PDC钻头钻井提速关键影响因素研究

高德利, 刘维, 万绪新, 郭勇

高德利,刘维,万绪新,等. PDC钻头钻井提速关键影响因素研究[J]. 石油钻探技术,2023, 51(4):20-34. DOI: 10.11911/syztjs.2023022
引用本文: 高德利,刘维,万绪新,等. PDC钻头钻井提速关键影响因素研究[J]. 石油钻探技术,2023, 51(4):20-34. DOI: 10.11911/syztjs.2023022
GAO Deli, LIU Wei, WAN Xuxin, et al. Study on key factors influencing the ROP improvement of PDC bits [J]. Petroleum Drilling Techniques,2023, 51(4):20-34. DOI: 10.11911/syztjs.2023022
Citation: GAO Deli, LIU Wei, WAN Xuxin, et al. Study on key factors influencing the ROP improvement of PDC bits [J]. Petroleum Drilling Techniques,2023, 51(4):20-34. DOI: 10.11911/syztjs.2023022

PDC钻头钻井提速关键影响因素研究

基金项目: 国家自然科学基金重点项目“复杂结构‘井工厂’立体设计建设基础研究”(编号:52234002)、国家自然科学基金创新研究群体项目“复杂油气井钻井与完井基础研究”(编号:51821092)、中国石油大学(北京)科研启动基金项目“高效钻头的研究”(编号:ZX20190065)联合资助
详细信息
    作者简介:

    高德利(1958—),男,山东禹城人,1982年毕业于华东石油学院钻井工程专业,1984年获西南石油学院石油矿场机械专业硕士学位,1990年获石油大学油气田开发工程专业博士学位,教授,中国科学院院士,长期从事复杂油气井工程领域的科学研究与实践。系本刊编委。E-mail: gaodeli@cup.edu.cn。

  • 中图分类号: TE21

Study on Key Factors Influencing the ROP Improvement of PDC Bits

  • 摘要:

    为了在钻井工程中发挥出PDC钻头的最大功效,通过理论分析、室内试验、案例分析、现场试验等,探讨了高钻压、高转速等钻井参数强化对PDC钻头钻速和磨损的影响规律,同时分析了PDC钻头的磨损机理与过早失效主因。研究结果表明:1)钻压是影响PDC钻头机械钻速的直接和首选因素,当钻头处于高效破岩状态时,无论钻遇一般地层还是硬岩地层,钻压与机械钻速均应呈线性关系;钻遇均质硬岩地层时,建议将200 kN以上高钻压纳入PDC钻头的常规应用参数;2)提高转速可实现钻井提速,虽然高转速会加剧PDC钻头的磨损,但目前切削齿的质量足以满足PDC钻头在高转速(400~500 r/min)下长时间钻进多数地层的需求;3)布齿密度对钻头机械钻速有影响,但并非直接因素,只要“吃得进去,切得下来,排得及时”三者建立动态平衡,即便是高布齿密度PDC钻头也可以实现优快钻进;4)PDC钻头破岩效率越高,钻头磨损会越小,如提高钻压,会增大切削齿吃入深度、减少钻头磨损;5)动态冲击和低效破岩是造成PDC切削齿和钻头过早失效的主因,实现PDC钻头高效钻进的核心是提高破岩效率与抑制钻头振动。该研究结果对PDC钻头合理使用与钻井提速技术创新具有参考意义。

    Abstract:

    For the maximization of the efficacy of the polycrystalline diamond compact (PDC) bits in drilling engineering, comprehensive research, including theoretical analysis, laboratory test, case study, and on-site trials, was conducted to investigate how a high weight-on-bit (WOB), a high rotary speed, and other optimized drilling parameters work on the rate of penetration (ROP) and the wear of a PDC bit. Furthermore, the wear mechanism of the PDC bit and the primary cause of the premature failure of the bit were analyzed. The results indicated that: 1) The ROP of the PDC bit was directly and primarily affected by the WOB. When the bit was in an efficient rock-breaking state, the WOB was invariably in a linear relationship with the ROP whether the formation encountered was a conventional one or a hard rock formation. Adding a high WOB over 200 kN into the normal pressurization range of the PDC bit was recommended if the formation encountered was a homogeneous hard rock formation. 2) ROP improvement could be achieved by enhancing the rotary speed. Although the wear of the PDC bit could be aggravated by a high rotary speed, the requirement on a PDC bit to penetrate most formations for a long time at a high rotary speed (400–500 r/min) could be readily met by the quality of the currently available PDC cutter. 3) The ROP of the bit was also affected by cutter density, but not in a direct manner. As long as a dynamic balance among “capabilities to bite into the formation, cut the rock, and evacuate the cuttings in time” was reached, the optimized fast drilling could be achieved even by a PDC bit with a high cutter density. 4) The wear of the PDC bit was less severe under the higher rock-breaking efficiency of the bit. The WOB could be enhanced to improve the ROP and reduce bit wear. 5) Dynamic impact and inefficient rock-breaking were considered the primary causes of the premature failure of the PDC cutter and bit. The key for the PDC bit to achieve efficient penetration was improving rock-breaking efficiency and restraining bit vibration. The above results could be used as a reference for the proper utilization of PDC bits and the innovation of ROP improvement technologies.

