N2泡沫/CO2复合吞吐提高采收率三维物理模拟试验研究

苑登御

苑登御. N2泡沫/CO2复合吞吐提高采收率三维物理模拟试验研究[J]. 石油钻探技术,2022, 50(6):126-132. DOI: 10.11911/syztjs.2022105
引用本文: 苑登御. N2泡沫/CO2复合吞吐提高采收率三维物理模拟试验研究[J]. 石油钻探技术,2022, 50(6):126-132. DOI: 10.11911/syztjs.2022105
YUAN Dengyu. Experimental study of CO2 huff and puff combined with N2 foam for enhanced oil recovery by three-dimensional physical models [J]. Petroleum Drilling Techniques,2022, 50(6):126-132. DOI: 10.11911/syztjs.2022105
Citation: YUAN Dengyu. Experimental study of CO2 huff and puff combined with N2 foam for enhanced oil recovery by three-dimensional physical models [J]. Petroleum Drilling Techniques,2022, 50(6):126-132. DOI: 10.11911/syztjs.2022105

N2泡沫/CO2复合吞吐提高采收率三维物理模拟试验研究

详细信息
    作者简介:

    苑登御(1987—),男,黑龙江大庆人,2010年毕业于北京化工大学材料科学与工程专业,2016年获中国石油大学(北京)油气田开发工程专业博士学位,工程师,主要从事油气田开发方面的研究工作。E-mail:137008985@qq.com

  • 中图分类号: TE345

Experimental Study of CO2 Huff and Puff Combined with N2 Foam for Enhanced Oil Recovery by Three-Dimensional Physical Models

  • 摘要:

    经CO2多轮吞吐后,华北某稠油油藏增油效果逐年变差,为进一步改善开发效果,采用N2泡沫/CO2复合吞吐提高原油采收率。为明确N2泡沫/CO2复合吞吐提高原油采收率机理,通过泡沫体系动、静态性能评价试验,评价了N2泡沫体系的封堵性能;采用自主研制的三维非均质物理模型开展了N2泡沫/CO2复合吞吐室内物理模拟试验,分析了N2泡沫与CO2复合提高采收率的效果及其相关机理。试验结果表明,质量分数0.3%的α-烯烃磺酸钠(AOS)和质量分数0.3%的聚丙烯酰胺(HPAM)可形成稳定的泡沫体系,其封堵率达到99.57%,可实现对高渗层的有效封堵。三维试验结果表明,N2泡沫/CO2复合吞吐可使采收率提高22.74百分点,吞吐过程中含水率最低可降至2.07%,有效作用期是纯CO2吞吐的2.5~3.0倍。N2泡沫/CO2复合吞吐可有效扩大CO2和后续水的波及体积,为其后续现场应用提供理论支撑。

    Abstract:

    The oil increment of a heavy oil reservoir in North China decreases gradually year by year after multiple CO2 huff and puff operations. In order to improve the developmental effect, CO2 huff and puff combined with N2 foam was proposed to enhance the oil recovery. Evaluation experiments on dynamic and static performances of foam systems were conducted to clarify the mechanism of CO2 huff and puff combined with N2 foam in enhancing oil recovery and assess the plugging performance of N2 foam systems. Then, a self-designed three-dimensional heterogeneous physical model was used to carry out laboratory physical simulation experiments on CO2 huff and puff combined with N2 foam, with the effect of which on improving oil recovery and related mechanisms studied. Experimental results showed that a stable foam system could be formed by using α-olefin sulfonate (AOS) and polyacrylamide (HPAM) both with a mass fraction of 0.3%, and the plugging ratio could reach 99.57%, which thus effectively plugged high permeable layers. The results of three-dimensional experiments showed that CO2 huff and puff combined with N2 foam could improve the oil recovery by 22.74 percentage points, and the water cut could be reduced to as low as 2.07% during huff and puff operations, with its effective action period lasting 2.5–3.0 times that of pure CO2 huff and puff. The CO2 huff and puff combined with N2 foam can effectively enlarge the swept volumes of CO2 and subsequent water, which provides theoretical support for its future field applications.

