一个数量级。

    表  1  低黏清洁压裂液加入纳米材料前后的表面张力
    Table  1.  Surface tension before and after nanomaterials added to low-viscosity clean fracturing fluids mN/m
    纳米材料加量,%压裂液SiO2SiO2-C8SiO2-QAS
    0.133.617.722.328.8
    0.515.720.723.0
    1.013.820.222.4
    2.012.518.624.2
    下载: 导出CSV 
    | 显示表格
    表  2  低黏清洁压裂液加入纳米材料前后的表界面张力
    Table  2.  Surface and interfacial tension before and after nanomaterials added into low-viscosity clean fracturing fluids
    纳米材料表面张力/(mN·m–1 界面张力/(mN·m–1
    加入前加入后 加入前加入后
    SiO233.615.7 2.8580.212
    SiO2-C833.620.72.8580.239
    SiO2-QAS33.623.02.8580.256
    下载: 导出CSV 
    | 显示表格

    SRFP型清洁压裂液分别加入SiO2、SiO2-C8和SiO2-QAS,配制成不同黏度的纳米驱油压裂液(低黏纳米驱油压裂液配方为:0.20%SRFP-1增稠剂+0.30%SRCS-1黏土稳定剂+0.10%SRCU-1助排剂+0.12%SRFC-1交联剂+0.50%纳米材料;中黏纳米驱油压裂液配方为:0.30%SRFP-1增稠剂+0.30%SRCS-1黏土稳定剂+0.10%SRCU-1助排剂+0.16%SRFC-1交联剂+0.50%纳米材料;高黏纳米驱油压裂液配方为:0.45%SRFP-1增稠剂+ 0.30%SRCS-1黏土稳定剂+0.10%SRCU-1助排剂+0.25%SRFC-1交联剂+0.50%纳米材料),测定SRFP型清洁压裂液加入3种纳米材料前后的流变性能,结果表明:SRFP型清洁压裂液加入3种纳米材料后,不但未影响其流变性能,而且还小幅度改善了其耐温耐剪切性能(见图7图8)。

    图  7  中黏SRFP型清洁压裂液的流变曲线
    Figure  7.  Rheological curve of medium-viscosity SRFP clean fracturing fluids
    图  8  中黏纳米驱油压裂液的流变曲线
    Figure  8.  Rheological curve of medium-viscosity nano oil displacement fracturing fluids

    在90 ℃温度下,测定高黏纳米驱油压裂液加入0.01%,0.03%,0.05%和0.08%过硫酸铵(APS)破胶2 h后的黏度,结果为1.6,1.4,1.1和1.1 mPa·s,可以看出破胶效果较好,且无絮凝现象。选用鄂南泾河长8致密油储层的6块岩心,在储层温度(70 ℃)下进行了纳米驱油压裂液(SiO2、SiO2-C8、SiO2-QAS)破胶液的伤害试验,纳米驱油压裂液破胶液对岩心的伤害率在10.9%~16.7%,平均为14.1%;高黏纳米驱油压裂液对岩心的伤害率与清洁压裂液基本持平。采用摩阻仪测得纳米驱油压裂液(SiO2、SiO2-C8、SiO2-QAS)的降阻率在64%~70%,压裂现场实测纳米驱油压裂液的降阻率不低于67%。

    致密砂岩储层岩石矿物成分以石英为主,α-石英(α-SiO2)是分布最广的一种石英晶型[30]。α-SiO2晶体的空间群为P3221,群号为154,红色表示氧原子,黄色表示硅原子(见图9)。原胞结构中共含有3个Si原子和6个O原子,是Si原子和O原子形成的四面体结构原子晶态,整个晶体可以看作是一个具体的分子,SiO2是最简式,而不是分子式。α-SiO2晶体的初始晶格常数为a=b=0.491 370 nm,c=0.540 513 nm;优化后的晶格常数为a=b=0.490 720 nm,c=0.541 997 nm,与试验结果基本一致。对原胞结构进行切割,得到α-SiO2(010)面后建立一个12×3×1的超胞,如图9所示。

    图  9  (12×3×1)α-SiO2(010)面物理模型
    Figure  9.  Physical model of (12×3×1)α-SiO2(010) surface

    对超胞结构进行计算时,将非表面层原子固定,而表层硅原子与被吸附油气分子在结构优化计算中的位置可变,以此模拟表面硅原子对气体分子的吸附,既可减少计算量,又可忽略基底厚度对其的影响。固定非表层原子后α-SiO2(010)面的结构如图10所示,其中的白色表示被固定的原子。

    图  10  固定后的(12×3×1)α-SiO2(010)面物理模型
    Figure  10.  Physical model of fixed (12×3×1)α-SiO2(010) surface

    为了研究纳米材料加入压裂液后其在砂岩表面的吸附机理,首先建立了C6H14、SiO2-C8和SiO2-QAS的分子模型,并优化了吸附结构,优化后SiO2-C8和SiO2-QAS分子在α-SiO2(010)面上的吸附结构模型如图11图12所示,利用吸附能计算公式计算了C6H14、SiO2-C8和SiO2-QAS分子吸附在α-SiO2(010)面的吸附能,结果见表3。吸附能计算公式为:

