钻头破岩能量与岩石自适应匹配提速技术

白彬珍, 曾义金, 芦鑫, 张进双, 陶亮

白彬珍,曾义金,芦鑫,等. 钻头破岩能量与岩石自适应匹配提速技术[J]. 石油钻探技术,2023, 51(3):30-36. DOI: 10.11911/syztjs.2023008
引用本文: 白彬珍,曾义金,芦鑫,等. 钻头破岩能量与岩石自适应匹配提速技术[J]. 石油钻探技术,2023, 51(3):30-36. DOI: 10.11911/syztjs.2023008
BAI Binzhen, ZENG Yijin, LU Xin, et al. An ROP improvement technology based on adaptive matching between the rock-breaking energy of bits and rock features [J]. Petroleum Drilling Techniques,2023, 51(3):30-36. DOI: 10.11911/syztjs.2023008
Citation: BAI Binzhen, ZENG Yijin, LU Xin, et al. An ROP improvement technology based on adaptive matching between the rock-breaking energy of bits and rock features [J]. Petroleum Drilling Techniques,2023, 51(3):30-36. DOI: 10.11911/syztjs.2023008

钻头破岩能量与岩石自适应匹配提速技术

基金项目: 中国石化科技攻关项目“钻井破岩能量与岩石自适应匹配工具研究”(编号:P18006-5)部分研究内容
详细信息
    作者简介:

    白彬珍(1981—),男,山东沂水人,2004年毕业于石油大学(华东)石油工程专业,油气井工程专业在读博士研究生,高级工程师,主要从事深井、超深井、定向井、水平井钻井技术研究及相关管理工作。E-mail: baibz.sripe@sinopec.com

  • 中图分类号: TE21

An ROP Improvement Technology Based on Adaptive Matching Between the Rock-Breaking Energy of Bits and Rock Features

  • 摘要:

    针对深层、超深层和复杂地层等对钻井提速的要求,考虑深层岩体可钻性变化,提出了基于钻头破岩能量与岩石特征自适应匹配的钻井提速技术。在分析钻头破岩过程中扭矩特征的基础上,研制了自适应匹配工具,利用行星齿轮和扭簧结构进行能量存储与释放,钻进岩性均质地层过程中提前蓄能,钻遇砾石层或非均质地层时释放能量进行辅助破岩。通过静力学和动力学性能测试,验证了自适应匹配工具结构的可靠性和实现提速的可行性。自适应匹配工具在深层页岩气井进行了现场试验,结果表明:与使用常规方法的邻井相比,机械钻速提高了83%,验证了该工具提速的有效性和稳定钻头工作状态的效果。钻头破岩能量与岩石自适应匹配提速技术,为深层、超深层和复杂地层钻井提速提供了理论支撑和新的技术途径。

    Abstract:

    In view of the demand for the rate of penetration (ROP) improvement in deep, ultra-deep, and complex formations, a ROP improvement technology based on adaptive matching between rock-breaking energy of bits and the rock features was proposed considering the change in the drillability of deep rock. Based on the analysis of torque characteristics of bit during rock breaking, an adaptive matching tool was developed. The energy could be stored and released by the planetary gear and torsion spring in the tool, and could be stored in advance during drilling in lithologically homogeneous formations. In addition, energy could be released during drilling in gravel layers or heterogeneous formations to help rock breaking. The statics and dynamics performance tests verified the structural reliability of the tool and the feasibility of realizing the ROP improvement mechanism. Field test results in a deep shale gas well show that the ROP by the proposed technology is increased by 83% compared with that by conventional methods used in adjacent wells. The effectiveness of the tool in improving ROP and stabilizing bit performance is verified. As a result, the successful development of the tool and ROP improvement technology based on adaptive matching between rock-breaking energy of bits and rock features provides effective theoretical support and alternative technical approaches for improving ROP in deep, ultra-deep, and complex formations.

