Research and Application of a High-Temperature Resistant and High-Density Biomass Drilling Fluid System
-
摘要:
为了提高抗高温高密度钻井液体系的高温稳定性及环保性能,以自主研发的生物质合成树脂降滤失剂、抑制剂和润滑剂为核心处理剂,对处理剂加量进行优化,构建了抗高温高密度生物质钻井液体系。性能评价结果表明:该体系抗温可达200 ℃,抗1.0%CaCl2污染,岩屑滚动回收率达94.3%,润滑系数≤0.128,生物毒性EC50为89 230 mg/L。现场应用表明,抗高温高密度生物质钻井液具有较好的抗污染能力,在密度达2.55 kg/L、井底温度达140 ℃的情况下其仍具有很好的流变稳定性能。抗高温高密度生物质钻井液促进了生物质资源在钻井液领域的利用,解决了高密度水基钻井液抗温性与环保性相矛盾的问题,具有较好的现场推广应用价值。
Abstract:In order to improve the temperature stability and environmental protection performance of a high-temperature resistant and high-density drilling fluid system, the self-developed filtrate reducers, inhibitors, and lubricants with biomass synthetic resin were taken as the core treatment agents, the dosages of the treatment agents were optimized, and a high-temperature resistant and high-density biomass drilling fluid system was constructed. The performance evaluation results showed that the system could resist temperature up to 200 °C. It also could resist CaCl2 pollution of 1%. The rock cuttings rolling recovery was 94.3%, with the lubrication coefficient ≤ 0.128. The biological toxicity EC50 value was 89 230 mg/L. The field application showed that the high-temperature resistant and high-density biomass drilling fluids could significantly resist pollution. They had excellent rheological stability when the density was up to 2.55 kg/L and the bottom hole temperature was 140 °C. The high-temperature resistant and high-density biomass drilling fluids can promote the utilization of biomass resources in the drilling fluid field and solve the trade-off between the temperature resistance and environmental protection of high-density water-based drilling fluids. Therefore, the drilling fluids have positive field promotion and application value.
-
Keywords:
- drilling fluid /
- biomass /
- high density /
- environmental protection performance /
- stability /
- temperature resistance
-
