Experimental Study of CO2 Huff and Puff Combined with N2 Foam for Enhanced Oil Recovery by Three-Dimensional Physical Models
-
摘要:
经CO2多轮吞吐后,华北某稠油油藏增油效果逐年变差,为进一步改善开发效果,采用N2泡沫/CO2复合吞吐提高原油采收率。为明确N2泡沫/CO2复合吞吐提高原油采收率机理,通过泡沫体系动、静态性能评价试验,评价了N2泡沫体系的封堵性能;采用自主研制的三维非均质物理模型开展了N2泡沫/CO2复合吞吐室内物理模拟试验,分析了N2泡沫与CO2复合提高采收率的效果及其相关机理。试验结果表明,质量分数0.3%的α-烯烃磺酸钠(AOS)和质量分数0.3%的聚丙烯酰胺(HPAM)可形成稳定的泡沫体系,其封堵率达到99.57%,可实现对高渗层的有效封堵。三维试验结果表明,N2泡沫/CO2复合吞吐可使采收率提高22.74百分点,吞吐过程中含水率最低可降至2.07%,有效作用期是纯CO2吞吐的2.5~3.0倍。N2泡沫/CO2复合吞吐可有效扩大CO2和后续水的波及体积,为其后续现场应用提供理论支撑。
Abstract:The oil increment of a heavy oil reservoir in North China decreases gradually year by year after multiple CO2 huff and puff operations. In order to improve the developmental effect, CO2 huff and puff combined with N2 foam was proposed to enhance the oil recovery. Evaluation experiments on dynamic and static performances of foam systems were conducted to clarify the mechanism of CO2 huff and puff combined with N2 foam in enhancing oil recovery and assess the plugging performance of N2 foam systems. Then, a self-designed three-dimensional heterogeneous physical model was used to carry out laboratory physical simulation experiments on CO2 huff and puff combined with N2 foam, with the effect of which on improving oil recovery and related mechanisms studied. Experimental results showed that a stable foam system could be formed by using α-olefin sulfonate (AOS) and polyacrylamide (HPAM) both with a mass fraction of 0.3%, and the plugging ratio could reach 99.57%, which thus effectively plugged high permeable layers. The results of three-dimensional experiments showed that CO2 huff and puff combined with N2 foam could improve the oil recovery by 22.74 percentage points, and the water cut could be reduced to as low as 2.07% during huff and puff operations, with its effective action period lasting 2.5–3.0 times that of pure CO2 huff and puff. The CO2 huff and puff combined with N2 foam can effectively enlarge the swept volumes of CO2 and subsequent water, which provides theoretical support for its future field applications.
-
-
表 1 试验岩心的基础物性参数
Table 1 Basic physical parameters of test cores
编号 泡沫注入量/PV 孔隙体积/mL 气测渗透率/mD 孔隙度,% 1 0.01 207 2 827 34.07 2 0.03 204 2 718 33.58 3 0.05 210 3 137 34.57 4 0.08 213 3 359 35.06 表 2 不同配方泡沫体系的综合指数
Table 2 Composite indexes of foam systems with different formulas
编号 AOS质量
分数,%HPAM质量
分数,%泡沫综合指数/
(mL·min)1 0.1 54 252 2 0.2 61 664 3 0.3 0.3 75 094 4 0.4 83 025 5 0.5 87 995 6 0.1 7 665 7 0.2 38 745 8 0.3 0.3 75 094 9 0.4 91 800 10 0.5 99 693 表 3 N2泡沫体系封堵性能评价结果
Table 3 Evaluation results of plugging effect of N2 foam systems
编号 泡沫
气液比水驱平衡
压差/kPa泡沫稳定
压差/kPa阻力
系数封堵
率,%1 1∶2 6.02 556.17 92.29 98.92 2 1.0∶1.5 4.94 740.43 149.88 99.33 3 1∶1 5.09 1190.09 233.96 99.57 4 2∶1 5.07 1049.09 206.79 99.51 表 4 纯CO2吞吐和N2泡沫/CO2复合吞吐三维物理模拟试验结果
Table 4 Results of three-dimensional physical simulation experiments on CO2 huff and puff combined with N2 foam and pure CO2 huff and puff
编号 试验方案 吞吐轮次 注入量 采收率增幅/百分点 最低含水率,% 有效期内吞吐量/PV 泡沫/mL CO2/mL(标况) 1 纯CO2吞吐 1 1 128 1.71 61.10 0.09 2 1 200 3.18 54.73 0.12 3 1 443 2.95 45.95 0.13 4 1 228 2.75 58.01 0.12 均值 1 250 2.65 54.95 0.12 总和 5 000 10.59 0.46 2 N2泡沫/CO2
复合吞吐1 40 1 138 8.98 2.07 0.39 2 40 1 130 4.36 31.29 0.28 3 40 1 035 5.11 65.01 0.28 4 40 1 095 4.29 58.42 0.24 均值 40 1 100 5.69 39.20 0.30 总和 160 4 400 22.74 1.19 -
[1] 王晓燕,章杨,张杰,等. 稠油油藏注CO2吞吐提高采收率机制[J]. 中国石油大学学报(自然科学版),2021,45(6):102–111. WANG Xiaoyan, ZHANG Yang, ZHANG Jie, et al. EOR mechanisms of CO2 huff and puff process for heavy oil recovery[J]. Journal of China University of Petroleum(Edition of Natural Science), 2021, 45(6): 102–111.
