Loading [MathJax]/jax/output/SVG/jax.js

非常规油气藏新一代体积压裂技术的几个关键问题探讨

蒋廷学

蒋廷学. 非常规油气藏新一代体积压裂技术的几个关键问题探讨[J]. 石油钻探技术,2023, 51(4):184-191. DOI: 10.11911/syztjs.2023023
引用本文: 蒋廷学. 非常规油气藏新一代体积压裂技术的几个关键问题探讨[J]. 石油钻探技术,2023, 51(4):184-191. DOI: 10.11911/syztjs.2023023
JIANG Tingxue. Discussion on several key issues of the new-generation network fracturing technologies for unconventional reservoirs [J]. Petroleum Drilling Techniques,2023, 51(4):184-191. DOI: 10.11911/syztjs.2023023
Citation: JIANG Tingxue. Discussion on several key issues of the new-generation network fracturing technologies for unconventional reservoirs [J]. Petroleum Drilling Techniques,2023, 51(4):184-191. DOI: 10.11911/syztjs.2023023

非常规油气藏新一代体积压裂技术的几个关键问题探讨

基金项目: 国家自然科学基金企业创新发展联合基金项目“海相深层油气富集机理与关键工程技术基础研究”(编号:U19B6003-05)资助
详细信息
    作者简介:

    蒋廷学(1969—),男,江苏东海人,1991年毕业于石油大学(华东)采油工程专业,2007年获中国科学院渗流流体力学研究所流体力学专业博士学位,正高级工程师,中国石化集团公司首席专家,主要从事水力压裂理论及技术研究工作。系本刊编委。E-mail:jiangtx.sripe@sinopec.com。

  • 中图分类号: TE357.1

Discussion on Several Key Issues of the New-Generation Network Fracturing Technologies for Unconventional Reservoirs

  • 摘要:

    体积压裂技术是实现非常规油气藏高效开发的关键,围绕有效改造体积及单井控制EUR最大化的目标,密切割程度、加砂强度、暂堵级数及工艺参数不断强化,导致压裂作业综合成本越来越高。为此,开展了新一代体积压裂技术(立体缝网压裂技术)的研究与试验,压裂工艺逐渐发展到“适度密切割、多尺度裂缝强加砂、多级双暂堵和全程穿层”模式。为促进立体缝网压裂技术的发展与推广应用,对立体缝网的表征、压裂模式及参数界限的确定、“压裂–渗吸–增能–驱油”协同提高采收率的机制、一体化变黏度多功能压裂液的研制、石英砂替代陶粒的经济性分析及“设计–实施–后评估”循环迭代升级的闭环体系构建等关键问题进行了探讨,厘清了立体缝网压裂技术的概念、关键技术及提高采收率机理,对于非常规油气藏新一代压裂技术的快速发展、更好地满足非常规油气藏高效勘探开发需求,具有重要的借鉴和指导意义。

    Abstract:

    Network fracturing technologies are the key to the efficient development of unconventional reservoirs. The degree of tight spacing, the intensity of proppant injection, the number of temporary plugging stages, and operation parameters are constantly optimized to maximize the effective stimulated reservoir volume (ESRV) and single-well estimated ultimate recovery (EUR), ultimately adding to the increasingly high comprehensive costs of fracturing operations. For this reason, new-generation network fracturing technologies (namely, three-dimensional fracture network fracturing technologies) were investigated and tested. Regarding the development of the fracturing process, a mode of “moderate tight spacing, high-intensity proppant injection to multi-scale fractures, multi-stage dual temporary plugging, and whole-process layer-penetrating” was gradually ushered into practice. Several key issues were discussed to further the development, promotion, and application of three-dimensional fracture network fracturing technologies. These issues involved the characterization of three-dimensional fracture networks, the determination of the fracturing mode and parameter boundaries, the synergistic enhanced oil recovery (EOR) mechanism of “fracturing-imbibition-energy enhancement-oil displacement”, integrated multi-functional fracturing fluids, the analysis of the economic efficiency of replacing ceramsite with quartz sand, and the establishment of a closed-loop system upgraded by cyclic iteration of “design-implementation-post-frac evaluation”. In this way, the concepts, key technologies, and the EOR mechanism of the three-dimensional fracturing technologies were clarified. Important reference and guidance can be provided by this paper for the rapid development of new-generation fracturing technologies for unconventional oil reservoirs and better fulfillment of the requirements for efficient exploration and development of unconventional reservoirs.

