Design and Research Practice of a Drilling Digital Twin System
-
摘要:
数字孪生技术作为智能钻井的理想范式,已呈现出巨大潜力,但由于钻井工程具有复杂工业系统的特性,数字孪生技术研发难度大,目前尚处于起步阶段。为此,在分析石油行业数字孪生技术发展现状的基础上,厘清了钻井数字孪生涉及的6项支撑技术,结合钻井工程业务需求,设计了钻井数字孪生系统的整体架构并详述了其功能及模型设计。通过井场数据标准采集、机理计算模型耦合及三维动态融合显示3项研发试验,从技术角度验证了钻井数字孪生技术落地应用的可行性。研究认为,构建钻井数字孪生系统,应以钻井工程数据为数据基础,基于业务需求进一步构建“机理+数据”的双计算核心,研发孪生体模型和业务应用模块,并将其作为载体,最终实现钻井数字孪生系统的应用。研究结果对推进数字孪生技术在钻井工程中的应用具有重要意义。
Abstract:As an ideal paradigm of intelligent drilling, digital twin technology shows great potential. However, due to the complex industrial system characteristics of drilling engineering, the research and development (R & D) of digital twin technology has been difficult and is still in its infancy. Therefore, on the basis of analyzing the development status of digital twin technology in the petroleum industry, six supporting technologies involved in drilling digital twin were clarified. Adhering to the business needs of drilling engineering, the overall architecture of a drilling digital twin system was designed, and the function and model designs were described in detail. Through three R & D tests of wellsite data standard collection, mechanism calculation model coupling and three-dimensional (3D) dynamic fusion display, the feasibility of implementing the drilling digital twin technology was verified from a technical point of view. The research takes the position that the construction of the drilling digital twin system should take drilling engineering data as the foundational bases of data. The “mechanism + data” dual computing core should be built based on the business needs, and the twin model and business application module should be developed as carriers, so as to realize the application of the drilling digital twin system. The research results are of great significance for promoting the application of digital twin technology in drilling engineering.
-
Keywords:
- drilling engineering /
- digital twin /
- overall system architecture /
- function design /
- technical test
-
-
-
[1] GRIEVES M W. Product lifecycle management: The new paradigm for enterprises[J]. International Journal of Product Development, 2005, 2(1/2): 71–84. doi: 10.1504/IJPD.2005.006669
[2] TUEGEL E J, INGRAFFEA A R, EASON T G, et al. Reengineering aircraft structural life prediction using a digital twin[J]. International Journal of Aerospace Engineering, 2011, 2011: 154798.
[3] GLAESSGEN E, STARGEL D. The digital twin paradigm for future NASA and U. S. air force vehicles[C]// the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: American Institute of Aeronautics and Astronautics, 2012: AIAA 2012−1818.
[4] 陶飞,刘蔚然,张萌,等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统,2019,25(1):1–18. TAO Fei, LIU Weiran, ZHANG Meng, et al. Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing Systems, 2019, 25(1): 1–18.
[5] WANG X V, WANG Lihui. Digital twin-based WEEE recycling, recovery and remanufacturing in the background of industry 4.0[J]. International Journal of Production Research, 2019, 57(12): 3892–3902. doi: 10.1080/00207543.2018.1497819
[6] 杨林瑶,陈思远,王晓,等. 数字孪生与平行系统:发展现状、对比及展望[J]. 自动化学报,2019,45(11):2001–2031. YANG Linyao, CHEN Siyuan, WANG Xiao, et al. Digital twins and parallel systems: State of the art, comparisons and prospect[J]. Acta Automatica Sinica, 2019, 45(11): 2001–2031.
[7] SCHLEICH B, ANWER N, MATHIEU L, et al. Shaping the digital twin for design and production engineering[J]. CIRP Annals, 2017, 66(1): 141–144. doi: 10.1016/j.cirp.2017.04.040
[8] MILLER A M, ALVAREZ R, HARTMAN N. Towards an extended model-based definition for the digital twin[J]. Computer-Aided Design and Applications, 2018, 15(6): 880–891. doi: 10.1080/16864360.2018.1462569
[9] 刘志峰,陈伟,杨聪彬,等. 基于数字孪生的零件智能制造车间调度云平台[J]. 计算机集成制造系统,2019,25(6):1444–1453. LIU Zhifeng, CHEN Wei, YANG Congbin, et al. Intelligent manufacturing workshop dispatching cloud platform based on digital twins[J]. Computer Integrated Manufacturing Systems, 2019, 25(6): 1444–1453.
[10] 李欣,刘秀,万欣欣. 数字孪生应用及安全发展综述[J]. 系统仿真学报,2019,31(3):385–392. LI Xin, LIU Xiu, WAN Xinxin. Overview of digital twins application and safe development[J]. Journal of System Simulation, 2019, 31(3): 385–392.
[11] 刘大同,郭凯,王本宽,等. 数字孪生技术综述与展望[J]. 仪器仪表学报,2018,39(11):1–10. LIU Datong, GUO Kai, WANG Benkuan, et al. Summary and perspective survey on digital twin technology[J]. Chinese Journal of Scientific Instrument, 2018, 39(11): 1–10.
[12] CHOWDHURY K, LAMACCHIA D, FRENK FELDMAN V, et al. A cloud–based smart engineering and predictive computation system for pipeline design and operation cost reduction[R]. SPE 203171, 2020.
[13] HOLBERG G I, GRENNBERG V, MARTENS J. Using digital twins for condition monitoring of subsea mechanical equipment[R]. SPE 202405, 2020.
[14] KNEZEVIC D J, KANG H, SHARMA P, et al. Structural integrity management of offshore structures via RB-FEA and fast full load mapping based digital twins[R]. ISOPE-I-18−185, 2018.