    Ead(xy)=Et(xy)Et(x)Et(y) (3)
    图  11  SiO2-C8在α-SiO2(010)面的吸附结构模型
    Figure  11.  Adsorption structure model of SiO2-C8 on α-SiO2(010) surface
    图  12  SiO2-QAS在α-SiO2(010)面的吸附结构模型
    Figure  12.  Adsorption structure model of SiO2-QAS on α-SiO2(010) surface
    表  3  C6H14、SiO2-C8、SiO2-QAS在α-SiO2(010)面的吸附能
    Table  3.  Adsorption energy of C6H14, SiO2-C8 and SiO2-QAS molecules on the α-SiO2(010) surface
    MEad(SiO2-M)/eVEt(SiO2-M)/eVEt(SiO2)/eVEtM)/eV
    C6H14–1 722 287.31–6 388.85–1 715 896.91–1.54
    SiO2-C8–1 777 032.99–61 132.64–1 715 896.91–3.44
    SiO2-QAS–1 803 366.81–87 460.07–1 715 896.91–9.83
    下载: 导出CSV 
    | 显示表格

    式中:Eadxy为物质x吸附在物质y面的吸附能,eV;Etxy为物质x吸附物质y后的总能量,eV;Etx为物质x吸附在物质y前的总能,eV;Ety为物质y吸附物质x前的总能,eV。

    表3可知,与C6H14相比,SiO2-C8和SiO2-QAS容易吸附在SiO2超胞表面,且吸附更稳定。当SiO2-C8和SiO2-QAS的分散液注入砂岩油藏后,SiO2-C8和SiO2-QAS分子与C6H14分子在砂岩表面形成竞争吸附,由于SiO2-C8和SiO2-QAS分子与砂岩表面的吸附能要远远强于C6H14分子与砂岩表面的吸附能,故SiO2-C8和SiO2-QAS分子会将砂岩表面的C6H14分子挤掉,并紧密吸附在砂岩表面,达到驱油目的。另外通过计算得知,SiO2-C8和SiO2-QAS对C6H14的吸附能较低(–0.85和–1.06 eV),也更利于C6H14被置换出来。

    选择羧基改性SiO2作为固体表面,C6H14作为油分子模型;制作模拟构型时,建立了一个大小为5.380 nm×5.056 nm×5.711 nm的周期格子,Z轴垂直于SiO2表面,在所有方向上考虑周期边界条件。

    将H2O和C6H14放进所构建的周期格子里,模拟H2O和C6H14向羧基改性SiO2表面吸附聚集2 ns时的情况,模拟结果显示,随着模拟时间增长,H2O逐渐向羧基改性SiO2表面聚集,而C6H14的聚集作用不明显。将SiO2-C8和SiO2-QAS放进所构建的周期格子里,模拟SiO2-C8和SiO2-QAS向羧基改性SiO2表面吸附聚集2 ns时的情况,结果如图13图14所示。由图13图14可以看出,SiO2-C8和SiO2-QAS在羧基改性SiO2表面产生明显的聚集现象,并且在2 ns时SiO2-C8在羧基改性SiO2表面呈现出哑铃形结构,表明羧基改性SiO2表面对SiO2-C8和SiO2-QAS有一定的吸附作用。

    图  13  SiO2-C8在砂岩表面的吸附聚集过程
    Figure  13.  Adsorption and deposition process of SiO2-C8 on the sandstone surface
    图  14  SiO2-QAS在砂岩表面的吸附聚集过程
    Figure  14.  Adsorption and deposition process of SiO2-QAS on the sandstone surface

    为清晰观察相分离过程及SiO2-C8、SiO2-QAS的作用,选取C6H14-H2O作为油水体系,初始二元溶液随机分布,加入163个C6H14和1 832个H2O分子到周期格子后,模拟C6H14和H2O分子向羧基改性SiO2表面吸附聚集2.0 ns时的情况,结果显示:t=0 ns时油水处于完全混溶状态;由于表面的氢键作用,水分子开始逐渐向羧基改性SiO2表面聚集,在t=0.1 ns时能看到许多水分子聚集在羧基改性SiO2表面,此时的水通道并不明显;当体系逐渐稳定平衡(0.5 ns)时,油和羧基改性SiO2表面的水分子通道变得非常明显;随着模拟时间增长,越来越多的水分子聚集到羧基改性SiO2表面,水通道逐渐变宽,但是即使是到了2.0 ns时,油中也存在着较多的水分子。

    为了研究SiO2-C8和SiO2-QAS在油水分离过程中所起的作用,H2O、C6H14和SiO2-C8或SiO2-QAS按9.0∶0.8∶0.2的摩尔比填充周期格子后,模拟H2O、C6H14和SiO2-C8或SiO2-QAS向羧基改性SiO2表面吸附聚集2.0 ns时的情况,结果如图15图16所示。由图15可知:t=0 ns时H2O、C6H14和SiO2-C8分子处于完全混溶状态;在t=0.1 ns时能看到许多水分子聚集在羧基改性SiO2表面,并且SiO2-C8分子向油水界面移动;在t=0.5 ns时SiO2-C8分子主要吸附在油水界面,水分子通道在油和SiO2表面形成;随着模拟时间增长,水通道逐渐变宽,有一定量的SiO2-C8分布在油水界面,与未添加SiO2-C8分子时的油水分离过程相比,油中的水分子数量大大减少。由图16可知,t=0 ns时H2O,C6H14和SiO2-QAS分子处于完全混溶状态;在t=0.1 ns时与上述2种油水分离过程相比,在羧基改性SiO2表面上能看到明显的水分子通道,表明SiO2-QAS能使油水分离速度加快,并且SiO2-QAS向油水界面移动;在t=0.5 ns时SiO2-QAS分子主要吸附在油水界面,水分子通道变得更宽;随着模拟时间增长,水分子通道变得越来越宽,SiO2-QAS分布在油水界面,与未添加SiO2-QAS分子时的油水分离过程相比,油中的水分子数量大大减少。

    图  15  加入SiO2-C8后的油水分离过程
    Figure  15.  Oil-water separation process after adding SiO2-C8
    图  16  加入SiO2-QAS后的油水分离过程
    Figure  16.  Oil-water separation process after adding SiO2-QAS