  • 表  1   2口井的立体缝网指数计算结果及其压后无阻流量

    Table  1   Calculated three-dimensional fracture network indexes and post-frac open flow rate of two wells

    井名水平段长/m排量/
    (m3·min−1
    单段液量/ m3V1/m3r1/mr2/mm1/条m2/条FCIFCI无阻流量/
    (104 m3·d−1
    A井1 00810~121331260.012.53.26180.1320.29316.74
    B井1 00312~141545312.612.72.68230.1450.43621.18
    注:V1为转向支裂缝及三级微裂缝中的压裂液体积;r1r2分别为转向支裂缝和三级微裂缝半长;m1m2分别为转向支裂缝和三级微裂缝数量。
    下载: 导出CSV
  • [1] 邹才能,丁云宏,卢拥军,等. “人工油气藏” 理论、技术及实践[J]. 石油勘探与开发,2017,44(1):144–154.

    ZOU Caineng, DING Yunhong, LU Yongjun, et al. Concept, technology and practice of “man-made reservoirs” development[J]. Petroleum Exploration and Development, 2017, 44(1): 144–154.

    [2] 曾义金. 深层页岩气开发工程技术进展[J]. 石油科学通报,2019,4(3):233–241.

    ZENG Yijin. Progress in engineering technologies for the development of deep shale gas[J]. Petroleum Science Bulletin, 2019, 4(3): 233–241.

    [3] 蒋廷学,王海涛. 中国石化页岩油水平井分段压裂技术现状与发展建议[J]. 石油钻探技术,2021,49(4):14–21. doi: 10.11911/syztjs.2021071

    JIANG Tingxue, WANG Haitao. The current status and development suggestions for Sinopec’s staged fracturing technologies of horizontal shale oil wells[J]. Petroleum Drilling Techniques, 2021, 49(4): 14–21. doi: 10.11911/syztjs.2021071

    [4] 梁兴,管彬,李军龙,等. 山地浅层页岩气地质工程一体化高效压裂试气技术:以昭通国家级页岩气示范区太阳气田为例[J]. 天然气工业,2021,41(增刊1):124–132.

    LIANG Xing, GUAN Bin, LI Junlong, et al. Key technologies of shallow shale gas reservoir in mountainous area: taking Taiyang Gas Field in Zhaotong National Shale Gas Demonstration Area as an example[J]. Natural Gas Industry, 2021, 41(supplement1): 124–132.

    [5] 程垒明. 吉木萨尔凹陷页岩油水平井地质工程一体化三维压裂设计探索[J]. 石油地质与工程,2021,35(2):88–92. doi: 10.3969/j.issn.1673-8217.2021.02.018

    CHENG Leiming. Exploration of geological engineering integrated 3D fracturing design for horizontal wells in Jimsar shale oil reservoirs[J]. Petroleum Geology and Engineering, 2021, 35(2): 88–92. doi: 10.3969/j.issn.1673-8217.2021.02.018

    [6] 张矿生,唐梅荣,陶亮,等. 庆城油田页岩油水平井压增渗一体化体积压裂技术[J]. 石油钻探技术,2022,50(2):9–15. doi: 10.11911/syztjs.2022003

    ZHANG Kuangsheng, TANG Meirong, TAO Liang, et al. Horizontal well volumetric fracturing technology integrating fracturing, energy enhancement, and imbibition for shale oil in Qingcheng Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(2): 9–15. doi: 10.11911/syztjs.2022003

    [7] 蒋廷学,卞晓冰,左罗,等. 非常规油气藏体积压裂全生命周期地质工程一体化技术[J]. 油气藏评价与开发,2021,11(3):297–304. doi: 10.13809/j.cnki.cn32-1825/te.2021.03.004

    JIANG Tingxue, BIAN Xiaobing, ZUO Luo, et al. Whole lifecycle geology-engineering integration of volumetric fracturing technology in unconventional reservoir[J]. Reservoir Evaluation and Development, 2021, 11(3): 297–304. doi: 10.13809/j.cnki.cn32-1825/te.2021.03.004

    [8] 卞晓冰,蒋廷学,贾长贵,等. 基于施工曲线的页岩气井压后评估新方法[J]. 天然气工业,2016,36(2):60–65.

    BIAN Xiaobing, JIANG Tingxue, JIA Changgui, et al. A new post-fracturing evaluation method for shale gas wells based on fracturing curves[J]. Natural Gas Industry, 2016, 36(2): 60–65.