顺北油气田储层埋深7 600~8 800 m,超深井钻井存在二叠系火成岩地层易发生井漏、志留系泥岩地层井眼易垮塌、古生界深部地层可钻性差等难题[1-8]。特别是,该油气田桑塔木组发育有火成岩侵入体(火成岩侵入体覆盖区域面积达117 km2),井眼坍塌压力非常高。因此,顺北油气田火成岩侵入体覆盖区超深井钻井时,既要解决二叠系、志留系地层和古生界深部地层存在的共性问题,又要解决火成岩侵入体带来的钻井难题。为了抑制火成岩侵入体覆盖区井眼垮塌,该油气田采取了提高钻井液密度的方法,并优化井身结构设计,对火成岩侵入体进行了专封,但效果不佳;完钻井眼直径仅120.7 mm,小井眼定向工具的故障率高,导致钻井效率较低。为此,笔者建立了地层三压力剖面,根据压力剖面确定了钻井必封点,优化了火成岩侵入体覆盖区超深井井身结构,将完钻井眼直径由120.7 mm增大为143.9 mm,研究了二叠系防漏技术、志留系井眼稳定技术、火成岩侵入体安全钻井技术及分层钻井提速技术,形成了顺北油气田火成岩侵入体覆盖区超深井优快钻井技术,现场应用表明,该集成技术提速效果明显。
1. 钻井技术难点与解决思路
1.1 钻井技术难点
1)顺北油气田二叠系厚410~480 m,英安岩(厚约200 m)与凝灰岩互层微裂缝发育,易发生井漏。如XB1-1H井钻进二叠系地层时发生井漏25次,漏失钻井液2 245.4 m3,漏失水泥浆260.8 m3,处理井下复杂情况时间长,导致钻井周期延长45.96 d。
2)顺北油气田志留系地层黏土矿物含量6%~29%,以伊/蒙混层和伊利石为主,裂缝宽度1.188~1.836 μm,属硬脆性泥岩,易垮塌。如XB1井钻遇志留系地层后阻卡频发,划眼处理22.1 d,平均井径扩大率达23.14%。
3)顺北油气田奥陶系桑塔木组含火成岩侵入体,地层坍塌压力高,钻井中极易发生应力垮塌。如XB1井在五开钻入侵入体后频繁蹩停顶驱,为抑制侵入体井段掉块,将钻井液密度由1.38 kg/L提高至1.86 kg/L,但随即发生了井漏。
4)顺北油气田前期完钻井眼直径为120.7 mm,小井眼所用的钻具柔性大,井下振动剧烈,且井底温度高达170 ℃,小井眼降温能力差,导致现场测量仪器故障率达到60%以上。
5)顺北油气田古生界深部地层岩石软硬交错,岩石强度大于100 MPa,可钻性差,严重影响机械钻速。
1.2 解决思路
针对顺北油气田奥陶系桑塔木组火成岩侵入体带来的钻井难题,以及该油气田存在的志留系泥岩地层易塌、二叠系火成岩地层易漏和古生界深部地层可钻性差等问题,开展了井身结构优化和优快钻井配套技术研究。具体思路是:先求取地层三压力剖面,确定必封点和套管序列,以扩大完钻井眼直径、使之能够使用常规定向工具为目的,优化形成火成岩侵入体覆盖区井身结构;然后,在优化井身结构的基础上,配套二叠系地层防漏、志留系地层井眼稳定、火成岩侵入体安全钻井技术和分层提速技术。顺北油气田火成岩侵入体覆盖区超深井钻井中集成应用以上配套技术,以解决各种钻井难题,提高机械钻速。
2. 井身结构优化
2.1 地层三压力剖面计算
为了给井身结构优化提供依据,采用地层压力计算软件GMI,结合顺北油气田火成岩侵入体覆盖区的测井资料、钻井资料及测试资料,计算了该区域地层的三压力剖面,结果见表1。
表 1 火成岩侵入体覆盖区地层三压力剖面Table 1. Formation tri-pressure profile of igneous invasion地层位置 深度/m 当量密度/(kg·L–1) 孔隙压力 坍塌压力 破裂压力 火成岩侵入体以上地层 0~6 905 1.01~1.21 1.02~1.38 1.85~2.36 火成岩侵入体 6 905~6 945 1.02~1.09 1.55~1.65 1.94~2.10 火成岩侵入体底部至一间房组顶部 6 945~7 259 1.02~1.15 1.05~1.16 1.85~2.18 一间房组 7 259~7 393 1.10~1.18 1.07~1.15 1.85~2.14 由表1可知:各地层孔隙压力正常,不存在异常高压;火成岩侵入体地层坍塌压力异常,当量密度高达1.55~1.65 kg/L。
2.2 超深井井身结构优化
顺北油气田奥陶系桑塔木组火成岩侵入体地层坍塌压力高,而志留系地层承压能力较低,不能在同一开次揭示,因此确定侵入体顶部为必封点。同时,碳酸盐岩裂缝性、缝洞型油藏易发生井漏,为满足储层测试条件和保障井控安全,确定目的层顶部为必封点。
根据地层三压力剖面和必封点位置,火成岩侵入体覆盖区超深井设计采用四开井身结构。为提高定向钻井效率,将四开井眼直径由120.7 mm优化为143.9 mm,钻头直径和套管序列则由目的层向上逐级进行反推[1-2, 9-10]。三开井段,采用ϕ190.5 mm钻头钻进,ϕ168.3 mm套管封隔火成岩侵入体及目的层以上地层(套管内径要求能够通过ϕ143.9 mm钻头);二开井段,用ϕ269.9 mm钻头钻进,ϕ219.1 mm套管封隔火成岩侵入体以上地层(套管内径要求能通过ϕ190.5 mm钻头);一开井段,采用ϕ374.7 mm钻头钻进,ϕ298.5 mm套管封隔浅表地层(套管内径要能通过ϕ269.9 mm钻头)。火成岩侵入体覆盖区超深井原井身结构和优化后的井身结构(新井身结构)见表2。