    选取鄂南泾河长8致密油储层的8块岩样,采用平行岩样比对方法,分别用2块岩样进行低黏清洁压裂液和低黏纳米(SiO2、SiO2-C8、SiO2-QAS)驱油压裂液的驱油试验。具体步骤为:1)岩样饱和模拟地层水并进行第1次核磁共振测量;2)用去氢煤油驱替岩样,建立饱和油束缚水状态并进行第2次核磁共振测量;3)反向挤入1倍孔隙体积的低黏清洁压裂液或低黏纳米驱油压裂液,然后进行第3次核磁共振测量;4)用去氢煤油正向驱替返排压裂液,返排出1倍孔隙体积液体后进行第4次核磁共振测量;5)利用步骤2)和步骤3)测得岩样的含水饱和度计算挤入压裂液前后岩样的含油饱和度,从而得出不同压裂液体系对岩样含油饱和度的影响。计算结果表明:挤入低黏清洁压裂液2块平行岩样的含油饱和度分别降低了6.39%和12.86%;挤入低黏纳米(SiO2)驱油压裂液2块平行岩样的含油饱和度分别降低了21.4%和23.7%;挤入低黏纳米(SiO2-C8)驱油压裂液2块平行岩样的含油饱和度分别降低了26.6%和29.2%;挤入低黏纳米(SiO2-QAS)驱油压裂液2块平行岩样的含油饱和度分别降低了29.0%和34.12%。由试验结果可以看出,低黏纳米驱油压裂液的驱油效率明显高于普通低黏清洁压裂液,其中低黏纳米(SiO2-QAS)驱油压裂液的驱油性能最佳。

    1)在纳米尺度对SiO2进行C8和季铵盐(QAS)修饰,合成了粒径为50 nm的疏水纳米材料SiO2-C8和疏水带电纳米材料SiO2-QAS。

    2)SiO2-C8及SiO2-QAS在SRFP型疏水缔合聚合物清洁压裂液中具有较好的分散稳定性,可有效降低该压裂液的表面张力,表现出较好的耐温耐剪切、低伤害、高降阻等性能;SiO2-C8和SiO2-QAS在砂岩表面的吸附能及吸附动力学特征,有利于其将砂岩表面的油分子置换出,促进油水分离,可提高SRFP型疏水缔合聚合物清洁压裂液的驱油性能,其中SiO2-QAS的性能最佳。

    3)从微观角度分析了清洁压裂液加入纳米材料后改善其性能及提高其驱油效果的微观作用机理,可为功能性压裂液发展及研制提供理论支持,对于致密油、页岩油体积压裂方案的优化及压裂液的优选具有一定的指导作用。

  • 图  1   硬脆性泥页岩微裂纹等缺陷多尺度演化诱导的井壁垮塌示意

    Figure  1.   Wellbore collapse induced by multi-scale evolution of microcracks and other defects in hard brittle shale

    图  2   蒙脱石层间域内吸附不同数量水分子后的微观构象[6]

    Figure  2.   Microscopic conformation of montmorillonite absorbing different amounts of water molecules in the interlaminar domain[6]

    图  3   龙马溪组硬脆性页岩水化前后二维和三维CT成像[44]

    Figure  3.   2D and 3D CT images of hard brittle shale in Longmaxi Formation before and after hydration [44]

    图  4   平行层理取心页岩水化的细观过程(120 ℃,3.5 MPa)[53]

    Figure  4.   Mesoscopic process of hydration of shale core with parallel bedding (120 ℃,3.5 MPa) [53]

  • [1] 陈勉,金衍. 深井井壁稳定技术研究进展与发展趋势[J]. 石油钻探技术,2005,33(5):28–34. doi: 10.3969/j.issn.1001-0890.2005.05.007

    CHEN Mian, JIN Yan. Advances and developmental trend of the wall stability technique[J]. Petroleum Drilling Techniques, 2005, 33(5): 28–34. doi: 10.3969/j.issn.1001-0890.2005.05.007

    [2] 曾义金,刘建立. 深井超深井钻井技术现状和发展趋势[J]. 石油钻探技术,2005,33(5):1–5.

    ZENG Yijin, LIU Jianli. Technical status and developmental trend of drilling techniques in deep and ultra-deep wells[J]. Petroleum Drilling Techniques, 2005, 33(5): 1–5.

    [3] 徐同台. 井壁稳定技术研究现状及发展方向[J]. 钻井液与完井液,1997,14(4):36–43.

    XU Tongtai. On wellbore stability technology[J]. Drilling Fluid & Completion Fluid, 1997, 14(4): 36–43.

    [4] 邓虎,孟英峰. 泥页岩稳定性的化学与力学耦合研究综述[J]. 石油勘探与开发,2003,30(1):109–111.

    DENG Hu, MENG Yingfeng. A discussion on shale stability coupling with mechanics and chemistry[J]. Petroleum Exploration and Development, 2003, 30(1): 109–111.

    [5] 徐四龙,余维初,张颖. 泥页岩井壁稳定的力学与化学耦合(协同)作用研究进展[J]. 石油天然气学报,2014,36(1):151–153.

    XU Silong, YU Weichu, ZHANG Ying. Research progress of mechanic and chemical coupling for shale wellbore stability[J]. Journal of Oil and Gas Technology, 2014, 36(1): 151–153.