  • 西湖凹陷位于东海陆架盆地浙东坳陷东部,面积约5.9×104 km2,新生代地层最大沉积厚度超过1.0×104 m,主要目的层为古近系平湖组和花港组地层。储层岩性以长石砂岩和岩屑砂岩为主,埋深一般大于3 500.00 m,受压实成岩作用影响,储层物性一般偏低,孔隙度多在15%以下,渗透率一般小于10 mD。低孔低渗储层的流体性质识别一直是西湖凹陷油气勘探开发中的难题之一[13],原因是储层束缚水含量高、电阻率对比度低,同时受储层孔隙结构影响,水层的电阻率往往也较高,通过电性判别难度较大[46];另外,低孔低渗储层毛细管水含量高,当生产压差增大到一定数值后,一部分束缚水往往会转化为可动水,导致生产出水,影响油气产量,特别是气层一旦出水将严重影响最终的采收率,降低油气田开发的经济性[710]。针对上述问题,笔者利用油基钻井液的高侵特性,基于时移测井理念[1112],提出时移电阻率测井对比识别法,即通过对比随钻实时电阻率与复测电阻率的差异快速识别流体性质,并在西湖凹陷低孔低渗储层进行了现场应用,验证了其可行性和有效性。

    西湖凹陷低孔低渗储层钻井使用的油基钻井液主要成分为白油,根据实际需要,其含量约占钻井液总体积的70%~85%,其余成分为水和各种添加剂,主要起乳化、降滤失和封堵作用。虽然油基钻井液比水基钻井液具有更好的井壁稳定和储层保护作用,但仍具有一定的侵入特性。为了分析油基钻井液的滤失特征,利用具有低孔低渗特征的人造岩心进行了滤失性试验,岩心参数见表1

    表  1  油基钻井液滤失性试验所用岩心的主要参数
    Table  1.  Core parameters of oil-based drilling fluid filtration test
    编号长度/cm直径/cm渗透率/mD钻井液密度/(kg·L–1
    17.392.491991.18
    27.342.531981.32
    下载: 导出CSV 
    | 显示表格

    将岩心放入夹持器内,逐渐加压至13 MPa,并持续24 h,测量滤失量、滤饼厚度和滤液侵入深度。试验结果为:1号岩心滤饼厚4.0 mm,滤液侵入深度为 3.5 cm;2号岩心滤饼厚5.0 mm;滤液侵入深度为6.5 cm;滤失量与侵入时间的关系如图1所示。

    图  1  油基钻井液滤失量与侵入时间的关系
    Figure  1.  Relationship between fluid loss and intrusion time of oil-based drilling fluid

    从图1可以看出,油基钻井液存在一定的滤失性,滤液能够侵入岩心,滤失量与岩心物性、压差和时间都有一定的关系。这是因为,油基钻井液滤液侵入地层后,会对储层中原有流体产生一定的驱替作用,导致储层电性特征变化,所以可通过对比储层电性特征变化情况分析判断储层流体的性质。

    地层刚钻开时,油基钻井液滤液侵入量小,滤饼薄,冲洗带和过渡带较窄;钻开一段时间后,滤饼增厚,冲洗带和过渡带宽度增大[13],如图2所示。所以,刚钻开地层进行随钻电阻率测井时,该电阻率一般可以代表地层真电阻率,即原状地层电阻率Rt;地层钻开一段时间后复测电阻率时,电阻率特别是探测深度较浅的电阻率(Rs)会包含冲洗带和过渡带的流体性质变化信息。对于水基钻井液,Rs相对于Rt增大或减小,取决于钻井液滤液矿化度和地层水矿化度的相对大小关系;但对于油基钻井液,由于钻井液滤液不导电,当地层水被驱替后,复测时电阻率Rs会变大,即复测Rs大于随钻测量Rs。时移电阻率测井对比识别法就是利用含有不同性质流体的储层被油基钻井液滤液驱替后、表现出不同的电性变化特征进行流体识别。