表 2 火成岩侵入体覆盖区超深井优化前后的井身结构Table 2. The original casing program and the casing program in igneous invasion coverage area开钻
次序原井身结构 新井身结构 钻头直径/
mm套管直径/
mm下深/
m钻头直径/
mm套管直径/
mm下深/
m一开 346.1 273.1 2 000 374.7 298.5 1 500 二开 250.9 193.7 6 500 269.9 219.1 6 500 三开 165.1 139.7 7 400 190.5 168.3 7 400 四开 120.7 143.9 由表2可知,与原井身结构相比,新井身结构中的完钻井眼直径增大为143.9 mm,采用常规钻杆、测量仪器和螺杆钻具即可施工,并可满足地质资料录取及后期完井的要求。
3. 优快钻井配套技术
顺北油气田火成岩侵入体覆盖区不同地层的岩性特征不同,超深井钻井时应针对地层岩性特征采用不同的钻井提速技术。
3.1 二叠系防漏技术
顺北油气田二叠系为英安岩、凝灰岩互层,裂缝发育,易井漏,漏失压力较低,应以预防为主[7-11],由“堵漏为主”转变为“以防为主,防堵结合”。
钻进前封堵微裂缝,强化井壁稳定性。通过室内封堵评价试验,得到封堵剂配方:2%超细碳酸钙+1%竹纤维+1%单向压力封堵剂+2%阳离子沥青+2%纳米乳液。
钻进时采用低密度(1.23~1.25 kg/L)、低塑性黏度(15~20 mPa·s)、低切力(4~6 Pa)的钻井液,并采用低排量(30~33 L/s),利用固控设备控制钻井液固相含量,控制起下钻速度,避免产生较大的激动压力,使井底压力小于漏失压力。起钻前注入10%~15%封闭浆(主要配方为1%聚合物凝胶+3%竹纤维+2%沥青+2%单向压力封堵剂+2%SQD-98(细)+1%CXD),避免起下钻过程中发生井漏。
3.2 志留系井壁稳定技术
顺北油气田志留系地层微裂缝发育,黏土矿物含量高达29.0%,以伊/蒙混层和伊利石为主。该类硬脆性泥岩易坍塌掉块,钻井液滤液进入裂缝会增大膨胀压力和发生水敏垮塌。
为降低液相侵入量,保证井壁稳定,采用“抑制水化+成膜隔离”协同防塌的理念,优选成膜剂、强抑制聚胺复配KCl[12],形成了钾胺基聚磺成膜钻井液,其主要配方为1.0%成膜剂+2.0%乳化沥青+0.5%聚阴离子纤维素+5.0%KCl+0.8%聚胺抑制剂+2.0%磺化酚醛树脂+3.0%褐煤树脂。该钻井液的岩屑滚动回收率为93.7%,页岩膨胀率为1.76%。
3.3 火成岩侵入体安全钻井技术
顺北油气田奥陶系桑塔木组火成岩侵入体为岩浆向上侵入而形成的岩石,泊松比0.206~0.268,弹性模量29.1~37.9 MPa,抗压强度普遍高于150 MPa,坍塌压力系数1.55~1.65,体现出硬脆性岩石的力学特征[13]。火成岩会对钻头造成严重的损伤,且井壁极易发生垮塌掉块。
火成岩在冷却过程中会形成微裂缝,防塌的重点是封堵微裂缝,阻止和减缓孔隙压力传递。为此,钻井液中加入2.0%~3.0%沥青类材料+2.0%超细碳酸钙+0.5%~1.0%PB-1+5.0%强封堵剂,以增强钻井液的封堵性能。钻进火成岩侵入体前,钻井液密度调整为1.65 kg/L,强化应力支撑;钻进过程中及时采用漏斗黏度大于120 s的稠浆塞携带井下掉块,工程上采用“进一退二”的方式钻进,以避免发生井下故障。
3.4 分层钻井提速技术
采用测井参数反演,结合室内试验数据,获取了各层位岩石的抗压强度、可钻性级值等岩石力学参数,进行了PDC钻头优选和钻井工艺研究[14-16],在此基础上形成了顺北油气田火成岩侵入体覆盖区超深井分层钻井提速技术。
二叠系以上地层抗压强度40~80 MPa,可钻性级值2~5,为软—中硬地层,采用“PDC钻头+螺杆钻具”快速钻进。选用五刀翼、ϕ19.0 mm切削齿的PDC钻头,增强其攻击性和防泥包功能。
二叠系火成岩地层抗压强度90~160 MPa,可钻性级值6~7,为硬—极硬地层,选用五刀翼、ϕ13.0 mm切削齿的PDC钻头与扭力冲击器配合使用,以减少井下振动。
二叠系至火成岩侵入体上部为砂泥岩互层,地层软硬交错,抗压强度80~150 MPa,可钻性级值5~7,属于硬地层,选用五刀翼、ϕ16.0 mm切削齿的PDC钻头与等壁厚大扭矩螺杆配合使用,以达到提速的目的。