    [6]

    ZHANG Yayun, GAO Shuyang, DU Xiaoyu, et al. Molecular dynamics simulation of strength weakening mechanism of deep shale[J]. Journal of Petroleum Science and Engineering, 2019, 181: 106123. doi: 10.1016/j.petrol.2019.05.074

    [7]

    SKIPPER N T, REFSON K, MCCONNELL J D C. Computer simulation of interlayer water in 2∶1 clays[J]. The Journal of Chemical Physics, 1991, 94(11): 7434–7445. doi: 10.1063/1.460175

    [8]

    BOEK E S, COVENEY P V, SKIPPER N T. Monte Carlo molecular modeling studies of hydrated Li-, Na-, and K-smectites: understanding the role of potassium as a clay swelling inhibitor[J]. Journal of the American Chemical Society, 1995, 117(50): 12608–12617. doi: 10.1021/ja00155a025

    [9]

    CHANG F R C, SKIPPER N T, SPOSITO G. Monte Carlo and molecular dynamics simulations of electrical double-layer structure in potassium-montmorillonite hydrates[J]. Langmuir, 1998, 14(5): 1201–1207. doi: 10.1021/la9704720

    [10]

    CHANG F R C, SKIPPER N T, SPOSITO G. Monte Carlo and molecular dynamics simulations of interfacial structure in lithium-montmorillonite hydrates[J]. Langmuir, 1997, 13(7): 2074–2082. doi: 10.1021/la9603176

    [11]

    CHANG F R C, SKIPPER N T, SPOSITO G. Computer simulation of interlayer molecular structure in sodium montmorillonite hydrates[J]. Langmuir, 1995, 11(7): 2734–2741. doi: 10.1021/la00007a064

    [12] 徐加放,付元强,田太行,等. 蒙脱石水化机理的分子模拟[J]. 钻井液与完井液,2012,29(4):1–4.

    XU Jiafang, FU Yuanqiang, TIAN Taihang, et al. Molecular simulation on mechanism of montmorillonite hydration[J]. Drilling Fluid & Completion Fluid, 2012, 29(4): 1–4.

    [13]

    YOUNG D A, SMITH D E. Simulations of clay mineral swelling and hydration:   Dependence upon interlayer ion size and charge[J]. The Journal of Physical Chemistry B, 2000, 104(39): 9163–9170. doi: 10.1021/jp000146k

    [14] 王进,王军霞,曾凡桂. 钾基蒙脱石的分子力学和分子动力学模拟[J]. 硅酸盐学报,2009,37(4):554–561. doi: 10.3321/j.issn:0454-5648.2009.04.012

    WANG Jin, WANG Junxia, ZENG Fangui. Simulation of molecular mechanics and molecular dynamics of potassium montmorillonite[J]. Journal of the Chinese Ceramic Society, 2009, 37(4): 554–561. doi: 10.3321/j.issn:0454-5648.2009.04.012

    [15]

    YOTSUJI K, TACHI Y, SAKUMA H, et al. Effect of interlayer cations on montmorillonite swelling: Comparison between molecular dynamic simulations and experiments[J]. Applied Clay Science, 2021, 204: 106034. doi: 10.1016/j.clay.2021.106034

    [16]

    AKINWUNMI B, KPORHA F E A, HIRVI J T, et al. Atomistic simulations of the swelling behaviour of Na-montmorillonite in mixed NaCl and CaCl2 solutions[J]. Chemical Physics, 2020, 533: 110712. doi: 10.1016/j.chemphys.2020.110712

    [17] 黄小娟,徐加放,丁廷稷,等. 有机胺抑制蒙脱石水化机理的分子模拟[J]. 石油钻采工艺,2017,39(4):442–448.

    HUANG Xiaojuan, XU Jiafang, DING Tingji, et al. Molecular simulation on the inhibition mechanism of organic amine to montmorillonite hydration[J]. Oil Drilling & Production Technology, 2017, 39(4): 442–448.

    [18]

    PENG Chenliang, WANG Guanshi, QIN Lei, et al. Molecular dynamics simulation of NH4-montmorillonite interlayer hydration: Structure, energetics, and dynamics[J]. Applied Clay Science, 2020, 195: 105657. doi: 10.1016/j.clay.2020.105657

    [19]

    XIE Gang, XIAO Yurong, DENG Mingyi, et al. Investigation on the inhibition mechanism of alkyl diammonium as montmorillonite swelling inhibitor: experimental and molecular dynamics simulations[J]. Fuel, 2020, 282: 118841. doi: 10.1016/j.fuel.2020.118841

    [20]

    PENG Chenliang, WANG Guanshi, ZHANG Chunlei, et al. Molecular dynamics simulation of NH4+-smectite interlayer hydration: Influence of layer charge density and location[J]. Journal of Molecular Liquids, 2021, 336: 116232. doi: 10.1016/j.molliq.2021.116232

    [21] 刘星雨,马超,谢龙龙,等. 甲酸钾抑制蒙脱石水化机理的分子动力学模拟[J]. 钻井液与完井液,2022,39(4):415–422.

    LIU Xingyu, MA Chao, XIE Longlong, et al. Molecular dynamics simulation of potassium formate’s ability to inhibit hydration of montmorillonite[J]. Drilling Fluid & Completion Fluid, 2022, 39(4): 415–422.

    [22] 徐加放,顾甜甜,沈文丽,等. 无机盐对蒙脱石弹性力学参数影响的分子模拟与实验研究[J]. 中国石油大学学报(自然科学版),2016,40(2):83–90.

    XU Jiafang, GU Tiantian, SHEN Wenli, et al. Influence simulation of inorganic salts on montmorillonite elastic mechanical parameters and experimental study[J]. Journal of China University of Petroleum (Edition of Natural Science), 2016, 40(2): 83–90.