    [9] 王倩雯. 页岩气井压后体积改造评估分析方法探讨[J]. 江汉石油职工大学学报,2020,33(1):34–37. doi: 10.3969/j.issn.1009-301X.2020.01.011

    WANG Qianwen. Discussion on evaluation-analysis method of volume modification after shale gas well fracturing[J]. Journal of Jianghan Petroleum University of Staff and Workers, 2020, 33(1): 34–37. doi: 10.3969/j.issn.1009-301X.2020.01.011

    [10] 苏瑗,蒋廷学,卞晓冰,等. 一种页岩气井压后评估的远井可压指数评价方法[J]. 石油化工应用,2019,38(5):43–48. doi: 10.3969/j.issn.1673-5285.2019.05.008

    SU Yuan, JIANG Tingxue, BIAN Xiaobing, et al. The far-well fracability index method for shale well post-fracturing assess-ment[J]. Petrochemical Industry Application, 2019, 38(5): 43–48. doi: 10.3969/j.issn.1673-5285.2019.05.008

    [11] 赵文,张遂安,孙志宇,等. 基于G函数曲线分析的压后裂缝复杂性评估研究[J]. 科学技术与工程,2016,16(33):29–33. doi: 10.3969/j.issn.1671-1815.2016.33.006

    ZHAO Wen, ZHANG Suian, SUN Zhiyu, et al. Evaluative research for the fracture complexity after fracturing based on the G-function curves analysis[J]. Science Technology and Engineering, 2016, 16(33): 29–33. doi: 10.3969/j.issn.1671-1815.2016.33.006

    [12] 马俊修,兰正凯,王丽荣,等. 有效改造体积压裂效果评价方法及应用[J]. 特种油气藏,2021,28(1):126–133.

    MA Junxiu, LAN Zhengkai, WANG Lirong, et al. Evaluation method and application of ESRV fracturing effect[J]. Special Oil & Gas Reservoirs, 2021, 28(1): 126–133.

    [13] 郑新权,何春明,杨能宇,等. 非常规油气藏体积压裂2.0工艺及发展建议[J]. 石油科技论坛,2022,41(3):1–9.

    ZHENG Xinquan, HE Chunming, YANG Nengyu, et al. Volumetric fracturing 2.0 process for unconventional oil and gas reservoirs and R & D suggestions[J]. Petroleum Science and Technology Forum, 2022, 41(3): 1–9.

    [14] 柴妮娜. 水平井多簇密切割增能体积压裂技术及应用[J]. 石化技术,2022,29(7):111–113.

    CHAI Nina. Multi cluster dense cutting energy increasing volume fracturing technology and its application in horizontal wells[J]. Petrochemical Industry Technology, 2022, 29(7): 111–113.

    [15] 李杉杉,孙虎,张冕,等. 长庆油田陇东地区页岩油水平井细分切割压裂技术[J]. 石油钻探技术,2021,49(4):92–98. doi: 10.11911/syztjs.2021080

    LI Shanshan, SUN Hu, ZHANG Mian, et al. Subdivision cutting fracturing technology for horizontal shale oil wells in the Longdong Area of the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 92–98. doi: 10.11911/syztjs.2021080

    [16] 于学亮,胥云,翁定为,等. 页岩油藏 “密切割” 体积改造产能影响因素分析[J]. 西南石油大学学报(自然科学版),2020,42(3):132–143.

    YU Xueliang, XU Yun, WENG Dingwei, et al. Factors influencing the productivity of the multi-fractured shale oil reservoir with tighter clusters[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2020, 42(3): 132–143.

    [17] 侯冰,常智,武安安,等. 吉木萨尔凹陷页岩油密切割压裂多簇裂缝竞争扩展模拟[J]. 石油学报,2022,43(1):75–90. doi: 10.7623/syxb202201007

    HOU Bing, CHANG Zhi, WU Anan, et al. Simulation of competitive propagation of multi-fractures on shale oil reservoir multi-clustered fracturing in Jimsar Sag[J]. Acta Petrolei Sinica, 2022, 43(1): 75–90. doi: 10.7623/syxb202201007

    [18] 任佳伟,张先敏,王贤君,等. 致密砂岩油藏水平井密切割压裂改造参数优化[J]. 断块油气田,2021,28(6):859–864.