火成岩侵入体抗压强度140~170 MPa,可钻性级值7~8,为极硬地层,选用进口镶齿牙轮钻头或HJ637牙轮钻头,配硬质合金圆偏楔齿并进行梯度硬质合金处理,强化金刚石保径和掌背扶正块。
火成岩侵入体以下地层抗压强度70~150 MPa,可钻性级值4~7,为硬地层,选用五刀翼、ϕ13.0 mm切削齿的PDC钻头与螺杆钻具配合使用,以达到提速的目的。
4. 现场应用
顺北油气田火成岩侵入体覆盖区超深井优快钻井技术在XB1-11H井等7口超深井中进行了应用,与未用该技术的XB1井相比,完钻井眼直径由120.7 mm扩大至143.9 mm,钻井周期缩短了94 d,机械钻速提高了1.3 m/h。
5口井应用了二叠系防漏技术。在钻井液中加入1%~2%不同粒径的超细碳酸钙和1%~2%竹纤维,采用随钻防漏方式钻穿二叠系地层,钻井液的黏度和切力保持在较低的状态,井底循环当量密度为1.32 kg/L。5口井钻进过程中均未发生井漏,而未应用该技术的邻井均出现不同程度的漏失。
7口井应用了志留系井眼稳定技术。采用密度1.26~1.32 kg/L的钻井液,并加入1.0%~1.5%纳米乳液成膜剂+5.0%~7.0%KCl+0.5%~1.0%聚胺抑制剂,强化聚胺、氯化钾协同抑制作用和纳米乳液成膜封堵性能。7口井平均井径扩大率仅为9.01%(前期井眼扩大率达16.05%),且钻进及中完过程中未出现井下复杂情况。
7口井应用了火成岩侵入体安全钻井技术。通过加入超细碳酸钙、防塌沥青、变形封堵剂,钻井液密度由1.70~1.86 kg/L降至1.60~1.65 kg/L。7口井钻井期间未发生阻卡,扭矩正常,降低了高密度钻井液条件下的岩石压实效应。
7口井应用了分层提速技术。不同地层采用不同特点的钻头与提速工具配合实现提速,7口井平均机械钻速由4.2 m/h提高至5.5 m/h,提高了31.0%。三开ϕ190.5 mm井段应用ϕ16.0 mm尖圆齿钻头与等壁厚螺杆配合,机械钻速由2.1 m/h提高至3.1 m/h,提高了47.6%。
5. 结论与认识
1)在根据地层三压力剖面确定必封点的基础上,优化了顺北油气田火成岩侵入体覆盖区超深井井身结构,将完钻井眼直径由120.7 mm增大至143.9 mm,提高了定向钻井时效。
2)顺北油气田二叠系裂缝性地层易井漏,坚持“以防为主,防堵结合”的思路,采用低密度、低黏切的钻井液低排量钻进,遏制了井漏的发生。
3)根据“抑制水化+成膜隔离”的协同防塌理念,优选成膜剂,并复配聚胺抑制剂和KCl,解决了顺北油气田钻进志留系水敏性、硬脆性泥岩时易垮塌的问题。
4)顺北油气田奥陶系桑塔木组火成岩侵入体井眼易垮塌,通过采用专封结构和加强封堵防塌,配合稠浆塞洗井和细化工程措施,实现了火成岩侵入体井段安全钻进。
5)根据不同地层的岩石力学参数,优选PDC钻头和钻井工艺,形成了顺北油气田火成岩侵入体覆盖区超深井分层钻井提速技术,现场应用后机械钻速大幅提高。
-
表 1 基浆加入不同量降滤失剂时的基本性能
Table 1 Basic properties of drilling fluids with different dosages of filtrate reducers
降滤失剂
加量,%表观黏度/
(mPa·s)塑性黏度/
(mPa·s)动切力/
PaAPI滤失
量/mL高温高压
滤失量/mL2.0 28.0 18 10.0 18 58.6 4.0 30.5 17 13.5 12 26.4 6.0 32.5 15 17.5 8 22.8 表 2 钠膨润土基浆加入不同量抑制剂时的抑制性能
Table 2 Inhibition properties of sodium bentonite drilling fluids with different dosages of inhibitors
抑制剂加量,
%表观黏度/
(mPa·s)塑性黏度/
(mPa·s)动切力/
Pa相对抑制率,
%0 85.0 6 79.0 0.3 25.0 17 8.0 89.1 0.5 16.5 12 4.5 93.2 0.7 7.5 5 2.5 96.6 1.0 6.5 6 0.5 98.6 表 3 基浆加入不同量润滑剂时的润滑性能
Table 3 Lubricating properties of drilling fluids with different lubricant contents
润滑剂加量,% 润滑系数 润滑系数减小率,% 0 0.425 0.5 0.082 80.71 1.0 0.039 90.82 1.5 0.035 91.76 2.0 0.033 92.24 2.5 0.031 92.71 3.0 0.028 93.41 表 4 不同温度下抗高温高密度生物质钻井液的基本性能
