Simulation of Hydraulic Fracture Responses Based on a Magnetotelluric Monitoring Method
-
摘要:
常规电磁水力压裂监测方法测试范围受限于仪器源距,难以满足超深低渗储层压裂对监测纵向深度的要求。为此,在大地电磁场监测理论的基础上,结合有限元算法,基于油田生产实际,建立了直井水力压裂大地电磁地面监测正演模型,采用过渡边界条件模拟了裂缝尺寸和方位对大地电磁监测结果的影响。模拟显示,阻抗偏移能以不同方式反映裂缝参数的变化,对裂缝方位角有较好的区分度。研究结果表明,大地电磁监测方法是一种行之有效的压裂裂缝监测手段,研究结果可以为后续相关研究提供借鉴。
Abstract:The test scale of conventional electromagnetic hydraulic fracture monitoring methods is limited by the source distance of the instrument, and it is difficult to meet the requirements of longitudinal depth for monitoring in ultra-deep and low-permeability reservoirs. Therefore, based on the magnetotelluric monitoring theory and finite element algorithm, the forward model of vertical well hydraulic fracturing was established according to the actual production of oilfields. By using transitional boundary conditions, the influence of fracture shape and orientation parameter changes on magnetotelluric ground observation was simulated. The simulation results show that the impedance offset can reflect the change in fracture parameters in different ways, and it has an good degree of discrimination on the azimuth angles. The research shows that the magnetotelluric monitoring method is an effective means to monitor fracturing fractures. The research results can provide a reference for the subsequent related researches.
-
-
[1] 欧阳伟平,张冕,孙虎,等. 页岩油水平井压裂渗吸驱油数值模拟研究[J]. 石油钻探技术,2021,49(4):143–149. OUYANG Weiping, ZHANG Mian, SUN Hu, et al. Numerical simulation of oil displacement by fracturing imbibition in horizontal shale oil wells[J]. Petroleum Drilling Techniques, 2021, 49(4): 143–149.
[2] 黄卓. “工厂化” 压裂多裂缝应力干扰与延伸规律研究[J]. 断块油气田,2022,29(4):572–576. HUANG Zhuo. Research on stress interference and propagation law of multi-fracture for “factory” fracturing[J]. Fault-Block Oil & Gas Field, 2022, 29(4): 572–576.
[3] 周健,曾义金,陈作,等. 青海共和盆地干热岩压裂裂缝测斜仪监测研究[J]. 石油钻探技术,2021,49(1):88–92. ZHOU Jian, ZENG Yijin, CHEN Zuo, et al. Research on fracture mapping with surface tiltmeters for “hot dry rock” stimulation in Gonghe Basin, Qinghai[J]. Petroleum Drilling Techniques, 2021, 49(1): 88–92.
[4] YANG Kai, TORRES-VERDÍN C, YILMAZ A E. Detection and quantification of three-dimensional hydraulic fractures with horizontal borehole resistivity measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(8): 4605–4615. doi: 10.1109/TGRS.2015.2402656
[5] LI Yang, LIU Dejun, ZHAI Ying, et al. 3-D FEM azimuth forward modeling of hydraulic fractures based on electromagnetic theory[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(2): 246–250. doi: 10.1109/LGRS.2020.2970441
[6] 谢媛,刘得军,李彩芳,等. 利用随钻电磁波测井探测直井水力裂缝的正演模拟[J]. 石油钻探技术,2020,48(2):123–129. XIE Yuan, LIU Dejun, LI Caifang, et al. Forward modeling in hydraulic fracture detection by means of electromagnetic wave logging while drilling in vertical wells[J]. Petroleum Drilling Techniques, 2020, 48(2): 123–129.
[7] ZHANG Liming, QI Ji, LI Lixin, et al. A forward modeling method based on electromagnetic theory to measure the parameters of hydraulic fracture[J]. Fuel, 2019, 251: 466–473. doi: 10.1016/j.fuel.2019.04.075
[8] ZHAI Ying, LIU Dejun, POTTER D K, et al. Characterization of hydraulic fractures with triaxial electromagnetic induction and sector coil rotation measurement[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 2002511.
[9] 吴世伟,刘得军,赵阳,等. 层状介质水力裂缝电磁响应的有限元正演模拟[J]. 石油钻探技术,2022,50(2):132–138. WU Shiwei, LIU Dejun, ZHAO Yang, et al. Finite-element forward modeling of electromagnetic response of hydraulic fractures in layered medium[J]. Petroleum Drilling Techniques, 2022, 50(2): 132–138.
[10] 朱庚雪,刘得军,张颖颖,等. 基于hp-FEM的随钻电磁波测井仪器响应正演分析[J]. 石油钻探技术,2015,43(2):63–70. ZHU Gengxue, LIU Dejun, ZHANG Yingying, et al. Forward modeling of responses of an ELWD tool based on hp-FEM[J]. Petroleum Drilling Techniques, 2015, 43(2): 63–70.
[11] 张连进,王俊杰,庄小菊,等. 川西北超深层复杂构造气藏裂缝建模方法及开发潜力预测[J]. 特种油气藏,2022,29(3):98–103. ZHANG Lianjin, WANG Junjie, ZHUANG Xiaoju, et al. Fracture modeling method and development potential prediction of ultra-deep gas reservoirs with complex structure in Northwestern Sichuan[J]. Special Oil & Gas Reservoirs, 2022, 29(3): 98–103.