    REN Jiawei, ZHANG Xianmin, WANG Xianjun,et al. Optimization of parameters of close cutting fracturing for horizontal well in tight sandstone reservoir[J]. Fault-Block Oil & Gas Field, 2021, 28(6): 859–864.

    [19] 赵振峰,李楷,赵鹏云,等. 鄂尔多斯盆地页岩油体积压裂技术实践与发展建议[J]. 石油钻探技术,2021,49(4):85–91. doi: 10.11911/syztjs.2021075

    ZHAO Zhenfeng, LI Kai, ZHAO Pengyun, et al. Practice and development suggestions for volumetric fracturing technology for shale oil in the Ordos Basin[J]. Petroleum Drilling Techniques, 2021, 49(4): 85–91. doi: 10.11911/syztjs.2021075

    [20] 郑有成,范宇,雍锐,等. 页岩气密切割分段+高强度加砂压裂新工艺[J]. 天然气工业,2019,39(10):76–81. doi: 10.3787/j.issn.1000-0976.2019.10.009

    ZHENG Youcheng, FAN Yu, YONG Rui, et al. A new fracturing technology of intensive stage + high-intensity proppant injection for shale gas reservoirs[J]. Natural Gas Industry, 2019, 39(10): 76–81. doi: 10.3787/j.issn.1000-0976.2019.10.009

    [21] 郑有成,赵志恒,曾波,等. 川南长宁区块页岩气高密度完井+高强度加砂压裂探索与实践[J]. 钻采工艺,2021,44(2):43–48. doi: 10.3969/J.ISSN.1006-768X.2021.02.11

    ZHENG Youcheng, ZHAO Zhiheng, ZENG Bo, et al. Exploration and practice on combination of high-density completion and high-intensity sand fracturing in shale gas horizontal well of Changning Block in southern Sichuan Basin[J]. Drilling & Production Technology, 2021, 44(2): 43–48. doi: 10.3969/J.ISSN.1006-768X.2021.02.11

    [22] 周福建,袁立山,刘雄飞,等. 暂堵转向压裂关键技术与进展[J]. 石油科学通报,2022,7(3):365–381. doi: 10.3969/j.issn.2096-1693.2022.03.032

    ZHOU Fujian, YUAN Lishan, LIU Xiongfei, et al. Advances and key techniques of temporary plugging and diverting fracturing[J]. Petroleum Science Bulletin, 2022, 7(3): 365–381. doi: 10.3969/j.issn.2096-1693.2022.03.032

    [23] 王纪伟,康玉柱,张殿伟,等. 非常规储层压裂暂堵剂应用进展[J]. 特种油气藏,2021,28(1):1–9.

    WANG Jiwei, KANG Yuzhu, ZHANG Dianwei, et al. Advances in the application of temporary plugging agents for racturing in unconventional reservoirs[J]. Special Oil & Gas Reservoirs, 2021, 28(1): 1–9.

    [24]

    ZHANG Ruxin, HOU Bing, TAN Peng, et al. Hydraulic fracture propagation behavior and diversion characteristic in shale formation by temporary plugging fracturing[J]. Journal of Petroleum Science and Engineering, 2020, 190: 107063. doi: 10.1016/j.petrol.2020.107063

    [25] 肖勇军,卢家孝,陈智,等. 长宁区块页岩暂堵技术在体积压裂中的应用分析[J]. 中国石油和化工标准与质量,2022,42(19):195–198.

    XIAO Yongjun, LU Jiaxiao, CHEN Zhi, et al. Application analysis of shale temporary plugging technology in volume fracturing in Changning Block[J]. China Petroleum and Chemical Standard and Quality, 2022, 42(19): 195–198.

    [26] 李彦超,张庆,沈建国,等. 页岩气藏长段多簇暂堵体积改造技术[J]. 天然气工业,2022,42(2):143–150.

    LI Yanchao, ZHANG Qing, SHEN Jianguo, et al. Volumetric stimulation technology of long-section multi-cluster temporary plugging in shale gas reservoirs[J]. Natural Gas Industry, 2022, 42(2): 143–150.

    [27] 胡东风,任岚,李真祥,等. 深层超深层页岩气水平井缝口暂堵压裂的裂缝调控模拟[J]. 天然气工业,2022,42(2):50–58.

    HU Dongfeng, REN Lan, LI Zhenxiang, et al. Simulation of fracture control during fracture-opening temporary plugging fracturing of deep/ultra deep shale-gas horizontal wells[J]. Natural Gas Industry, 2022, 42(2): 50–58.