    图  2  地层刚钻开和钻开一段时间后的井筒环境
    Figure  2.  Wellbore environments after penetrating the formation soon and drilling for a while

    为了进一步说明时移电阻率测井对比识别法的技术原理,分别分析了探测深度与被探测地层电阻率的关系,以及油基钻井液滤液侵入不同地层后的电阻率变化特征。

    首先用Schlumberger公司的ARC随钻电阻率测井仪(以下简称ARC测井仪)分析探测深度与被探测地层电阻率的关系。该仪器有5个源距(406.4,558.8,711.2,863.6和1 016.0 mm)的发射器,采用2种发射频率(400 kHz和2 MHz),所以可以获得20条电阻率曲线(10条相位电阻率和10条衰减电阻率)。其中,发射频率为2 MHz时,ARC测井仪探测深度与地层相位电阻率的关系曲线如图3所示。

    图  3  P16H探测深度与被探测地层电阻率的关系曲线
    Figure  3.  Relationship curve between P16H detection depth and the resistivity of measured formation

    图3可知,P16H(源距为406.4 mm,频率为2 MHz的相位电阻率)探测深度最小,但其探测深度与地层电阻率相关,电阻率越高,探测深度越大。由于油基钻井液滤液侵入深度小,所以可以利用P16H电阻率的变化率分析侵入深度。

    然后分析油基钻井液滤液分别侵入油气层、水层、含油气水层和干层后,冲洗带电阻率的变化情况。对于油气层,油气和油基钻井液滤液都是不导电的流体介质,油基滤液侵入地层后,地层电阻率基本不变;对于水层、含油气水层或同层,油基钻井液滤液侵入后会减小导电流体(水)的体积,导致储层的电阻率升高。实际复测时,同时测量砂岩储层及上下泥质围岩的电阻率,由于泥岩为非渗透性层,所以随钻实时电阻率和复测电阻率保持一致,通过使围岩电阻率重合,就可以确定砂岩储层电阻率的变化。钻井液滤液的侵入深度与储层物性、井筒过平衡压差、侵入时间及钻井液特性都有关系。例如,西湖凹陷某区域的典型低孔低渗储层,孔隙度为9%~18%,渗透率为1~50 mD,在较大正压差和较长完钻时间下的侵入深度一般较大。而致密层由于储层物性太差,滤液基本无侵入,所以地层电阻率基本不变。不同地层的具体变化特征见表2(其中,P16H实时,指P16H随钻实时电阻率;P16H复测,指P16H复测电阻率)。

    表  2  油基钻井液滤液侵入不同地层后的电阻率变化特征
    Table  2.  Characteristics of resistivity change after oil-based drilling fluid filtrate invaded different formations
    地层类型钻井液滤液侵入情况电阻率变化情况ARC测井仪测量结果
    油气层一定压差下侵入不变P16H实时≈P16H复测
    水层一定压差下侵入升高P16H实时<P16H复测
    含油气水层或同层一定压差下侵入升高P16H实时<P16H复测
    致密层基本无侵入不变P16H实时≈P16H复测
    下载: 导出CSV 
    | 显示表格

    时移电阻率测井对比识别法在西湖凹陷X1井和X2井进行了应用,均取得了成功,证明该方法可行且有效。

    X1井4 450.00~4 475.00 m井段钻遇油气显示层,电阻率最高50 Ω·m,气测全量Tg最高12.0%,岩性为长石细砂岩,孔隙度为9%~11%,渗透率为1~5 mD,参照邻井信息,初步判断该层为气层。对该层进行了随钻电阻率复测,结果如图4所示。图4中,第五道“电阻率对比”指P16H随钻实时电阻率(P16H实时)与P16H复测电阻率(P16H 复测)的对比;P16H复测值大于P16H实时值(对应部分进行了蓝色充填),表明该层为非纯气层,存在一定量的可动水,或者说在该井钻井液过平衡压差约6.9 MPa的条件下,储层孔隙中的部分水可以流动。