[12] 周君君. 大地电磁法三维各向异性有限元正演及反演研究[D]. 武汉: 中国地质大学, 2022. ZHOU Junjun. Three-dimensional anisotropic finitie element modeling and inversion of magnetotelluric data[D]. Wuhan: China University of Geosciences, 2022.
[13] 李袁傲,任政勇,汤井田,等. 基于空气地球分离策略的大地电磁三维正演[J]. 地球物理学报,2022,65(7):2741–2755. doi: 10.6038/cjg2022O0511 LI Yuanao, REN Zhengyong, TANG Jingtian, et al. An air-earth decomposition formula for three-dimensional magnetotellurics forward modeling[J]. Chinese Journal of Geophysics, 2022, 65(7): 2741–2755. doi: 10.6038/cjg2022O0511
[14] 王天意,侯征,杨进,等. 基于迭代有限元法的大地电磁二维正演[J]. 地球物理学进展,2023,38(1):328–336. WANG Tianyi, HOU Zheng, YANG Jin, et al. Study of the magnetotelluric 2D forward based on the iterative finite element method[J]. Progress in Geophysics, 2023, 38(1): 328–336.
[15] 操聪,赵凌强,党昊,等. 内蒙古狼山山前断裂中段大地电磁探测研究[J]. 大地测量与地球动力学,2022,42(9):975–979. CAO Cong, ZHAO Lingqiang, DANG Hao, et al. Study on magnetotelluric detection of the middle section of Langshan piedmont fault in Inner Mongolia[J]. Journal of Geodesy and Geodynamics, 2022, 42(9): 975–979.
[16] 薛毛毛,陈清礼,吴娟,等. 地球深部页岩气储层的大地电磁响应特征[J]. 科学技术与工程,2022,22(36):15896–15903. doi: 10.3969/j.issn.1671-1815.2022.36.006 XUE Maomao, CHEN Qingli, WU Juan, et al. Magnetotelluric response characteristics of shale oil and gas in deep earth[J]. Science Technology and Engineering, 2022, 22(36): 15896–15903. doi: 10.3969/j.issn.1671-1815.2022.36.006
[17] 陈理,秦其明,王楠,等. 大地电磁测深正演和反演研究综述[J]. 北京大学学报(自然科学版),2014,50(5):979–984. CHEN Li, QIN Qiming, WANG Nan, et al. Review of the forward modeling and inversion in magnetotelluric sounding field[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(5): 979–984.
[18] 童孝忠. 大地电磁测深有限单元法正演与混合遗传算法正则化反演研究[D]. 长沙: 中南大学, 2008. TONG Xiaozhong. Research of forward using finite element method and regularized inversion using hybrid genetic algorithm in magnetotelluric sounding[D]. Changsha: Central South University, 2008.
[19] PRANATA E, IRAWATI S M, NIASARI S W. Magnetotelluric data analysis using Swift skew, Bahr skew, polar diagram, and phase tensor: a case study in Yellowstone, US[J]. Proceedings of the Pakistan Academy of Sciences: A Physical and Computational Sciences, 2017, 54(3): 311–317.
[20] HUANG Weifeng, WANG Hanming, ZHAN Qiwei, et al. Thin dielectric sheet-based surface integral equation for the scattering simulation of fractures in a layered medium[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(10): 7606–7612. doi: 10.1109/TGRS.2019.2914611
[21] ERIKSSON G. Efficient 3D simulation of thin conducting layers of arbitrary thickness[C]//2007 IEEE International Symposium on Electromagnetic Compatibility. Honolulu: IEEE, 2007: 1−6.
-
期刊类型引用(7)
1. 孟庆修,曹自成,丁文龙,杨德彬,马海陇,刁新东,王明,韩鹏远,王欢欢. 塔北隆起南斜坡带三道桥气田寒武系裂缝型白云岩储层裂缝期次差异与分布规律. 地学前缘. 2024(05): 247-262 . 百度学术
2. 韩刚,何峰,张孝珍,王立华,祝彦贺,雷克辉. 阵列声波测井在储层裂缝识别中的应用——以鄂尔多斯盆地K区为例. 油气地质与采收率. 2019(03): 63-69 . 百度学术
3. 黄玉欣,胡望水,尹帅. 基于动态弹性力学模型的煤系致密砂岩储层裂缝预测方法. 石油钻探技术. 2018(05): 115-120 . 本站查看
4. 周冬林,杨海军,李建君,王晓刚,汪会盟,薛雨. 盐岩地层地应力测试方法. 油气储运. 2017(12): 1385-1390 . 百度学术
5. 尹帅,丁文龙,李昂,赵金利,单钰铭. 裂缝对致密碎屑岩储层弹性影响的数值分析. 石油钻探技术. 2016(02): 112-118 . 本站查看
6. 尹帅,丁文龙,刘建军,王鹏,孙圆辉,曹翔宇,王兴华. 沁水盆地南部地区山西组煤系地层裂缝发育特征及其与含气性关系. 天然气地球科学. 2016(10): 1855-1868 . 百度学术
7. 张俊,周文,李双贵,单钰铭,尹帅,谢润成,郑莲慧. 高应力条件下膏泥岩动静态力学参数特征试验分析. 成都理工大学学报(自然科学版). 2015(06): 665-672 . 百度学术
其他类型引用(2)