Design and Mechanical Property Simulation of a Impact Source Tool for the Advanced Detection of Gas Drilling
-
摘要:
为了实现气体钻井钻头前方风险地层的超前探测,设计了适用于气体钻井环境的井下冲击震源工具,并对其力学性能进行了研究。基于气体钻井的环境,设计了冲击震源工具的关键结构;根据室内冲击试验,优化了震源工具的吸振结构和冲击能量;使用RecurDyn软件,分析了冲击块的运动过程,优化了关键结构的参数;模拟研究了底部吸振圆盘的抗冲击能力和传动杆限位结构的抗拉强度,以及冲击震源工具的力学性能;给出了现场施工方案,分析了其主要优势。研究结果表明:聚四氟乙烯能显著衰减钻铤波及尾波,有利于识别时域内的地层弱反射波信号;冲击能量为50 J时,冲击振动波的传播距离为18.61 m,可满足气体钻井超前探测的目的;聚四氟乙烯受到的最大冲击力为1 796.88 N时,其相对变形不超过0.03%,且传动杆限位结构处承受下部钻具的重量不能超过1 150 kN。通过气体钻井随钻超前探测震源工具结构设计及力学性能模拟研究,为近钻头冲击震源工具的研制与应用提供了依据。
Abstract:In order to detect of risky formations in advance and in front of the bit during gas drilling, a downhole impact source tool suitable for gas drilling environment was designed. Based on the gas drilling environment, the key structure of the impact source tool was designed. Through the indoor impact test, the vibration-absorbing structure and impact energy of the impact source tool were optimized. The RecurDyn simulation software was used to analyze impact block movements and optimize the parameters of the key structure. The impact resistance of the bottom vibration-absorbing disc and the tensile strength of the limit structure of the transmission rod were simulated to analyze the mechanical properties of the impact source tool. The field operation plan was made and the main advantages of the tool was analyzed. The results showed that polytetrafluoroethylene (PTFE) could significantly attenuate drill collar waves and coda waves, helpful in pinpointing weak reflection wave signals in the time domain. When the impact energy was 50 J, the propagation distance of impact vibration waves was 18.61 m, which could achieve advanced detection of gas drilling. The maximum impact force on PTFE was 1 796.88 N, and its relative deformation was not more than 0.03%. In addition, the weight of bottom hole assembly (BHA) borne by the limit structure of the transmission rod cannot exceed 1 150 kN. As a result, the structural design and mechanical property simulation of the impact tool for advanced detection while drilling for gas drilling could provide a theoretical basis for the development and application of near-bit impact source tools.
-
Keywords:
- gas drilling /
- advanced detection /
- impact source tool /
- impact source /
- PTFE /
- impact energy
-
-
表 1 不同压缩位移下聚四氟乙烯的模拟结果与试验结果
Table 1 Simulation results and test results of PTFE under different compression displacements
聚四氟乙烯变形
后的位移/mm模拟得到的
应力/MPa单轴试验得到
的应力/MPa相对
误差,%0.50 2.88 3.11 −7.4 0.75 4.45 5.08 −12.4 1.00 6.12 6.52 −6.1 1.25 7.87 7.43 5.9 1.50 9.72 8.42 15.4 表 2 聚四氟乙烯不同压缩位移下承受的冲击力
Table 2 Impact force on PTFE under different compression displacements
聚四氟乙烯变形后
的位移/mm聚四氟乙烯变形后
的最大应力/MPa聚四氟乙烯承受
的冲击力/kN0.1 0.139 2.004 0.2 0.279 4.017 0.3 0.420 6.038 0.4 0.561 8.068 0.5 0.702 10.105 1.0 1.420 20.427 2.0 2.900 41.725 5.0 7.706 110.884 -
[1] 李皋,李诚,孟英峰,等. 气体钻井随钻安全风险识别与监控[J]. 天然气工业,2015,35(7):66–72. doi: 10.3787/j.issn.1000-0976.2015.07.010 LI Gao, LI Cheng, MENG Yingfeng, et al. While-drilling safety risk identification and monitoring in air drilling[J]. Natural Gas Industry, 2015, 35(7): 66–72. doi: 10.3787/j.issn.1000-0976.2015.07.010
[2] 简旭,李皋,王军,等. 气体钻井声波超前测距方法与数值模拟[J]. 石油钻探技术,2022,50(3):132–138. doi: 10.11911/syztjs.2022016 JIAN Xu, LI Gao, WANG Jun, et al. Acoustic advance ranging method in gas drilling and its numerical simulation[J]. Petroleum Drilling Techniques, 2022, 50(3): 132–138. doi: 10.11911/syztjs.2022016
[3] 杨书博,乔文孝,赵琪琪,等. 随钻前视声波测井钻头前方声场特征研究[J]. 石油钻探技术,2021,49(2):113–120. doi: 10.11911/syztjs.2021020 YANG Shubo, QIAO Wenxiao, ZHAO Qiqi, et al. The characteristics of the acoustic field ahead of the bit in “look-ahead” acoustic logging while drilling[J]. Petroleum Drilling Techniques, 2021, 49(2): 113–120. doi: 10.11911/syztjs.2021020
[4] 康正明,柯式镇,李新,等. 随钻电阻率成像测井仪定量评价地层界面探究[J]. 石油钻探技术,2020,48(4):124–130. doi: 10.11911/syztjs.2020087 KANG Zhengming, KE Shizhen, LI Xin, et al. Probe into quantitative stratigraphic interface evaluation using a resistivity imaging LWD tool[J]. Petroleum Drilling Techniques, 2020, 48(4): 124–130. doi: 10.11911/syztjs.2020087
[5] 李亨,刘迪仁,倪小威,等. 钻井液侵入情况下随钻电磁波电阻率测井的响应[J]. 断块油气田,2019,26(5):675–680. LI Heng, LIU Diren, NI Xiaowei, et al. Logging responses of electromagnetic wave resistivity while drilling with drilling fluid intrusion[J]. Fault-Block Oil & Gas Field, 2019, 26(5): 675–680.