    图  4  X1井随钻电阻率实时值与复测值的对比
    Figure  4.  Comparison on the resistivity while drilling real-time measurement and the re-tested value in Well X1

    X1井完钻后,在井深4 471.50 m处进行了电缆地层测试泵抽取样(MDT仪器),泵抽至45 min时,通过井下流体识别仪IFA开始观察到地层天然气流体,流线中的成分主要为天然气和油基钻井液;泵抽至160 min时,泵抽压差增大至4.13 MPa,流线出现了明显的地层水信号,说明在该压差下一部分毛细管水开始流动,转变为可动水。泵抽结束时,流线中水的体积比约为17%,该结果与电阻率复测分析结果完全一致(如图5所示)。这说明该层有一部分毛细管水在压差大于4.13 MPa时是可以流动的,可以称这部分水为弱束缚水;后续进行地层测试或开发时,生产压差应小于4.13 MPa,否则会导致地层出水,影响天然气产能。

    图  5  X1井井深4 471.50 m MDT泵抽流体性质综合识别
    Figure  5.  Comprehensive identification of 4 471.50 m MDT pumping fluids properties in Well X1

    X2井与X1井处于同一构造带,应用油基钻井液钻进。该井4 317.00~4 336.00 m井段钻遇油气显示层,岩性为长石细砂岩,孔隙度为10%~15%,渗透率为1~10 mD。储层上部电阻率约24 Ω·m,气测全量Tg最高约6.0%;储层下部电阻率为13 Ω·m,气测全量Tg约为2.8%。与邻区同层位油气层相比,该层整体电阻率较低,认为该层未达到纯油气层的标准,为此进行了电阻率随钻与复测对比,结果如图6所示。该井钻井液过平衡压差为7.13 MPa。图6中,第五道为P16H实时值和复测值的对比结果,可以看出井深4 330.00 m以浅的P16H实时值与P16H复测值一致,说明该层不含可动水,为纯油气层;井深4 330.00 m以深的P16H复测值明显大于P16H实时值,说明该层含可动水,推测为气水同层。

    图  6  X2井随钻电阻率实时值与复测值的对比
    Figure  6.  Comparison on the resistivity while drilling real-time measurement and the re-tested value in Well X2

    完钻后,X2井在井深4 321.20和4 333.00 m处分别进行了MDT泵抽取样。井深4 321.20 m处泵抽压差约13.8 MPa,泵抽时间为115 min,证实为纯轻质油层,不含水;井深4 333.00 m处泵抽压差为18.3 MPa,泵抽时间为120 min,后期含水率为60%,证实为油水同层,流体性质识别具体情况如图7所示。该井的泵抽结果与电阻率复测对比分析结果完全一致,再次证明了该方法的可行性和有效性。

    图  7  X2井井深4 321.20和4 333.00 m MDT泵抽流体性质综合识别
    Figure  7.  Comprehensive identification of MDT pumping fluid properties at 4 321.20 and 4 333.00 m in Well X2

    1)油基钻井液滤液侵入地层后,对储层中原有流体有一定驱替作用,从而引起储层电性特征的变化,通过对比该变化情况,就能够对储层中原有流体性质进行分析判断。

    2)低孔低渗储层岩性和孔隙结构复杂,仅仅依靠对比电阻率的高低或者邻区经验识别流体的性质很难得到准确的结果。油基钻井液条件下利用时移电阻率测井对比识别法,可以快速识别低孔低渗储层的流体性质,现场应用也验证了该方法具有较高的准确性。

    3)时移电阻率测井对比识别法具有较好的通用性,只要使用随钻电阻率和油基钻井液均可进行借鉴,特别是对于一些新区探井,该方法能够快速识别流体性质,为后续作业选择提供指导,提高作业效率并节省成本。

  • 图  1   钻头高效破岩时钻压与机械钻速的关系示意

    Figure  1.   Relationship between WOB and ROP during efficient rock-breaking of the bit

    图  2   岩性和齿形对钻压与机械钻速之间关系曲线的影响

    Figure  2.   Effects of lithology and cutter shape on relationship curve between WOB and ROP

    图  3   “异常”因素作用时钻压与机械钻速的关系示意

    Figure  3.   Relationship between WOB and ROP under influences of “abnormal” factors

    图  4   脱钴PDC切削齿的磨损面积与其行进距离的关系

    Figure  4.   Relationship between wear area and travel distance of leached PDC cutter