  • 图  1   岩石破裂强度与常规钻进载荷特征

    Figure  1.   Rock fracture strength and load characteristics of conventional drilling

    图  2   岩石破裂强度与螺杆钻具钻进载荷特征

    Figure  2.   Rock fracture strength and drilling load characteristics of screw motor

    图  3   岩石破裂强度与扭力冲击钻进载荷特征

    Figure  3.   Rock fracture strength and drilling load characteristics of torsional impact

    图  4   岩石破裂强度与诱导钻进载荷特征

    Figure  4.   Rock fracture strength and induced drilling load characteristics

    图  5   工作过程中能量分配原理

    Figure  5.   Principle of energy distribution in working process

    图  6   钻井破岩能量与岩石自适应匹配工具结构

    Figure  6.   Structure of tool based on adaptive matching bet-ween rock breaking energy of bits and rock features

    图  7   常规钻井钻头扭矩随时间的变化

    Figure  7.   Variation of conventional drilling bit torque with time

    图  8   加装自适应匹配工具后钻头扭矩随时间的变化

    Figure  8.   Variation of bit torque after tool addition with time

    图  9   常规钻井钻压、扭矩分布散点图

    Figure  9.   Scatter diagram of weight on bit and torque distribution in conventional drilling

    图  10   加装自适应匹配工具后钻压、扭矩分布散点图

    Figure  10.   Scatter diagram of weight on bit and torque distribution in drilling after tool addition

    表  1   JYX8HF井与邻井机械钻速对比

    Table  1   Comparison of ROP between Well JYX8HF and adjacent well

    井号井段/m地层机械钻速/(m·h−1
    JYX8HF4664.00~4694.00涧草沟组、
    宝塔组
    2.77
    焦页X6HF井3581.20~3595.00涧草沟组1.17
    3595.00~3622.00宝塔组1.01
    焦页X7HF井3982.30~4021.00涧草沟组1.47
    4021.00~4048.00宝塔组1.51
    下载: 导出CSV
  • [1] 刘湘华,刘彪,杜欢,等. 顺北油气田断裂带超深水平井优快钻井技术[J]. 石油钻探技术,2022,50(4):11–17.

    LIU Xianghua, LIU Biao, DU Huan, et al. Optimal and fast drilling technologies for ultra-deep horizontal wells in the fault zones of the Shunbei Oil & Gas Field[J]. Petroleum Drilling Techniques, 2022, 50(4): 11–17.

    [2] 韩烈祥. 川渝地区超深井钻完井技术新进展[J]. 石油钻采工艺,2019,41(5):555–561.

    HAN Liexiang. New progress of drilling and completion technologies for ultra-deep wells in the Sichuan-Chongqing Area[J]. Oil Drilling & Production Technology, 2019, 41(5): 555–561.

    [3] 张端瑞,文涛,蒲磊,等. “垂直钻井工具+等壁厚螺杆” 提速钻具组合先导性试验:以库车山前高陡构造克深A井为例[J]. 石油钻采工艺,2020,42(6):684–690.

    ZHANG Duanrui, WEN Tao, PU Lei, et al. Pilot test on the ROP-improvement BHA of vertical drilling tool & screw rod with equal wall thickness: A case study on Well Keshen A in the high-steep structure of Kuqa piedmont area[J]. Oil Drilling & Production Technology, 2020, 42(6): 684–690.

    [4] 于洋,南玉民,李双贵,等. 顺北油田古生界钻井提速技术[J]. 断块油气田,2019,26(6):780–783.

    YU Yang, NAN Yumin, LI Shuanggui, et al. Technology for increasing drilling speed of Paleozoic stratum in Shunbei Oilfield[J]. Fault-Block Oil & Gas Field, 2019, 26(6): 780–783.

    [5]

    DENNEY D. Mitigating torsional stick/slip vibrations in oilwell drilling through PDC-bit design: Putting theories to the test[J]. Journal of Petroleum Technology, 2015, 63(12): 79–80.

    [6] 毛良杰,马茂原,刘立鹏,等. 扭力冲击器对钻柱黏滑振动的影响分析[J]. 断块油气田,2022,29(4):545–551.