[2] 郭文轩,赵仁保,陈昌剑. CO2对春17井区稠油的溶解降黏特性及吞吐效果[J]. 西安石油大学学报((自然科学版),2021,36(1):66–72. GUO Wenxuan, ZHAO Renbao, CHEN Changjian. Dissolution viscosity-reducing performance and huff-puff effect of CO2 to heavy oil in Chun-17 Wellblock[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2021, 36(1): 66–72.
[3] ZHOU Xiang, YUAN Qingwang, PENG Xiaolong, et al. A critical review of the CO2 huff ‘n’ puff process for enhanced heavy oil recovery[J]. Fuel, 2018, 215: 813–824. doi: 10.1016/j.fuel.2017.11.092
[4] AHADI A, TORABI F. Effect of light hydrocarbon solvents on the performance of CO2-based cyclic solvent injection (CSI) in heavy oil systems[J]. Journal of Petroleum Science and Engineering, 2018, 163: 526–537. doi: 10.1016/j.petrol.2017.12.062
[5] 毕永斌,耿文爽,张雪娜,等. 高含水油藏全生命周期剩余油挖潜三参数研究[J]. 断块油气田,2021,28(1):109–114. BI Yongbin, GENG Wenshuang, ZHANG Xuena, et al. Study on three parameters of remaining oil potential tapping in high water cut reservoir during its whole life cycle[J]. Fault-Block Oil & Gas Field, 2021, 28(1): 109–114.
[6] 史英,盖长城,颜菲,等. 稠油油藏CO2吞吐合理吞吐轮次[J]. 大庆石油地质与开发,2017,36(1):129–133. SHI Ying, GAI Changcheng, YAN Fei, et al. Reasonable cyclic times of CO2 huff and puff for heavy oil reservoirs[J]. Petroleum Geology & Oilfield Development in Daqing, 2017, 36(1): 129–133.
[7] 张娟,周立发,张晓辉,等. 浅薄层稠油油藏水平井CO2吞吐效果[J]. 新疆石油地质,2018,39(4):485–491. ZHANG Juan, ZHOU Lifa, ZHANG Xiaohui, et al. Effects of CO2 huff and puff in horizontal wells in shallow-burial thin heavy oil reservoirs[J]. Xinjiang Petroleum Geology, 2018, 39(4): 485–491.
[8] 郝宏达,侯吉瑞,黄捍东,等. 冀东浅层稠油油藏CO2/N2复合气体吞吐提高采收率的可行性[J]. 油田化学,2020,37(1):80–85. HAO Hongda, HOU Jirui, HUANG Handong, et al. Feasibilty of gas-EOR using CO2/N2 mixture for a shallow-buried heavy oil reservoir in Jidong Oilfield[J]. Oilfield Chemistry, 2020, 37(1): 80–85.
[9] 郑玉飞,李翔,徐景亮,等. 渤海P油田层内生成CO2调驱技术[J]. 石油钻探技术,2020,48(2):108–112. ZHENG Yufei, LI Xiang, XU Jingliang, et al. In-situ CO2 generation technology in Bohai P Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 108–112.
[10] 赵凤兰,宋黎光,冯海如,等. 厚层砂岩油藏原油密度影响下的CO2驱重力超覆实验[J]. 断块油气田,2021,28(6):842–847. ZHAO Fenglan, SONG Liguang, FENG Hairu, et al. Experimental study of CO2 gravity segregation effected by off density in thick sandstone reservoirs[J]. Fault-Block Oil and Gas Field, 2021, 28(6): 842–847.