    图  5   相同进尺下PDC钻头吃入深度与切削齿行进距离的关系

    Figure  5.   Relationship between cut depth of PDC bit and travel distance of cutter under the same drilling footage

    图  6   相同进尺下PDC钻头吃入深度与切削齿磨损体积的对应关系

    Figure  6.   Relationship between the wear volume loss of PDC cutter and the cut depth under the same footage

    图  7   转速对PDC切削齿磨损体积的影响

    Figure  7.   Effect of rotary speed on wear volume of PDC cutter

    图  8   胜利油田罗家区块二开钻井指标

    Figure  8.   Drilling data from Luojia block in Shengli Oilfield

    图  9   NPD的耐磨性和抗冲击性测试示意

    Figure  9.   Wear resistance and impact resistance tests of nano-polycrystalline diamond (NPD)

    图  10   135°斧形齿钻遇花岗岩时发生冲击失效

    Figure  10.   Impact-induced failure of 135° axe-shaped teeth when encountering granite

    图  11   PDC钻头的破岩、耐用、稳定一体化综合评价体系示意

    Figure  11.   Comprehensive evaluation system integrating rock-breaking efficiency, durability, and stability of PDC bit

    图  12   PDC切削齿聚晶金刚石层的横截面

    Figure  12.   Cross-sections of polycrystalline diamond layer of PDC cutter

    图  13   脱钴和未脱钴PDC切削齿的磨损体积与行进距离的关系

    Figure  13.   Relationships between wear volumes and travel distances of leached and non-leached PDC cutters

    图  14   抗冲击性测试后的未脱钴PDC切削齿形貌

    Figure  14.   Morphology of non-leached PDC cutter after impact resistance test

    图  15   PDC切削齿的典型出井状况

    Figure  15.   Typical dull conditions of PDC cutters pulled out of hole

    图  16   X射线检测的PDC切削齿脱钴深度

    Figure  16.   Leached depth of PDC cutters detected by X-ray

    图  17   未脱钴PDC切削齿的出井形貌

    Figure  17.   Morphology of non-leached PDC cutters pulled out of hole

    图  18   与图7对应的切削齿磨口形貌

    Figure  18.   Wear scar morphology of PDC cutter corresponding to Fig.7

    表  1   VTL试验参数

    Table  1   Vertical turning lathe (VTL) test parameters

    试验
    编号
    每圈吃入
    深度/mm
    总的行进
    距离/m
    切削深度/
    mm
    线速度/
    (m·min−1
    #10.568 09760100
    #21.034 049
    #31.522 699
    #42.017 024
    #52.513 619
    #63.011 350
    #71.034 0496020
    #834 04960
    #934 049100
    #1034 049140
    下载: 导出CSV

    表  2   高速螺杆与常规螺杆参数对比

    Table  2   Parameter comparison between high-speed motor and conventional motor

    螺杆类型钻压/kN工作排量/
    (L·min−1
    输出扭矩/(N·m)顶驱转速 /
    (r·min−1
    钻头转速 /
    (r·min−1
    ϕ172.0 mm高速螺杆60~1002200886960~80380~400
    ϕ172.0 mm常规螺杆60~15022001275060~80220~240
    下载: 导出CSV

    表  3   玛南风城组不同钻具组合的钻井指标

    Table  3   Drilling performances of various bottom-hole assemblies in Fengcheng Formation on southern slope of Mahu Sag

    试验井钻头井下动力钻具单趟平均进尺/m平均机械钻速/(m·h−1井型完钻时间
    JL53井牙轮钻头、PDC钻头、复合钻头<50<1.3直井2020年
    JL56井异形齿PDC钻头常规螺杆882.0直井2020年
    MH48井孕镶钻头涡轮1931.8直井2020年
    MN520井PDC钻头旋导861.2水平井造斜段2021年
    PDC钻头高速螺杆5784.8水平井水平段
    MN272井PDC钻头高速螺杆10088.2水平井水平段2022年
    下载: 导出CSV

    表  4   胜利油田常规钻井参数与强化钻井参数对比

    Table  4   Comparison of conventional and enhanced drilling parameters in Shengli Oilfield

    钻井参数类型钻压/kN顶驱转速 /(r·min−1排量/(L·s−1泵压/MPa提速工具
    常规钻井参数40~80704015螺杆
    强化钻井参数100~12070~80>70>20大扭矩螺杆
    下载: 导出CSV