Table 4 Basic properties of high-temperature resistant and high-density biomass drilling fluids at different temperatures
老化温度/℃ 表观黏度/(mPa·s) 塑性黏度/(mPa·s) 动切力/Pa 静切力/Pa API滤失量/mL 高温高压滤失量/mL 初切 终切 120 31 24 7 1.0 5.0 1.2 8 160 38 34 4 1.5 5.5 1.6 9 180 31 23 8 2.0 6.5 1.8 10 200 40 31 9 3.0 8.0 2.4 14 表 5 不同密度抗高温高密度生物质钻井液的基本性能
Table 5 Basic properties of high-temperature resistant and high-density biomass drilling fluids with different densities
密度/(kg·L−1) 表观黏度/(mPa·s) 塑性黏度/(mPa·s) 动切力/Pa 静切力/Pa API滤失量/mL 高温高压滤失量/mL 初切 终切 1.80 39.0 33.0 6.0 1.0 3.5 3.2 13 2.10 40.0 31.0 9.0 3.0 8.0 2.4 14 2.30 55.0 43.0 12.0 2.5 8.5 2.6 12 2.40 61.5 56.0 5.5 1.5 7.0 3.6 14 表 6 抗高温高密度生物质钻井液环保性能测试结果
Table 6 Test results of environmental protection performance of high-temperature resistant and high-density biomass drilling fluids
名称 生物毒性EC50/(mg·L−1) 生物可降解性 降滤失剂LDR 620 000 0.26 抑制剂SW-A 112 000 0.47 润滑剂ZYRH-1 151 400 0.51 抗高温生物质钻井液 89 230 0.17 表 7 不同钙离子加量下的抗高温高密度生物质钻井液性能
Table 7 Performance of high-temperature resistant and high-density biomass drilling fluids with different calcium ion dosages
氯化钙
加量,%表观黏度/
(mPa·s)塑性黏度/
(mPa·s)动切
力/Pa静切力/Pa API滤
失量/mL高温高压
滤失量/mL初切 终切 0 30.0 22.0 8.0 2.5 8.5 1.8 12 0.2 31.0 23.0 8.0 3.5 13.5 2.2 10 0.4 30.5 25.0 5.5 3.0 11.5 2.4 10 0.8 40.0 35.0 5.0 3.0 14.0 2.8 14 1.0 55.0 46.0 9.0 4.0 19.0 3.2 16 -
[1] 樊相生,曾李,张勇,等. 元坝地区高密度超高密度钻井液技术[J]. 钻井液与完井液,2014,31(2):31–34. doi: 10.3969/j.issn.1001-5620.2014.02.009 FAN Xiangsheng, ZENG Li, ZHANG Yong, et al. Ultra-high density drilling fluid technology used in Yuanba[J]. Drilling Fluid & Completion Fluid, 2014, 31(2): 31–34. doi: 10.3969/j.issn.1001-5620.2014.02.009
[2] 马鸿彦,郑邦贤,陈景旺,等. 杨税务潜山超深超高温井安全优快钻井技术[J]. 石油钻采工艺,2020,42(5):573–577. doi: 10.13639/j.odpt.2020.05.008 MA Hongyan, ZHENG Bangxian, CHEN Jingwang, et al. Optimized, safe and fast drilling technologies used in the ultra deep and high temperature wells in Yangshuiwu buried hill[J]. Oil Drilling & Production Technology, 2020, 42(5): 573–577. doi: 10.13639/j.odpt.2020.05.008