[6] 许军富,赵洪山,于海叶,等. 空气锤钻井技术在哈深201井火成岩地层的应用[J]. 石油钻采工艺,2017,39(6):683–687. doi: 10.13639/j.odpt.2017.06.004 XU Junfu, ZHAO Hongshan, YU Haiye, et al. Application of air hammer drilling technology in the igneous strata of Well Hashen 201[J]. Oil Drilling & Production Technology, 2017, 39(6): 683–687. doi: 10.13639/j.odpt.2017.06.004
[7] 朱宽亮,周岩,胡中志. PDC–牙轮复合钻头在南堡油田大斜度井的应用[J]. 石油钻探技术,2017,45(6):60–64. doi: 10.11911/syztjs.201706011 ZHU Kuanliang, ZHOU Yan, HU Zhongzhi. Application of a PDC-roller hybrid bit in highly-deviated wells of the Nanpu Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(6): 60–64. doi: 10.11911/syztjs.201706011
[8] 倪红坚,韩来聚,马清明,等. 水力脉冲诱发井下振动钻井工具研究[J]. 石油钻采工艺,2006,28(2):15–17. doi: 10.3969/j.issn.1000-7393.2006.02.005 NI Hongjian, HAN Laiju, MA Qingming, et al. Study on downhole vibration drilling tool induced by hydropulse[J]. Oil Drilling & Production Technology, 2006, 28(2): 15–17. doi: 10.3969/j.issn.1000-7393.2006.02.005
[9] 王冠. 自激振荡式旋转冲击钻井工具结构优化设计[D]. 青岛: 中国石油大学(华东), 2018. WANG Guan. Design and optimization for the self-oscillating rotary percussive drilling tool[D]. Qingdao: China University of Petroleum(East China), 2018.
[10] DENNEY D. Seismic-while-drilling using a swept-impulse source[J]. Journal of Petroleum Technology, 2005, 57(8): 67–69. doi: 10.2118/0805-0067-JPT
[11] 管志川, 刘永旺, 史玉才. 机械式井下吸振冲击钻井工具: CN201010617044.0[P]. 2014-06-25. GUAN Zhichuan, LIU Yongwang, SHI Yucai. Mechanical downhole vibration absorption percussion drilling tool: CN201010617044.0[P]. 2014-06-25.
[12] 刘永旺,管志川,张洪宁,等. 一种转化钻柱振动能量的井底高压喷射钻井装置[J]. 天然气工业,2017,37(9):91–96. doi: 10.3787/j.issn.1000-0976.2017.09.012 LIU Yongwang, GUAN Zhichuan, ZHANG Hongning, et al. A downhole high-pressure jet drilling device transforming drilling string vibration energy[J]. Natural Gas Industry, 2017, 37(9): 91–96. doi: 10.3787/j.issn.1000-0976.2017.09.012
[13] 张玉英. QJ159A整体机械式随钻震击器的研制及应用[J]. 石油机械,2008,36(9):88–89. doi: 10.16082/j.cnki.issn.1001-4578.2008.09.022 ZHANG Yuying. Development and application of integral mechanical jar while drilling[J]. China Petroleum Machinery, 2008, 36(9): 88–89. doi: 10.16082/j.cnki.issn.1001-4578.2008.09.022
[14] 刘刚, 史少宇. 井下震源: CN201910003744.1[P]. 2019-05-10. LIU Gang, SHI Shaoyu. Downhole seismic source: CN201910003744.1[P]. 2019-05-10.