    表  5   美国FORGE 78B-32井TKC83型PDC钻头钻井指标

    Table  5   Drilling data of TKC83 PDC bit in FORGE Well 78B-32

    趟钻数钻头直径/mm入井井深/m进尺/m平均机械钻速/(m·h−1钻压/kN顶驱转速/(r·min−1排量/(L·s−1钻遇岩性
    7269.91 112.8643.120.429540.051.7花岗闪长岩
    9269.91 774.2267.922.329550.050.5花岗闪长岩
    13269.92 055.0265.521.229545.052.4花岗闪长岩
    14269.92 320.5270.422.529550.052.4花岗闪长岩
    下载: 导出CSV
  • [1]

    TEALE R. The concept of specific energy in rock drilling[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1965, 2(1): 57–73.

    [2]

    IADC Drilling Manual. Mechanics and performance[M]. 12th ed. Houston: International Association of Drilling Contractors, 2014.

    [3]

    DUPRIEST F E, KOEDERITZ W L. Maximizing drill rates with real-time surveillance of mechanical specific energy[R]. SPE 92194, 2005.

    [4]

    DUPRIEST F E, WITT J W, REMMERT S M. Maximizing ROP with real-time analysis of digital data and MSE[R]. IPTC 10607, 2005.

    [5]

    DUPRIEST F E. Comprehensive drill-rate management process to maximize rate of penetration[R]. SPE 102210, 2006.

    [6]

    DUPRIEST F E, NOYNAERT S, CUNNINGHAM T, et al. Maximizing drilling performance through the Delaware Basin brushy canyon and interbedded formations[R]. SPE 199599, 2020.

    [7]

    DUPRIEST F, PASTUSEK P, LAI S, et al. Standardization of mechanical specific energy equations and nomenclature[R]. SPE 208777, 2022.

    [8]

    WATSON W, DUPRIEST F, WITT-DOERRING Y, et al. IADC code upgrade: data collection and workflow required to conduct bit forensics and create effective changes in practices or design[R]. SPE 208712, 2022.

    [9]

    DUPRIEST F, NOYNAERT S. Drilling practices and workflows for geothermal operations[R]. SPE 208798, 2022.

    [10]

    K&M Technology Group. Pre-tour with K&M technology group-limiter identification and redesign with Fred Dupriest[EB/OL]. (2021-01-22)[2022-12-01].https://www.youtube.com/watch?v=tiBrMF0TBdg.

    [11]

    SUGIURA J, LOPEZ R, BORJAS F, et al. Oil and gas drilling optimization technologies applied successfully to unconventional geothermal well drilling[R]. SPE 205965, 2021.

    [12]

    Energy and Geoscience Institute at the University of Utah. Utah FORGE: Well 16A(78)-32 drilling data[DB/OL]. (2021-01-08) [2022-12-01].https://doi.org/10.15121/1776602.

    [13]

    Energy and Geoscience Institute at the University of Utah. Utah FORGE Well 78B-32 daily drilling reports and logs[DB/OL]. (2021-08-09) [2022-12-01].https://doi.org/10.15121/1814488.

    [14]

    WATSON W, DUPRIEST F, WITT-DOERRING Y, et al. IADC code upgrade: bit and BHA forensics using rig-based photographic documentation practices[R]. SPE 208707, 2022.

    [15]

    PASTUSEK P. Limiter redesign processTM bit and BHA foren-sics[EB/OL]. (2021-03-28)[2022-12-01].https://www.youtube.com/watch?v=3MLBAAh21nk.

    [16]

    SELF J, STEVENSON M, ROBERTS T, et al. Fixed cutter bit & cutter technology set new performance standards for geothermal drilling[J]. GRC Transactions, 2021, 45: 826–846.

    [17]

    HELLVIK S, NYGAARD R, HOEL E, et al. PDC cutter and bit development for challenging conglomerate drilling in the Luno Field-offshore Norway[R]. SPE 151456, 2012.

    [18]

    CURRY D, PESSIER R, SPENCER R, et al. Assuring efficient PDC drilling[R]. SPE 184676, 2017.

    [19]

    RAJABOV V, MISKA S, MORTIMER L, et al. The effects of back rake and side rake angles on mechanical specific energy of single PDC cutters with selected rocks at varying depth of cuts and confining pressures[R]. SPE 151406, 2012.