[3] 王志远,黄维安,范宇,等. 长宁区块强封堵油基钻井液技术研究及应用[J]. 石油钻探技术,2021,49(5):31–38. doi: 10.11911/syztjs.2021039 WANG Zhiyuan, HUANG Weian, FAN Yu, et al. Technical research and application of oil base drilling fluid with strong plugging property in Changning Block[J]. Petroleum Drilling Techniques, 2021, 49(5): 31–38. doi: 10.11911/syztjs.2021039
[4] 李斌,石秉忠,彭商平,等. 元坝地区高密度钻井液CO2污染处理技术[J]. 钻井液与完井液,2013,30(5):22–24. doi: 10.3969/j.issn.1001-5620.2013.05.006 LI Bin, SHI Bingzhong, PENG Shangping, et al. CO2 contamination treatment technology of high density drilling fluid in block of Yuanba[J]. Drilling Fluid & Completion Fluid, 2013, 30(5): 22–24. doi: 10.3969/j.issn.1001-5620.2013.05.006
[5] 蒲晓林,黄林基,罗兴树,等. 深井高密度水基钻井液流变性、造壁性控制原理[J]. 天然气工业,2001,21(6):48–51. doi: 10.3321/j.issn:1000-0976.2001.06.015 PU Xiaolin, HUANG Linji, LUO Xingshu, et al. Principles controlling the rheological property and wall building property of deep well high density water-base drilling fluid[J]. Natural Gas Industry, 2001, 21(6): 48–51. doi: 10.3321/j.issn:1000-0976.2001.06.015
[6] 张喜凤,李天太,施里宇,等. 深井抗高温高密度盐水钻井液实验研究[J]. 西安石油大学学报(自然科学版),2007,22(5):37–40. ZHANG Xifeng, LI Tiantai, SHI Liyu, et al. Experimental study of the high-density salt water drilling fluid with high-temperature resistance for deep wells[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2007, 22(5): 37–40.
[7] 李林,黄文章,向林,等. 高效环保型页岩气开发水基钻井液体系研究[J]. 石油与天然气化工,2017,46(6):71–74. doi: 10.3969/j.issn.1007-3426.2017.06.013 LI Lin, HUANG Wenzhang, XIANG Lin, et al. Study of water-based drilling fluid system with high efficiency and environment-friendly for shale gas development[J]. Chemical Engineering of Oil and Gas, 2017, 46(6): 71–74. doi: 10.3969/j.issn.1007-3426.2017.06.013
[8] 宿振国,王瑞和,刘均一,等. 高性能环保水基钻井液的研究与应用[J]. 钻井液与完井液,2021,38(5):576–582. SU Zhenguo, WANG Ruihe, LIU Junyi, et al. Study and application of environmentally friendly high performance water base drilling fluid[J]. Drilling Fluid & Completion Fluid, 2021, 38(5): 576–582.