    [23]

    HAN Zongfang, CUI Yang, MENG Qi, et al. The effect of inorganic salt on the mechanical properties of montmorillonite and its mechanism: a molecular dynamics study[J]. Chemical Physics Letters, 2021, 781: 138982. doi: 10.1016/j.cplett.2021.138982

    [24]

    DRITS V A, ZVIAGINA B B, MCCARTY D K, et al. Factors responsible for crystal-chemical variations in the solid solutions from illite to aluminoceladonite and from glauconite to celadonite[J]. American Mineralogist, 2010, 95(2/3): 348–361.

    [25] 王冠,李桂臣,孙元田,等. 伊利石水化机理及膨胀特性的分子模拟研究[J]. 煤炭科技,2017(3):16–22.

    WANG Guan, LI Guichen, SUN Yuantian, et al. Study on molecular simulation of illite on hydration mechanism and water absorption behavior[J]. Coal Science & Technology Magazine, 2017(3): 16–22.

    [26] 刘勇,周国庆,况联飞. 常温与低温下的伊利石水化性能分子动力学模拟[J]. 煤炭技术,2018,37(10):353–356.

    LIU Yong, ZHOU Guoqing, KUANG Lianfei. Molecular dynamics simulation of hydration properties of illite at normal and low temperatures[J]. Coal Technology, 2018, 37(10): 353–356.

    [27] 刘梅全,蒲晓林,张谦,等. 无机盐作用下伊利石水化特性的分子模拟[J]. 西南石油大学学报(自然科学版),2021,43(4):81–89.

    LIU Meiquan, PU Xiaolin, ZHANG Qian, et al. Molecular simulation for inorganic salts inhibition mechanism on illite hydration[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(4): 81–89.

    [28]

    GHASEMI M, SHARIFI M. Effects of layer-charge distribution on swelling behavior of mixed-layer illite-montmorillonite clays: a molecular dynamics simulation study[J]. Journal of Molecular Liquids, 2021, 335: 116188. doi: 10.1016/j.molliq.2021.116188

    [29]

    CHEN Jun, MIN Fanfei, LIU Lingyun, et al. Mechanism research on surface hydration of kaolinite, insights from DFT and MD simulations[J]. Applied Surface Science, 2019, 476: 6–15. doi: 10.1016/j.apsusc.2019.01.081

    [30]

    CHEN Zhongcun, ZHAO Yaolin, XU Xuewen, et al. Structure and dynamics of Cs+ in kaolinite: insights from molecular dynamics simulations[J]. Computational Materials Science, 2020, 171: 109256. doi: 10.1016/j.commatsci.2019.109256

    [31]

    CHANG Ming, MA Xiaomin, FAN Yuping, et al. Adsorption of different valence metal cations on kaolinite: results from experiments and molecular dynamics simulations[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656(Part A): 130330.

    [32]

    ZHENG Y, ZAOUI A. Temperature effects on the diffusion of water and monovalent counterions in the hydrated montmorillonite[J]. Physica A: Statistical Mechanics and Its Applications, 2013, 392(23): 5994–6001. doi: 10.1016/j.physa.2013.07.019

    [33]

    CAMARA M, XU Jiafang, WANG Xiaopu, et al. Molecular dynamics simulation of hydrated Na-montmorillonite with inorganic salts addition at high temperature and high pressure[J]. Applied Clay Science, 2017, 146: 206–215. doi: 10.1016/j.clay.2017.05.045

    [34] 张亚云,陈勉,邓亚,等. 温压条件下蒙脱石水化的分子动力学模拟[J]. 硅酸盐学报,2018,46(10):1489–1498.

    ZHANG Yayun, CHEN Mian, DENG Ya, et al. Molecular dynamics simulation of temperature and pressure effects on hydration characteristics of montmorillonites[J]. Journal of the Chinese Ceramic Society, 2018, 46(10): 1489–1498.

    [35] 况联飞,周国庆,商翔宇,等. 钠蒙脱土晶层间水分子结构分子动力学模拟[J]. 煤炭学报,2013,38(3):418–423.

    KUANG Lianfei, ZHOU Guoqing, SHANG Xiangyu, et al. Molecular dynamic simulation of interlayer water structure in Na-montmorillonite[J]. Journal of China Coal Society, 2013, 38(3): 418–423.

    [36]

    PENG Jianfei, YI Hao, SONG Shaoxian, et al. Driving force for the swelling of montmorillonite as affected by surface charge and exchangeable cations: a molecular dynamic study[J]. Results in Physics, 2019, 12: 113–117. doi: 10.1016/j.rinp.2018.11.011

    [37] 石秉忠,夏柏如. 硬脆性泥页岩水化过程的微观结构变化[J]. 大庆石油学院学报,2011,35(6):28–34.

    SHI Bingzhong, XIA Bairu. The variation of microstructures in the hard brittle shale hydration process[J]. Journal of Daqing Petroleum Institute, 2011, 35(6): 28–34.

    [38] 石秉忠,夏柏如,林永学,等. 硬脆性泥页岩水化裂缝发展的CT成像与机理[J]. 石油学报,2012,33(1):137–142. doi: 10.1038/aps.2011.157

    SHI Bingzhong, XIA Bairu, LIN Yongxue, et al. CT imaging and mechanism analysis of crack development by hydration in hard-brittle shale formations[J]. Acta Petrolei Sinica, 2012, 33(1): 137–142. doi: 10.1038/aps.2011.157

    [39] 马天寿,陈平. 基于CT扫描技术研究页岩水化细观损伤特性[J]. 石油勘探与开发,2014,41(2):227–233.

    MA Tianshou, CHEN Ping. Study of meso-damage characteristics of shale hydration based on CT scanning technology[J]. Petroleum Exploration and Development, 2014, 41(2): 227–233.