    [20]

    ZHOU Yaneng, LIN J S. On the critical failure mode transition depth for rock cutting[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 62: 131–137. doi: 10.1016/j.ijrmms.2013.05.004

    [21] 张端瑞,文涛,蒲磊,等. “垂直钻井工具+等壁厚螺杆”提速钻具组合先导性试验:以库车山前高陡构造克深A井为例[J]. 石油钻采工艺,2020,42(6):684–690.

    ZHANG Duanrui, WEN Tao, PU Lei, et al. Pilot test on the ROP-improvement BHA of vertical drilling tool & screw rod with equal wall thickness: a case study on Well Keshen A in the high-steep structure of Kuqa piedmont area[J]. Oil Drilling & Production Technology, 2020, 42(6): 684–690.

    [22] 康健,郝围围,刘德智,等. 高陡含砾地层大扭矩螺杆+高效PDC钻头钻井提速分析[J]. 西部探矿工程,2021,33(5):71–75. doi: 10.3969/j.issn.1004-5716.2021.05.024

    KANG Jian, HAO Weiwei, LIU Dezhi, et al. ROP optimization using high torque motor+high efficiency PDC bits in the high and steep structure gravel formation[J]. West-China Exploration Engineering, 2021, 33(5): 71–75. doi: 10.3969/j.issn.1004-5716.2021.05.024

    [23]

    MAJIDI R, MISKA S Z, TAMMINENI S. PDC single cutter: the effects of depth of cut and RPM under simulated borehole conditions[J]. Wiertnictwo, Nafta, Gaz, 2011, 28(1/2): 283–295.

    [24]

    AKBARI B, MISKA S Z. Relative significance of multiple parameters on the mechanical specific energy and frictional responses of polycrystalline diamond compact cutters[J]. Journal of Energy Resources Technology, 2017, 139(2): 022904. doi: 10.1115/1.4034291

    [25] 张学光. 哈山3井石炭系钻井提速探索与实践[J]. 内蒙古石油化工,2013,39(20):38–40.

    ZHANG Xueguang. The exploration and practice of carboniferous ROP enhancement in Hassan 3 Well[J]. Inner Mongolia Petrochemical Industry, 2013, 39(20): 38–40.

    [26] 秦文政,邱锦,王富建,等. 克拉玛依油田一区石炭系火成岩钻井技术研究[J]. 西部探矿工程,2020,32(6):100–102. doi: 10.3969/j.issn.1004-5716.2020.06.034

    QIN Wenzheng, QIU Jin, WANG Fujian, et al. Study on the drilling technology of carboniferous volcanic reservoir in Block 1 of Karamay Oilfield[J]. West-China Exploration Engineering, 2020, 32(6): 100–102. doi: 10.3969/j.issn.1004-5716.2020.06.034

    [27]

    SEALE R, CONROY D. PDC bits run on turbodrills: The history, facts and current developments[R]. SPE 94826, 2005.

    [28] 成海,郑卫建,夏彬,等. 国内外涡轮钻具钻井技术及其发展趋势[J]. 石油矿场机械,2008,37(4):28–31. doi: 10.3969/j.issn.1001-3482.2008.04.007

    CHENG Hai, ZHENG Weijian, XIA Bin, et al. The development trend of turbodrilling technology[J]. Oil Field Equipment, 2008, 37(4): 28–31. doi: 10.3969/j.issn.1001-3482.2008.04.007

    [29] 谭春飞. 深井超深井涡轮钻具复合钻井提高钻速技术研究[D]. 北京: 中国地质大学(北京), 2012.

    TAN Chunfei. The ROP technical research on turbo-drill composite drilling in deep & ultra-deep well[D]. Beijing: China University of Geosciences (Beijing), 2012.

    [30]

    KUYKEN C W, ELKASRAWY M E, AL BREIKI A M S, et al. High performance drilling onshore Abu Dhabi[R]. SPE 202142, 2021.

    [31]

    SHAO Fangyuan, LIU Wei, GAO Deli, et al. Development and verification of triple-ridge-shaped cutter for PDC bits[J]. SPE Journal, 2022, 27(6): 3849–3863. doi: 10.2118/210580-PA

    [32] 刘维,高德利. 大齿快切PDC钻头提速研究与现场试验[J]. 天然气工业,2022,42(9):102–110. doi: 10.3787/j.issn.1000-0976.2022.09.010

    LIU Wei, GAO Deli. Research and field test of large-tooth and rapid-cutting PDC bit for ROP enhancement[J]. Natural Gas Industry, 2022, 42(9): 102–110. doi: 10.3787/j.issn.1000-0976.2022.09.010

    [33]

    IRIFUNE T, KURIO A, SAKAMOTO S, et al. Ultrahard polycrystalline diamond from graphite[J]. Nature, 2003, 421(6923): 599–600.