[11] 张怿赫,盛家平,李情霞,等. CO2吞吐技术应用进展[J]. 特种油气藏,2021,28(6):1–10. ZHANG Yihe, SHENG Jiaping, LI Qingxia, et al. Advances in the application of CO2 stimulation technology[J]. Special Oil & Gas Reservoirs, 2021, 28(6): 1–10.
[12] 赵凤兰,付忠凤,郝宏达,等. 氮气泡沫吞吐的控水增油机理[J]. 油田化学,2018,35(3):451–457. ZHAO Fenglan, FU Zhongfeng, HAO Hongda, et al. Mechanism of nitrogen foam preventing edge-water coning in huff-n-puff well[J]. Oilfield Chemistry, 2018, 35(3): 451–457.
[13] 王鹏,赵凤兰,侯吉瑞,等. 氮气泡沫吞吐抑制潜山底水油藏水平井底水锥进实验研究[J]. 油气地质与采收率,2018,25(5):110–115. WANG Peng, ZHAO Fenglan, HOU Jirui, et al. An experimental study of horizontal Bottom water coning control with nitrogen foam huff and puff in buried-hill reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(5): 110–115.
[14] 周光林, 寇磊, 汤云浦, 等. 浅层天然水驱油藏氮气泡沫控水稳油技术研究[J]. 中国矿业, 2018, 27(增刊1): 361-364. ZHOU Guanglin, KOU Lei, TANG Yunpu, et al. Study on water control technology of nitrogen foam in shallow natural water drive reservoir[J]. China Mining Magazine, 2018, 27(supplement 1): 361-364.
[15] CHEN Danqi, ZHAO Hongwei, LIU Kun, et al. The effect of emulsion and foam on anti-water coning during nitrogen foam injection in bottom-water reservoirs[J]. Journal of Petroleum Science and Engineering, 2021, 196: 107766. doi: 10.1016/j.petrol.2020.107766
[16] 李兆敏,徐正晓,李宾飞,等. 泡沫驱技术研究与应用进展[J]. 中国石油大学学报(自然科学版),2019,43(5):118–127. LI Zhaomin, XU Zhengxiao, LI Binfei, et al. Advances in research and application of foam flooding technology[J]. Journal of China University of Petroleum(Edition of Natural Science), 2019, 43(5): 118–127.
[17] 孙鹏霄,苏崇华,孟伟斌. 氮气泡沫在海上高含水油田选择性堵水中的应用[J]. 石油钻采工艺,2016,38(1):110–113. SUN Pengxiao, SU Chonghua, MENG Weibin. Application of nitrogen foam in selective water plugging of offshore high water content oil field[J]. Oil Drilling & Production Technology, 2016, 38(1): 110–113.
[18] HE Gang, LI Huabin, GUO Chengfei, et al. Stable foam systems for improving oil recovery under high-temperature and high-salt reservoir conditions[J]. Journal of Petroleum Science and Engineering, 2022, 211: 110145. doi: 10.1016/j.petrol.2022.110145
[19] HANSSEN J E. Foam as a gas-blocking agent in petroleum reservoirs I: Empirical observations and parametric study[J]. Journal of Petroleum Science and Engineering, 1993, 10(2): 117–133. doi: 10.1016/0920-4105(93)90036-E
[20] 吕伟,刘笑春,白海龙,等. CO2响应性增强泡沫体系室内试验研究[J]. 石油钻探技术,2021,49(5):88–93. LYU Wei, LIU Xiaochun, BAI Hailong, et al. Laboratory test study of CO2 responsive enhanced foam system[J]. Petroleum Drilling Techniques, 2021, 49(5): 88–93.
[21] 张旋,张贵才,葛际江,等. 聚合物强化CO2泡沫稳定性能研究[J]. 断块油气田,2020,27(6):799–802. ZHANG Xuan, ZHANG Guicai, GE Jijiang, et al. Research on the stability of polymer enhanced CO2 foam[J]. Fault-Block Oil & Gas Field, 2020, 27(6): 799–802.
[22] 牟汉生,陆文明,曹长霄,等. 深水浊积岩油藏提高采收率方法研究:以安哥拉X油藏为例[J]. 石油钻探技术,2021,49(2):79–89. MOU Hansheng, LU Wenming, CAO Changxiao, et al. Study on enhanced oil recovery method in deep-water turbidite reservoirs: a case study of X reservoir in Angola[J]. Petroleum Drilling Techniques, 2021, 49(2): 79–89.