    MAO Liangjie, MA Maoyuan, LIU Lipeng, et al. Influence of torsional impactor on stick-slip vibration of drillstring[J]. Fault-Block Oil & Gas Field, 2022, 29(4): 545–551.

    [7] 汪伟,柳贡慧,李军,等. 脉动式扭转冲击钻井工具工作特性分析与测试[J]. 石油钻探技术,2022,50(5):63–69.

    WANG Wei, LIU Gonghui, LI Jun, et al. Analysis and testing of the working characteristics of a pulsating torsional impact drilling tool[J]. Petroleum Drilling Techniques, 2022, 50(5): 63–69.

    [8] 陈会娟. 井下钻柱振动信号的测量及振动激励源研究[J]. 石油钻探技术,2021,49(5):57–63.

    CHEN Huijuan. Measurement of the downhole drill string vibration signal and analysis of the vibration excitation sources[J]. Petroleum Drilling Techniques, 2021, 49(5): 57–63.

    [9] 殷召海,李国强,王海,等. 克拉苏构造带博孜1区块复杂超深井钻井完井关键技术[J]. 石油钻探技术,2021,49(1):16–21. doi: 10.11911/syztjs.2020130

    YIN Zhaohai, LI Guoqiang, WANG Hai, et al. Key technologies for drilling and completing ultra-deep wells in the Bozi 1 Block of Kelasu Structure[J]. Petroleum Drilling Techniques, 2021, 49(1): 16–21. doi: 10.11911/syztjs.2020130

    [10] 于洋,李双贵,高德利,等. 顺北5-5H超深ϕ120.65 mm小井眼水平井钻井技术[J]. 石油钻采工艺,2020,42(3):276–281.

    YU Yang, LI Shuanggui, GAO Deli, et al. Drilling techniques used in Well Shunbei 5-5H, an ultradeep slim-hole ϕ120.65 mm horizontal well[J]. Oil Drilling & Production Technology, 2020, 42(3): 276–281.

    [11] 贾利春,李枝林,张继川,等. 川南海相深层页岩气水平井钻井关键技术与实践[J]. 石油钻采工艺,2022,44(2):145–152.

    JIA Lichun, LI Zhilin, ZHANG Jichuan, et al. Key technology and practice of horizontal drilling for marine deep shale gas in southern Sichuan Basin[J]. Oil Drilling & Production Technology, 2022, 44(2): 145–152.

    [12] 张昕,乔东宇,王新,等. 旋转冲击钻井提速装置的研制与应用[J]. 钻采工艺,2022,45(5):106–111.

    ZHANG Xin, QIAO Dongyu, WANG Xin, et al. Development and application of a rotary percussion drilling apparatus for improving rate of penetration[J]. Drilling & Production Technology, 2022, 45(5): 106–111.

    [13] 李飞. PDC钻头切削深度对抑制黏滑振动和提高钻进速度的影响[J]. 石油钻采工艺,2021,43(5):566–573.

    LI Fei. Effect of depth-of-cut control (DOC) of PDC bits on stick-slip suppression and rate of penetration improvement[J]. Oil Drilling & Production Technology, 2021, 43(5): 566–573.

    [14] 穆总结,李根生,黄中伟,等. 振动冲击钻井提速技术现状及发展趋势[J]. 石油钻采工艺,2020,42(3):253–260.

    MU Zongjie, LI Gensheng, HUANG Zhongwei, et al. Status and development trend of vibration-impact ROP improvement technologies[J]. Oil Drilling & Production Technology, 2020, 42(3): 253–260.

    [15]

    GERMAY C, VAN DE WOUW N, NIJMEIJER H, et al. Nonlinear drillstring dynamics analysis[J]. SIAM Journal on Applied Dynamical Systems, 2009, 8(2): 527–553. doi: 10.1137/060675848

    [16] 李美求,李嘉文,李宁,等. 周向冲击扭矩作用下PDC钻头的黏滑振动分析[J]. 石油钻采工艺,2018,40(3):287–292.