    [40] 林永学,高书阳,曾义金. 基于层析成像技术的页岩微裂缝扩展规律研究[J]. 中国科学:物理学 力学 天文学,2017,47(11):114606.

    LIN Yongxue, GAO Shuyang, ZENG Yijin. Study of shale micro-fracture propagation based on tomographic technique[J]. SCIENTIA SINICA: Physica, Mechanica & Astronomica, 2017, 47(11): 114606.

    [41]

    ZHANG Shifeng, SHENG J J. Study of the propagation of hydration-induced fractures in mancos shale using computerized tomography[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 95: 1–7. doi: 10.1016/j.ijrmms.2017.03.011

    [42] 贾利春,张超平,周井红. 结合CT技术的页岩水化损伤规律研究[J]. 断块油气田,2017,24(2):214–217.

    JIA Lichun, ZHANG Chaoping, ZHOU Jinghong. Hydration damage characteristics of shale by using CT scanning technology[J]. Fault-Block Oil & Gas Field, 2017, 24(2): 214–217.

    [43] 高书阳,豆宁辉,林永学,等. 川渝地区龙马溪组页岩储层水化特征评价方法[J]. 石油钻探技术,2018,46(3):20–26.

    GAO Shuyang, DOU Ninghui, LIN Yongxue, et al. A new method for evaluating the characteristics of hydration in the Longmaxi shale gas reservoir in Sichuan-Chongqing Area[J]. Petroleum Drilling Techniques, 2018, 46(3): 20–26.

    [44]

    WANG Qing, LYU Chaohui, COLE D R. Effects of hydration on fractures and shale permeability under different confining pressures: An experimental study[J]. Journal of Petroleum Science and Engineering, 2019, 176: 745–753. doi: 10.1016/j.petrol.2019.01.068

    [45] 王良,马辉运,韩慧芬,等. 长宁区块页岩水化起裂机理及应用[J]. 钻采工艺,2020,43(增刊1):27–30.

    WANG Liang, MA Huiyun, HAN Huifen, et al. Mechanism of shale hydration cracking and application at Changning Block[J]. Drilling & Production Technology, 2020, 43(supplement1): 27–30.

    [46] 曾凡辉,张蔷,陈斯瑜,等. 水化作用下页岩微观孔隙结构的动态表征:以四川盆地长宁地区龙马溪组页岩为例[J]. 天然气工业,2020,40(10):66–75.

    ZENG Fanhui, ZHANG Qiang, CHEN Siyu, et al. Dynamic characterization of microscopic pore structures of shale under the effect of hydration: a case study of Longmaxi Formation shale in the Changning Area of the Sichuan Basin[J]. Natural Gas Industry, 2020, 40(10): 66–75.

    [47] 朱宝龙,李晓宁,巫锡勇,等. 黑色页岩遇水膨胀微观特征试验研究[J]. 岩石力学与工程学报,2015,34(增刊2):3896–3905.

    ZHU Baolong, LI Xiaoning, WU Xiyong, et al. Experimental study of micro-characteristics of swelling for black shale under influence of water[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(supplement2): 3896–3905.

    [48] 刘敬平,孙金声. 页岩气藏地层井壁水化失稳机理与抑制方法[J]. 钻井液与完井液,2016,33(3):25–29.

    LIU Jingping, SUN Jinsheng. Borehole wall collapse and control in shale gas well drilling[J]. Drilling Fluid & Completion Fluid, 2016, 33(3): 25–29.

    [49] 刘向君,熊健,梁利喜. 龙马溪组硬脆性页岩水化实验研究[J]. 西南石油大学学报(自然科学版),2016,38(3):178–186.

    LIU Xiangjun, XIONG Jian, LIANG Lixi. Hydration experiment of hard brittle shale of the Longmaxi Formation[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2016, 38(3): 178–186.

    [50]

    LIU Xiangjun, ZENG Wei, LIANG Lixi, et al. Experimental study on hydration damage mechanism of shale from the Longmaxi Formation in southern Sichuan Basin, China[J]. Petroleum, 2016, 2(1): 54–60. doi: 10.1016/j.petlm.2016.01.002

    [51]

    WANG Yuepeng, LIU Xiangjun, LIANG Lixi, et al. Experimental study on the damage of organic-rich shale during water-shale interaction[J]. Journal of Natural Gas Science and Engineering, 2020, 74: 103103. doi: 10.1016/j.jngse.2019.103103

    [52] 卢运虎,梁川,金衍,等. 高温下页岩水化损伤的各向异性实验研究[J]. 中国科学:物理学 力学 天文学,2017,47(11):114614.

    LU Yunhu, LIANG Chuan, JIN Yan, et al. Experimental study on hydration damage of anisotropic shale under high temperature[J]. SCIENTIA SINICA: Physica, Mechanica & Astronomica, 2017, 47(11): 114614.

    [53]

    LU Yunhu, ZENG Lingping, JIN Yan, et al. Effect of shale anisotropy on hydration and its implications for water uptake[J]. Energies, 2019, 12(22): 4225. doi: 10.3390/en12224225

    [54] 薛华庆,周尚文,蒋雅丽,等. 水化作用对页岩微观结构与物性的影响[J]. 石油勘探与开发,2018,45(6):1075–1081. doi: 10.11698/PED.2018.06.16

    XUE Huaqing, ZHOU Shangwen, JIANG Yali, et al. Effects of hydration on the microstructure and physical properties of shale[J]. Petroleum Exploration and Development, 2018, 45(6): 1075–1081. doi: 10.11698/PED.2018.06.16

    [55] 隋微波,田英英,姚晨昊. 页岩水化微观孔隙结构变化定点观测实验[J]. 石油勘探与开发,2018,45(5):894–901.