    [28] 刘彝,杨辉,吴佐浩. 强变形暂堵转向压裂技术研究及应用[J]. 钻井液与完井液,2022,39(1):114–120.

    LIU Yi, YANG Hui, WU Zuohao. Study and application of self-diverting fracturing fluid containing highly deformable temporary plugging agents[J]. Drilling Fluid & Completion Fluid, 2022, 39(1): 114–120.

    [29] 许建国,刘光玉,王艳玲. 致密储层缝内暂堵转向压裂工艺技术[J]. 石油钻采工艺,2021,43(3):374–378. doi: 10.13639/j.odpt.2021.03.015

    XU Jianguo, LIU Guangyu, WANG Yanling. Intrafracture temporary plugging and diversion fracturing technology suitable for tight reservoirs[J]. Oil Drilling & Production Technology, 2021, 43(3): 374–378. doi: 10.13639/j.odpt.2021.03.015

    [30] 魏娟明. 滑溜水-胶液一体化压裂液研究与应用[J]. 石油钻探技术,2022,50(3):112–118.

    WEI Juanming. Research and application of slick water and gel-liquid integrated fracturing fluids[J]. Petroleum Drilling Techniques, 2022, 50(3): 112–118.

    [31] 樊平天,刘月田,冯辉,等. 致密油新一代驱油型滑溜水压裂液体系的研制与应用[J]. 断块油气田,2022,29(5):614–619.

    FAN Pingtian, LIU Yuetian, FENG Hui, et al. Research and application of a new generation of oil-displacing slick water fracturing fluid system for tight oil[J]. Fault-Block Oil & Gas Field, 2022, 29(5): 614–619.

    [32] 蒋廷学. 页岩油气水平井压裂裂缝复杂性指数研究及应用展望[J]. 石油钻探技术,2013,41(2):7–12.

    JIANG Tingxue. The fracture complexity index of horizontal wells in shale oil and gas reservoirs[J]. Petroleum Drilling Techniques, 2013, 41(2): 7–12.

    [33] 郑新权,王欣,张福祥,等. 国内石英砂支撑剂评价及砂源本地化研究进展与前景展望[J]. 中国石油勘探,2021,26(1):131–137.

    ZHENG Xinquan, WANG Xin, ZHANG Fuxiang, et al. Domestic sand proppant evaluation and research progress of sand source localization and its prospects[J]. China Petroleum Exploration, 2021, 26(1): 131–137.

    [34] 尹辉,韩先柱,李平,等. 石英砂替代技术研究及质量监管[J]. 石油工业技术监督,2022,38(10):9–14.

    YIN Hui, HAN Xianzhu, LI Ping, et al. Research on quartz sand substitution technology and quality supervision[J]. Technology Super-vision in Petroleum Industry, 2022, 38(10): 9–14.

    [35] 蒋廷学,周珺,廖璐璐. 国内外智能压裂技术现状及发展趋势[J]. 石油钻探技术,2022,50(3):1–9. doi: 10.11911/syztjs.2022065

    JIANG Tingxue, ZHOU Jun, LIAO Lulu. Development status and future trends of intelligent fracturing technologies[J]. Petroleum Drilling Techniques, 2022, 50(3): 1–9. doi: 10.11911/syztjs.2022065

  • 期刊类型引用(3)

    1. 游尧,姜韡,田峥,艾飞. PDC钻头旋转齿技术在南海东部西江区块深部地层应用. 海洋石油. 2020(01): 79-83 . 百度学术
    2. 袁国栋,王鸿远,陈宗琦,母亚军,席宝滨. 塔里木盆地满深1井超深井钻井关键技术. 石油钻探技术. 2020(04): 21-27 . 本站查看
    3. 于洋,南玉民,李双贵,刘景涛,贾厚刚. 顺北油田古生界钻井提速技术. 断块油气田. 2019(06): 780-783 . 百度学术

    其他类型引用(3)

表(1)
计量
  • 文章访问数:  540
  • HTML全文浏览量:  183
  • PDF下载量:  192
  • 被引次数: 6
出版历程
  • 收稿日期:  2022-12-28
  • 修回日期:  2023-02-05
  • 录用日期:  2023-02-07
  • 网络出版日期:  2023-02-09
  • 刊出日期:  2023-08-24

目录

    /

    返回文章
    返回