    LI Meiqiu, LI Jiawen, LI Ning, et al. Analysis on the stick-slip vibration of PDC bit under the effect of circumferential torque impact[J]. Oil Drilling & Production Technology, 2018, 40(3): 287–292.

    [17]

    WANG Ningyu, CHENG Zaibin, LU Yingjie, et al. A multibody dynamics model of contact between the drillstring and the wellbore and the rock penetration process[J]. Advances in Mechanical Engineering, 2015, 7(5): 1–12.

    [18] 张奇志,吴永强. 抑制钻柱黏滑振动和钻头反弹的建模与控制[J]. 石油钻采工艺,2018,40(5):553–558.

    ZHANG Qizhi, WU Yongqiang. Modeling and control of restraining stick slip vibration of drill strings and bounce of drill bits[J]. Oil Drilling & Production Technology, 2018, 40(5): 553–558.

    [19]

    CHENG Zaibin, JIANG Wei, REN Gexue, et al. A multibody dynamical model for full hole drillstring dynamics[J]. Applied Mechanics and Materials, 2013, 378: 91–96. doi: 10.4028/www.scientific.net/AMM.378.91

    [20] 吴泽兵,郭龙龙,潘玉杰. 水平井钻井过程中井底钻压预测及应用[J]. 石油钻采工艺,2018,40(1):9–13.

    WU Zebing, GUO Longlong, PAN Yujie. Bottom hole WOB prediction in the process of horizontal well drilling and its applica-tion[J]. Oil Drilling & Production Technology, 2018, 40(1): 9–13.

  • 期刊类型引用(11)

    1. 董黎明,崔海林,祝靖. 抗高温解堵完井液技术研究. 能源化工. 2025(01): 74-78 . 百度学术
    2. 曾皓,金衍,王海波. 宁东油田致密油储层损害机理与对策. 石油钻探技术. 2024(01): 62-68 . 本站查看
    3. 张煦洋,傅涛,杨绍辉,雷晓贤,邢合生. 库车山前清洁完井工艺技术分析. 石油工业技术监督. 2024(10): 48-53 . 百度学术
    4. 赵平起,王贺强,郭海涛,马翠岩,王子毓. 高渗砂岩油藏钻完井一体化储层保护技术. 西南石油大学学报(自然科学版). 2023(06): 104-112 . 百度学术
    5. 陈志阳. 隐形酸完井液缓蚀剂的制备及性能评价. 石油化工应用. 2022(07): 108-111 . 百度学术
    6. 庞铭,陈华兴,王宇飞,赵顺超,方涛. 渤海L油田注水井欠注原因及对策分析. 海洋石油. 2022(04): 42-47 . 百度学术
    7. 陈飞. 基于改进PSO-SVM的钻井液侵入储层深度预测. 新疆石油天然气. 2020(01): 41-44+3 . 百度学术
    8. 游利军,陈杨,康毅力,闫霄鹏,王艺钧. 低渗气藏入井液损害实验评价的产能指数法. 钻井液与完井液. 2020(05): 620-625 . 百度学术
    9. 张路锋,周福建,张士诚,汪杰,王晋. 塔里木克深致密砂岩气藏基质钻井液伤害评价. 钻井液与完井液. 2019(01): 126-132 . 百度学术
    10. 赵全民,何汉平,何青水,陈向军,王宝峰. 哈萨克斯坦SIPC油田开发主要问题与技术对策. 石油钻探技术. 2019(04): 92-96 . 本站查看
    11. 林四元,张杰,韩成,胡杰,田宗强,郑浩鹏. 东方气田浅部储层大位移水平井钻井关键技术. 石油钻探技术. 2019(05): 17-21 . 本站查看

    其他类型引用(5)

图(10)  /  表(1)
计量
  • 文章访问数:  334
  • HTML全文浏览量:  113
  • PDF下载量:  132
  • 被引次数: 16
出版历程
  • 收稿日期:  2022-03-15
  • 修回日期:  2023-03-29
  • 网络出版日期:  2023-04-06
  • 刊出日期:  2023-05-24

目录

    /

    返回文章
    返回