[15] CARPENTER C. Digital-twin approach predicts fatigue damage of marine risers[J]. Journal of Petroleum Technology, 2021, 73(10): 65–66. doi: 10.2118/1021-0065-JPT
[16] BHAT S, NADATHUR V, KNEZEVIC D, et al. Structural digital twin of FPSO for monitoring the hull and topsides based on inspection data and load measurement[R]. OTC 31328, 2021.
[17] 杨传书. 数字孪生技术在钻井领域的应用探索[J]. 石油钻探技术,2022,50(3):10–16. YANG Chuanshu. Exploration for the application of digital twin technology in drilling engineering[J]. Petroleum Drilling Techni-ques, 2022, 50(3): 10–16.
[18] 李金蔓,周守为,孙金声,等. 数字技术赋能海上油田开发:渤海智能油田建设探索[J]. 石油钻采工艺,2022,44(3):376–382. LI Jinman, ZHOU Shouwei, SUN Jinsheng, et al. Digital technology energizes offshore oilfield development: An attempt to build the Bohai smart oilfield[J]. Oil Drilling & Production Technology, 2022, 44(3): 376–382.
[19] BIMASTIANTO P, KHAMBETE S, ALSAADI H, et al. Digital twin implementation on current development drilling, benefits and way forward[R]. SPE 202795, 2020.
[20] IMOMOH V B, TOYOBO O, OKAFOR R. Creating a digital twin of part of the earth subsurface through reservoir navigation ser-vice[R]. SPE 203621, 2020.
[21] PRICE J, JONES C, DAI Bin, et al. Characterizing downhole fluid analysis sensors as digital twins: Lessons of the machine learning approach, the physics approach and the integrated hybrid app-roach[R]. SPE 206291, 2021.
[22] AVANZINI G B, ERIKSSON K E. Quality assurance framework of digital twins for the oil and gas industry[R]. OMC 2021−157, 2021.
[23] GHARIB SHIRANGI M, FURLONG E, SIMS K S. Digital twins for well planning and bit dull grade prediction[R]. SPE 200740, 2020.
[24] CHMELA B, ABRAHMSEN E, HAUGEN J. Prevention of drilling problems using real-time symptom detection and physical mode-ls[R]. OTC 25460, 2014.
[25] MAYANI M G, SVENDSEN M, OEDEGAARD S I. Drilling digital twin success stories the last 10 years[R]. SPE 191336, 2018.
[26] NADHAN D, MAYANI M G, ROMMETVEIT R. Drilling with digital twins[R]. SPE 191388, 2018.
[27] 耿黎东. 大数据技术在石油工程中的应用现状与发展建议[J]. 石油钻探技术,2021,49(2):72–78. GENG Lidong. Application status and development suggestions of big data technology in petroleum engineering[J]. Petroleum Drilling Techniques, 2021, 49(2): 72–78.
[28] 杨传书,李昌盛,孙旭东,等. 人工智能钻井技术研究方法及其实践[J]. 石油钻探技术,2021,49(5):7–13. YANG Chuanshu, LI Changsheng, SUN Xudong, et al. Research method and practice of artificial intelligence drilling technology[J]. Petroleum Drilling Techniques, 2021, 49(5): 7–13.
[29] 柳海啸,刘芳,代文星,等. 基于大数据分析技术的钻井提效实践[J]. 石油钻采工艺,2021,43(4):436–441. LIU Haixiao, LIU Fang, DAI Wenxing, et al. Drilling efficiency improvement practice based on big data analysis technology[J]. Oil Drilling & Production Technology, 2021, 43(4): 436–441.
[30] 黄小龙,刘东涛,宋吉明,等. 基于大数据及人工智能的钻速实时优化技术[J]. 石油钻采工艺,2021,43(4):442–448. HUANG Xiaolong, LIU Dongtao, SONG Jiming, et al. Real-time ROP optimization technology based on big data and artificial intelligence[J]. Oil Drilling & Production Technology, 2021, 43(4): 442–448.
[31] 石祥超,王宇鸣,刘越豪,等. 关于人工智能方法用于钻井机械钻速预测的探讨[J]. 石油钻采工艺,2022,44(1):105–111. doi: 10.13639/j.odpt.2022.01.016 SHI Xiangchao, WANG Yuming, LIU Yuehao, et al. Discussion on the application of artificial intelligence method to the prediction of drilling machinery ROP[J]. Oil Drilling & Production Technology, 2022, 44(1): 105–111. doi: 10.13639/j.odpt.2022.01.016
-
期刊类型引用(7)
1. 王文娟,罗文利,孙炜,邹新源. 高温高盐油藏泡沫配方体系研究进展. 现代化工. 2023(09): 42-46 . 百度学术
2. 张强,吴晓燕,胡雪,赵军,陈平,郑继龙,翁大丽. 氮气泡沫体系性能的影响因素实验研究. 当代化工. 2020(07): 1379-1383 . 百度学术
3. 张瑞香,王杰,高军. 两亲聚合物泡沫在多孔介质中的渗流及分流特性. 实验室研究与探索. 2019(04): 17-20+46 . 百度学术
4. 孙晶,付美龙,吴海俊,张泉,徐传奇. 理829井区泡沫体系筛选及性能评价. 当代化工. 2018(11): 2317-2321 . 百度学术
5. 孙同成,李亮,周珺. 耐高温耐盐氮气泡沫调驱实验研究及应用. 石油化工应用. 2016(05): 9-13+23 . 百度学术
6. 刘世达,张强. 强化泡沫驱复配的研究与评价. 当代化工. 2016(08): 1729-1731 . 百度学术
7. 陶磊,李松岩,程时清. 稠油油藏水平井泡沫酸解堵技术. 石油钻探技术. 2015(06): 76-80 . 本站查看
其他类型引用(2)