-
期刊类型引用(26)
1. 睢圣. 永川南区页岩气水平井优快钻井技术. 石油和化工设备. 2023(07): 109-113 . 百度学术
2. 石芳,熊青山,李微,王柯,刘恒. 涪陵页岩气田井场规划技术研究. 能源与环保. 2022(06): 104-113 . 百度学术
3. 睢圣,沈建文,李昱垚,李衡. 威荣深层页岩气水平井钻井提速关键技术. 石油和化工设备. 2022(09): 106-109 . 百度学术
4. 范红康,刘劲歌,臧艳彬,周贤海,艾军,宋争. 涪陵页岩气田焦石坝区块调整井钻井技术. 石油钻探技术. 2021(03): 48-54 . 本站查看
5. 田福春,刘学伟,张胜传,张高峰,邵力飞,陈紫薇. 大港油田陆相页岩油滑溜水连续加砂压裂技术. 石油钻探技术. 2021(04): 118-124 . 本站查看
6. 张辉. 大牛地气田丛式小井眼集约化钻井技术. 天然气技术与经济. 2020(02): 28-33 . 百度学术
7. 张宏桥,游娜,李妍僖,唐凯,王前敏,牟新明. 射孔快速连接井口装置技术现状及分析. 石油矿场机械. 2020(06): 16-20 . 百度学术
8. 吴林强,张涛,徐晶晶,郭洪周,蒋成竹,赵一璇. “涪陵样板”对加快推进长江经济带页岩气勘查开发新格局的启示. 国际石油经济. 2019(02): 36-42 . 百度学术
9. 金成志,何剑,林庆祥,梅俭,段彦清. 松辽盆地北部芳198-133区块致密油地质工程一体化压裂实践. 中国石油勘探. 2019(02): 218-225 . 百度学术
10. 魏学成. 页岩气压裂井场火灾智能预警及远控消防系统. 今日消防. 2019(05): 53-55 . 百度学术
11. 赵全民,张金成,刘劲歌. 中国页岩气革命现状与发展建议. 探矿工程(岩土钻掘工程). 2019(08): 1-9 . 百度学术
12. 董成林,涂玉林,殷子横,张金成,周号博. 涪陵页岩气田钻井提速集成技术应用研究. 西部探矿工程. 2019(12): 47-50 . 百度学术
13. 潘军,刘卫东,张金成. 涪陵页岩气田钻井工程技术进展与发展建议. 石油钻探技术. 2018(04): 9-15 . 本站查看
14. 刘尧文. 涪陵页岩气田绿色开发关键技术. 石油钻探技术. 2018(05): 8-13 . 本站查看
15. 李亚飞. 焦页81平台“1+N”钻井模式压力异常处理技术. 化工管理. 2017(11): 215 . 百度学术
16. 梅绪东,金吉中,王朝强,何勇,王丹,张春. 涪陵页岩气田绿色开发的实践与探索. 西南石油大学学报(社会科学版). 2017(06): 9-14 . 百度学术
17. 柴光明. 工厂化技术在致密油水平井钻井中的应用. 石化技术. 2017(07): 286 . 百度学术
18. 彭彩珍,任玉洁. 页岩气开发关键新型技术应用现状及挑战. 当代石油石化. 2017(01): 24-27+33 . 百度学术
19. 李彬,付建红,秦富兵,唐一元. 威远区块页岩气“井工厂”钻井技术. 石油钻探技术. 2017(05): 13-18 . 本站查看
20. 郭盛堂. 工厂化水平井钻井关键技术. 西部探矿工程. 2017(05): 90-92 . 百度学术
21. 谢洪斌,姚光华,罗真富,杨雪,谭德军. GIS与RS技术在页岩气钻场选址中的应用——以重庆酉阳东页岩气勘查区块为例. 遥感信息. 2017(04): 152-156 . 百度学术
22. 代兆国. 焦石坝“丛式井”压裂设备布局研究. 江汉石油职工大学学报. 2016(06): 28-31 . 百度学术
23. 张金成,艾军,臧艳彬,杨海平,陈小锋. 涪陵页岩气田“井工厂”技术. 石油钻探技术. 2016(03): 9-15 . 本站查看
24. 臧艳彬,张金成,赵明琨,宋争,罗锐. 涪陵页岩气田“井工厂”技术经济性评价. 石油钻探技术. 2016(06): 30-35 . 本站查看
25. 刘超. 涪陵页岩气田“绿色”钻井关键技术研究与实践. 探矿工程(岩土钻掘工程). 2016(07): 9-13 . 百度学术
26. 沈建中,龙志平. 延川南煤层气低成本高效钻井技术探索与实践. 石油钻探技术. 2015(05): 69-74 . 本站查看
其他类型引用(15)