    SUI Weibo, TIAN Yingying, YAO Chenhao. Investigation of microscopic pore structure variations of shale due to hydration effects through SEM fixed-point observation experiments[J]. Petroleum Exploration and Development, 2018, 45(5): 894–901.

    [56] 吴小林,刘向君. 泥页岩水化过程中声波时差变化规律研究[J]. 西南石油大学学报,2007,29(增刊2):57–60.

    WU Xiaolin, LIU Xiangjun. The process and microscopic mechanism of shale hydration[J]. Journal of Southwest Petroleum University, 2007, 29(supplement2): 57–60.

    [57] 王光兵,刘向君,梁利喜. 硬脆性页岩水化的超声波透射实验研究[J]. 科学技术与工程,2017,17(36):60–66. doi: 10.3969/j.issn.1671-1815.2017.36.010

    WANG Guangbing, LIU Xiangjun, LIANG Lixi. Ultrasonic transmission experimental investigation on hydration of hard brittle shale[J]. Science Technology and Engineering, 2017, 17(36): 60–66. doi: 10.3969/j.issn.1671-1815.2017.36.010

    [58] 王萍,屈展. 基于核磁共振的脆硬性泥页岩水化损伤演化研究[J]. 岩土力学,2015,36(3):687–693.

    WANG Ping, QU Zhan. NMR technology based hydration damage evolution of hard brittle shale[J]. Rock and Soil Mechanics, 2015, 36(3): 687–693.

    [59] 钱斌,朱炬辉,杨海,等. 页岩储集层岩心水化作用实验[J]. 石油勘探与开发,2017,44(4):615–621. doi: 10.1016/S1876-3804(17)30070-8

    QIAN Bin, ZHU Juhui, YANG Hai, et al. Experiments on shale reservoirs plugs hydration[J]. Petroleum Exploration and Development, 2017, 44(4): 615–621. doi: 10.1016/S1876-3804(17)30070-8

    [60]

    WANG Ping, QU Zhan, CHARALAMPIDOU E M. Shale hydration damage captured by nuclear magnetic resonance[J]. Journal of Dispersion Science and Technology, 2019, 40(8): 1129–1135. doi: 10.1080/01932691.2018.1496839

    [61] 余致理,郭高峰,余恒,等. 水化作用下页岩微观孔隙结构伤害特征[J]. 西安石油大学学报(自然科学版),2022,37(1):44–50.

    YU Zhili, GUO Gaofeng, YU Heng, et al. Damage of hydration effect to micropore structure of shale[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2022, 37(1): 44–50.

    [62]

    MA Tianshou, YANG Chunhe, CHEN Ping, et al. On the damage constitutive model for hydrated shale using CT scanning technology[J]. Journal of Natural Gas Science and Engineering, 2016, 28: 204–214. doi: 10.1016/j.jngse.2015.11.025

    [63] 路保平,林永学,张传进. 水化对泥页岩力学性质影响的实验研究[J]. 地质力学学报,1999,5(1):65–70. doi: 10.3969/j.issn.1006-6616.1999.01.011

    LU Baoping, LIN Yongxue, ZHANG Chuanjin. Laboratory study on effect of hydration to shale mechanics[J]. Journal of Geomechanics, 1999, 5(1): 65–70. doi: 10.3969/j.issn.1006-6616.1999.01.011

    [64] 黄进军,杨香丽,王福林,等. 处理剂对泥页岩抗压强度影响的实验研究[J]. 西南石油大学学报(自然科学版),2009,31(3):95–98.

    HUANG Jinjun, YANG Xiangli, WANG Fulin, et al. Experimental study on the effect of treatment agent on argillutits’ compressive strength[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2009, 31(3): 95–98.

    [65] 刘向君,刘洪,罗平亚,等. 钻井液浸泡对库车组泥岩强度的影响及应用研究[J]. 岩石力学与工程学报,2009,28(增刊2):3920–3925.

    LIU Xiangjun, LIU Hong, LUO Pingya, et al. Research on effect of drilling fluid on Kuqa shale strength behavior and its applications[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(supplement2): 3920–3925.

    [66] 卢运虎,陈勉,金衍,等. 钻井液浸泡下深部泥岩强度特征试验研究[J]. 岩石力学与工程学报,2012,31(7):1399–1405. doi: 10.3969/j.issn.1000-6915.2012.07.012

    LU Yunhu, CHEN Mian, JIN Yan, et al. Experimental study of strength properties of deep mudstone under drilling fluid soaking[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(7): 1399–1405. doi: 10.3969/j.issn.1000-6915.2012.07.012

    [67] 曹园,邓金根,蔚宝华,等. 深部泥页岩水化特性研究[J]. 科学技术与工程,2014,14(6):118–120.

    CAO Yuan, DENG Jingen, WEI Baohua, et al. Hydration properties research of deep formation shale[J]. Science Technology and Engineering, 2014, 14(6): 118–120.

    [68] 向朝纲,陈俊斌,杨刚. 钻井液浸泡作用下脆性页岩强度特征实验[J]. 断块油气田,2018,25(6):803–806.

    XIANG Chaogang, CHEN Junbin, YANG Gang. Experiment of brittle shale strength characteristics under drilling fluids soaking[J]. Fault-Block Oil & Gas Field, 2018, 25(6): 803–806.