[9] 周启成,单海霞,位华,等. 环保型生物质合成树脂降滤失剂[J]. 钻井液与完井液,2020,37(5):593–596. ZHOU Qicheng, SHAN Haixia, WEI Hua, et al. A synthetic resin filter loss reducer made from environmentally friendly biomasses[J]. Drilling Fluid & Completion Fluid, 2020, 37(5): 593–596.
[10] 宋海,龙武,邓雄伟. 页岩气水基钻井液用抗高温环保润滑剂的研制及应用[J]. 断块油气田,2021,28(6):761–764. SONG Hai, LONG Wu, DENG Xiongwei. Development and application of high temperature resistant and environmental protection lubricant for shale gas water-based drilling fluid[J]. Fault-Block Oil & Gas Field, 2021, 28(6): 761–764.
[11] 李钟,罗石琼,罗恒荣,等. 多元协同防塌钻井液技术在临盘油田探井的应用[J]. 断块油气田,2019,26(1):97–100. doi: 10.6056/dkyqt201901022 LI Zhong, LUO Shiqiong, LUO Hengrong, et al. Application of multivariate synergistic anti-caving drilling fluid technology in exploratory wells of Linpan Oilfield[J]. Fault-Block Oil & Gas Field, 2019, 26(1): 97–100. doi: 10.6056/dkyqt201901022
[12] 宣扬,刘珂,郭科佑,等. 顺北超深水平井环保耐温低摩阻钻井液技术[J]. 特种油气藏,2020,27(3):163–168. doi: 10.3969/j.issn.1006-6535.2020.03.027 XUAN Yang, LIU Ke, GUO Keyou, et al. Environmental anti-temperature low friction drilling fluid technology of ultra-deep horizontal well in Shunbei Oil & Gas Field[J]. Special Oil & Gas Reservoirs, 2020, 27(3): 163–168. doi: 10.3969/j.issn.1006-6535.2020.03.027
[13] 张晓刚,单海霞,李彬,等. 环保无荧光生物质润滑剂ZYRH的性能与应用[J]. 油田化学,2019,36(2):196–200. doi: 10.19346/j.cnki.1000-4092.2019.02.002 ZHANG Xiaogang, SHAN Haixia, LI Bin, et al. Development and application of an environment-friendly and non-fluorescent biomass lubricant[J]. Oilfield Chemistry, 2019, 36(2): 196–200. doi: 10.19346/j.cnki.1000-4092.2019.02.002
[14] 钱晓琳,宣扬,林永学,等. 钻井液环保润滑剂SMLUB-E的研制及应用[J]. 石油钻探技术,2020,48(1):34–39. doi: 10.11911/syztjs.2019113 QIAN Xiaolin, XUAN Yang, LIN Yongxue, et al. Development and application of an environmental-friendly drilling fluid lubricant SMLUB-E[J]. Petroleum Drilling Techniques, 2020, 48(1): 34–39. doi: 10.11911/syztjs.2019113
[15] 罗人文,龙大清,王昆,等. 马深1井超深井钻井液技术[J]. 石油钻采工艺,2016,38(5):588–593. doi: 10.13639/j.odpt.2016.05.009 LUO Renwen, LONG Daqing, WANG Kun, et al. Drilling fluid for the super-deep Well Mashen-1[J]. Oil Drilling & Production Technology, 2016, 38(5): 588–593. doi: 10.13639/j.odpt.2016.05.009
-
期刊类型引用(4)
1. 张玉彬. 钻井液水合物分解抑制性评价试验方法研究. 能源化工. 2024(02): 44-49 . 百度学术
2. 张逸群,胡萧,武晓亚,李根生,田守嶒,赵帅. 旋转射流冲蚀天然气水合物试验及数值模拟研究. 石油钻探技术. 2022(03): 24-33 . 本站查看
3. 王胜,谌强,袁学武,华绪,陈礼仪. 适用于低温地层的纳米复合水泥浆体系研究. 石油钻探技术. 2021(06): 73-80 . 本站查看
4. 郑成胜,蓝强,徐运波,赵怀珍. 天然气水合物抑制剂YHHI-1的合成及评价. 石油钻采工艺. 2020(06): 708-713 . 百度学术
其他类型引用(4)