[15] JIAN Xu, LI Hongtao, LI Gao, et al. Lithological interface detection using an impact source[J]. Shock and Vibration, 2020, 2020: 4189419.
[16] 孙宗磊,杨少军,刘琛,等. 基于UHPC板和EPS耗能层的落石冲击力研究[J]. 铁道标准设计,2021,65(7):88–92. doi: 10.13238/j.issn.1004-2954.202008110006 SUN Zonglei, YANG Shaojun, LIU Chen, et al. Study on rockfall impact based on UHPC plate and EPS energy dissipation layer[J]. Railway Standard Design, 2021, 65(7): 88–92. doi: 10.13238/j.issn.1004-2954.202008110006
[17] 刘刚,杨全枝,何保生,等. 冲击震动波在砂岩介质中传播规律的试验研究[J]. 工程勘察,2012,40(12):75–78. LIU Gang, YANG Quanzhi, HE Baosheng, et al. Experimental study on shock vibration wave for transmitting law in sandstone medium[J]. Geotechnical Investigation & Surveying, 2012, 40(12): 75–78.
[18] 迟少林,冯进,张慢来,等. 井下震源发生器动力学研究及性能优化[J]. 石油机械,2020,48(2):15–22. CHI Shaolin, FENG Jin, ZHANG Manlai, et al. Dynamics research and performance optimization of downhole seismic generator[J]. China Petroleum Machinery, 2020, 48(2): 15–22.
[19] 王俊秋, 林君, 陈祖斌, 等. 小型可控震源在油页岩地震勘探中的应用试验[J]. 吉林大学学报(地球科学版), 2012, 42(增刊3): 265-270. WANG Junqiu, LIN Jun, CHEN Zubin, et al. Experiment and application of mini vibrators seismic exploration in oil shale[J]. Journal of Jilin University(Earth Science Edition), 2012, 42(supplement 3): 265 − 270.
[20] 夏文鹤,孟英峰,唐波,等. 变内径钻柱中微波传输衰减规律[J]. 石油勘探与开发,2018,45(3):500–506. doi: 10.11698/PED.2018.03.15 XIA Wenhe, MENG Yingfeng, TANG Bo, et al. Attenuation of microwave transmission in a diameter-variable drill string bore[J]. Petroleum Exploration and Development, 2018, 45(3): 500–506. doi: 10.11698/PED.2018.03.15
[21] 王菁, 张秀梅. 偶极声波实现钻前地质探测的方法研究[J]. 应用声学, 2015, 34(6): 539-546. WANG Jing, ZHANG Xiumei. Study on the method of formation detection ahead of the drill-bit using downhole dipole source[J]. Applied Acoustics, 2015, 34(6): 539-546.
[22] 楚泽涵,徐凌堂,尹庆文,等. 远探测反射波声波测井方法实验研究进展[J]. 测井技术,2005,29(2):98–101. CHU Zehan, XU Lingtang, YIN Qingwen, et al. Progress of lab study on remote exploration acoustic reflection logging methods[J]. Well Logging Technology, 2005, 29(2): 98–101.
[23] 王瑞甲, 乔文孝. 三维随钻反射声波成像测井的数值模拟[J]. 地球物理学报, 2015, 58(6): 2201-2209. WANG Ruijia, QIAO Wenxiao. Numerical modeling of three-dimensional acoustic reflection logging while drilling[J]. Chinese Journal of Geophysics, 2015, 58(6): 2201-2209.
-
期刊类型引用(7)
1. 赵仲浩,黄新春,张成富,丁德吉. 海上油田分层采油井缆控对接式智能配产新技术. 中国海上油气. 2022(04): 213-217 . 百度学术
2. 杨树坤,郭宏峰,郝涛,赵广渊,杜晓霞,李翔. 海上油田电控智能控水采油工具研制及性能评价. 石油钻探技术. 2022(05): 76-81 . 本站查看
3. 路保平,丁士东,何龙,庞伟. 低渗透油气藏高效开发钻完井技术研究主要进展. 石油钻探技术. 2019(01): 1-7 . 本站查看
4. 谢小军,吴非. 基于B/S模式的网络通信会议视频质量智能评估方法研究. 自动化与仪器仪表. 2019(06): 122-126 . 百度学术
5. 谢斌,姜景耀,贾久波,任岚,黄波,黄鑫. 致密油藏压裂水平井分区渗流模型及产能分析. 断块油气田. 2019(03): 324-328 . 百度学术
6. 杨顺辉,豆宁辉,赵向阳,柯珂,王志远. 多层合采智能井井筒温度场预测模型及应用. 石油钻探技术. 2019(04): 83-91 . 本站查看
7. 魏航信,徐建宁,赵亚杰,黄华,席文奎. 特低渗透及致密油藏低产井有杆泵采油参数优化方法. 石油钻探技术. 2017(06): 83-87 . 本站查看
其他类型引用(0)