    [34]

    ZHAN G D, GOONERATNE C, MOELLENDICK T E, et al. Ultra-strong and catalyst-free polycrystalline diamond cutting materials for one-run-to-TD game-changing drilling technology[R]. IPTC 21342, 2021.

    [35]

    PASTUSEK P, SANDERSON D, MINKEVICIUS A, et al. Drilling interbedded and hard formations with PDC bits considering structural integrity limits[R]. SPE 189608, 2018.

    [36]

    WITT-DOERRING Y, PASTUSEK P P, ASHOK P, et al. Quantifying PDC bit wear in real-time and establishing an effective bit pull criterion using surface sensors[R]. SPE 205844, 2021.

    [37]

    BAILEY J R, ELSBORG C C, JAMES R W, et al. Design evolution of drilling tools to mitigate vibrations[J]. SPE Drilling & Completion, 2013, 28(4): 350–369.

    [38]

    WEI Jiusen, LIU Wei, GAO Deli. Effect of cutter shape on the resistance of PDC cutters against tip impacts[J]. SPE Journal, 2022, 27(5): 3035–3050. doi: 10.2118/209809-PA

    [39]

    HEATON D N, LYNN J B. Polycrystalline diamond elements and systems and methods for fabricating the same: US 20190085641 A1[P]. 2019-03-21.

    [40]

    KANYANTA V, DORMER A, MURPHY N, et al. Impact fatigue fracture of polycrystalline diamond compact (PDC) cutters and the effect of microstructure[J]. International Journal of Refractory Metals and Hard Materials, 2014, 46: 145–151. doi: 10.1016/j.ijrmhm.2014.06.003

    [41]

    RAHMANI R, PASTUSEK P, YUN Geng, et al. Investigation of PDC cutter structural integrity in hard rocks[J]. SPE Drilling & Completion, 2021, 36(1): 11–28.

    [42]

    CURRY D A, LOURENÇO A M, LEDGERWOOD L W III, et al. The effect of borehole pressure on the drilling process in salt[J]. SPE Drilling & Completion, 2017, 32(1): 25–41.

    [43]

    SHAO Fangyuan, LIU Wei, GAO Deli. Study on rock-breaking mechanism of highly plastic formations[C]//Computational and Experimental Simulations in Engineering. Cham: Springer, 2023: 103 − 116.

    [44]

    ZHAN Guodong, PATIN A, PILLAI R, et al. In-situ analysis of the microscopic thermal fracture behavior of PDC cutters using environmental scanning electron microscope[R]. SPE 168004, 2014.

  • 期刊类型引用(6)

    1. 张浩,倪利平,罗刚,王雪亮,王亮. 油基钻井液侵入对核磁共振测井响应影响的实验研究. 科学技术与工程. 2023(12): 5013-5021 . 百度学术
    2. 罗健,张国栋,胡文亮,魏晓晗,何玉春. 低渗储层泥浆侵入特征与时移电阻率测井评价. 海洋石油. 2022(02): 55-60+76 . 百度学术
    3. 吴进波,陈鸣,孙殿强,王锋,周基恒. 随钻地层测试在大斜度井油基钻井液中的应用. 石油钻采工艺. 2022(02): 178-185 . 百度学术
    4. 张志强,王猛,杨杰. 油基泥浆环境下储层电阻率动态剖面反演方法研究及应用. 石化技术. 2021(06): 116-117 . 百度学术
    5. 李新,米金泰,张卫,姚金志,李三国. 井下随钻核磁共振流体分析装置设计与试验验证. 石油钻探技术. 2020(02): 130-134 . 本站查看
    6. 邱小雪,戴家才,陈猛,程伊博. 基于VOF对低产积液气井流动特征的数值模拟. 断块油气田. 2020(05): 619-623 . 百度学术

    其他类型引用(2)

图(18)  /  表(5)
计量
  • 文章访问数:  868
  • HTML全文浏览量:  276
  • PDF下载量:  377
  • 被引次数: 8
出版历程
  • 收稿日期:  2022-12-04
  • 修回日期:  2023-01-31
  • 网络出版日期:  2023-02-10
  • 刊出日期:  2023-08-24

目录

/

返回文章
返回