    [69]

    LYU Qiao, LONG Xinping, RANJITH P, et al. Experimental investigation on the mechanical behaviours of a low-clay shale under water-based fluids[J]. Engineering Geology, 2018, 233: 124–138. doi: 10.1016/j.enggeo.2017.12.002

    [70]

    ZHANG Qiangui, FAN Xiangyu, CHEN Ping, et al. Geomechanical behaviors of shale after water absorption considering the combined effect of anisotropy and hydration[J]. Engineering Geology, 2020, 269: 105547. doi: 10.1016/j.enggeo.2020.105547

    [71]

    LIU Houbin, CUI Shuai, MENG Yingfeng, et al. Rock mechanics and wellbore stability of deep shale during drilling and completion processes[J]. Journal of Petroleum Science and Engineering, 2021, 205: 108882. doi: 10.1016/j.petrol.2021.108882

    [72]

    YEW C H, CHENEVERT M E, WANG C L, et al. Wellbore stress distribution produced by moisture adsorption[J]. SPE Drilling Engineering, 1990, 5(4): 311–316. doi: 10.2118/19536-PA

    [73] 黄荣樽,陈勉,邓金根,等. 泥页岩井壁稳定力学与化学的耦合研究[J]. 钻井液与完井液,1995,12(3):15–21.

    HUANG Rongzun, CHEN Mian, DENG Jingen, et al. Study on shale stability of wellbore by mechanics coupling with chemistry method[J]. Drilling Fluid & Completion Fluid, 1995, 12(3): 15–21.

    [74]

    MODY F K, HALE A H. Borehole-stability model to couple the mechanics and chemistry of drilling-fluid/shale interactions[J]. Journal of Petroleum Technology, 1993, 45(11): 1093–1101. doi: 10.2118/25728-PA

    [75]

    YU Mengjiao, CHENEVERT M E, SHARMA M M. Chemical-mechanical wellbore instability model for shales: accounting for solute diffusion[J]. Journal of Petroleum Science and Engineering, 2003, 38(3/4): 131–143.

    [76] 金衍,陈勉. 水敏性泥页岩地层临界坍塌时间的确定方法[J]. 石油钻探技术,2004,32(2):12–14. doi: 10.3969/j.issn.1001-0890.2004.02.004

    JIN Yan, CHEN Mian. A method for determining the critical time of wellbore instability at water-sensitive shale formations[J]. Petroleum Drilling Techniques, 2004, 32(2): 12–14. doi: 10.3969/j.issn.1001-0890.2004.02.004

    [77]

    NGUYEN V X, ABOUSLEIMAN Y N. The porochemothermoelastic coupled solutions of stress and pressure with applications to wellbore stability in chemically active shale[R]. SPE 124422, 2009.

    [78] 温航,陈勉,金衍,等. 硬脆性泥页岩斜井段井壁稳定力化耦合研究[J]. 石油勘探与开发,2014,41(6):748–754. doi: 10.11698/PED.2014.06.16

    WEN Hang, CHEN Mian, JIN Yan, et al. A chemo-mechanical coupling model of deviated borehole stability in hard brittle shale[J]. Petroleum Exploration and Development, 2014, 41(6): 748–754. doi: 10.11698/PED.2014.06.16

    [79]

    MA Tianshou, CHEN Ping. A wellbore stability analysis model with chemical-mechanical coupling for shale gas reservoirs[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 72–98. doi: 10.1016/j.jngse.2015.05.028

    [80]

    CHENG Wan, JIANG Guosheng, LI Xiaodong, et al. A porochemothermoelastic coupling model for continental shale wellbore stability and a case analysis[J]. Journal of Petroleum Science and Engineering, 2019, 182: 106265. doi: 10.1016/j.petrol.2019.106265

    [81]

    ZHANG Shifeng, WANG Haige, QIU Zhengsong, et al. Calculation of safe drilling mud density window for shale formation by considering chemo-poro-mechanical coupling effect[J]. Petroleum Exploration and Development, 2019, 46(6): 1271–1280. doi: 10.1016/S1876-3804(19)60280-6

  • 期刊类型引用(7)

    1. 金永辉,王治富,孙庆名,李源流,王波,陈义哲. 致密储层纳米增注技术研究与应用. 特种油气藏. 2023(01): 169-174 . 百度学术
    2. 陈璐鑫,卓绿燕,ALAIN Pierre Tchameni,吕军贤,谢彬强. 温敏聚合物/纳米SiO_2复合材料的制备与性能评价. 油田化学. 2023(01): 12-18 . 百度学术
    3. 周忠亚,王小军,秦文斌,卢和平,代林,李俊,胡象辉,陈晋东,谢彬强. 钻井液用梳型耐温抗盐增黏剂合成的逐级放大与性能. 油田化学. 2023(04): 590-595 . 百度学术
    4. 刘建坤,蒋廷学,黄静,吴春方,贾文峰,陈晨. 纳米材料改善压裂液性能及驱油机理研究. 石油钻探技术. 2022(01): 103-111 . 本站查看
    5. 贾寒,田子豪,黄维安. 两亲SiO_2纳米颗粒的制备及提升聚合物性能. 实验室研究与探索. 2022(04): 17-20+50 . 百度学术
    6. 王捷,朱正平,张鹏,唐浩翔. 智能纳米颗粒在油田开发中的应用研究进展. 现代化工. 2022(10): 39-43+50 . 百度学术
    7. 曹广胜,吴佳骏,左继泽,安宏鑫,张紫航. 纳米二氧化硅对表面活性剂溶液乳化性能的影响. 化学工程师. 2021(09): 77-80 . 百度学术

    其他类型引用(8)

图(4)
计量
  • 文章访问数:  398
  • HTML全文浏览量:  147
  • PDF下载量:  163
  • 被引次数: 15
出版历程
  • 收稿日期:  2022-12-18
  • 修回日期:  2023-02-12
  • 网络出版日期:  2023-02-23
  • 刊出日期:  2023-08-24

目录

/

返回文章
返回