  • 图  1   N2泡沫/CO2复合吞吐试验三维非均质岩心模型

    Figure  1.   Three-dimensional heterogeneous core model for experiments on CO2 huff and puff combined with N2 foam

    图  2   发泡体积和半衰期与AOS质量分数的关系

    Figure  2.   Variation of foam volume and half-life period with AOS mass fractions

    图  3   发泡体积和半衰期与HPAM质量分数的关系

    Figure  3.   Variation of foam volume and half-life period with HPAM mass fractions

    图  4   不同气液比下N2泡沫体系注入驱替压差曲线

    Figure  4.   Displacement pressure drop curves of N2 foam with different gas/liquid ratios

    图  5   纯CO2吞吐与N2泡沫/CO2复合吞吐生产动态曲线

    Figure  5.   Dynamic production curves of CO2 huff and puff combined with N2 foam and pure CO2 huff and puff

    表  1   试验岩心的基础物性参数

    Table  1   Basic physical parameters of test cores

    编号泡沫注入量/PV孔隙体积/mL气测渗透率/mD孔隙度,%
    10.012072 82734.07
    20.032042 71833.58
    30.052103 13734.57
    40.082133 35935.06
    下载: 导出CSV

    表  2   不同配方泡沫体系的综合指数

    Table  2   Composite indexes of foam systems with different formulas

    编号AOS质量
    分数,%
    HPAM质量
    分数,%
    泡沫综合指数/
    (mL·min)
    10.154 252
    20.261 664
    30.30.375 094
    40.483 025
    50.587 995
    60.1 7 665
    70.238 745
    80.30.375 094
    90.491 800
    100.599 693
    下载: 导出CSV

    表  3   N2泡沫体系封堵性能评价结果

    Table  3   Evaluation results of plugging effect of N2 foam systems

    编号泡沫
    气液比
    水驱平衡
    压差/kPa
    泡沫稳定
    压差/kPa
    阻力
    系数
    封堵
    率,%
    11∶26.02 556.17 92.2998.92
    21.0∶1.54.94 740.43149.8899.33
    31∶15.091190.09233.9699.57
    42∶15.071049.09206.7999.51
    下载: 导出CSV

    表  4   纯CO2吞吐和N2泡沫/CO2复合吞吐三维物理模拟试验结果

    Table  4   Results of three-dimensional physical simulation experiments on CO2 huff and puff combined with N2 foam and pure CO2 huff and puff

    编号试验方案吞吐轮次注入量采收率增幅/百分点最低含水率,%有效期内吞吐量/PV
    泡沫/mLCO2/mL(标况)
    1纯CO2吞吐11 128 1.7161.100.09
    21 200 3.1854.730.12
    31 443 2.9545.950.13
    41 228 2.7558.010.12
    均值1 250 2.6554.950.12
    总和5 00010.590.46
    2N2泡沫/CO2
    复合吞吐
    1 401 138 8.98 2.070.39
    2 401 130 4.3631.290.28
    3 401 035 5.1165.010.28
    4 401 095 4.2958.420.24
    均值 401 100 5.6939.200.30
    总和1604 40022.741.19
    下载: 导出CSV
  • [1] 王晓燕,章杨,张杰,等. 稠油油藏注CO2吞吐提高采收率机制[J]. 中国石油大学学报(自然科学版),2021,45(6):102–111.

    WANG Xiaoyan, ZHANG Yang, ZHANG Jie, et al. EOR mechanisms of CO2 huff and puff process for heavy oil recovery[J]. Journal of China University of Petroleum(Edition of Natural Science), 2021, 45(6): 102–111.

    [2] 郭文轩,赵仁保,陈昌剑. CO2对春17井区稠油的溶解降黏特性及吞吐效果[J]. 西安石油大学学报((自然科学版),2021,36(1):66–72.

    GUO Wenxuan, ZHAO Renbao, CHEN Changjian. Dissolution viscosity-reducing performance and huff-puff effect of CO2 to heavy oil in Chun-17 Wellblock[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2021, 36(1): 66–72.

    [3]

    ZHOU Xiang, YUAN Qingwang, PENG Xiaolong, et al. A critical review of the CO2 huff ‘n’ puff process for enhanced heavy oil recovery[J]. Fuel, 2018, 215: 813–824. doi: 10.1016/j.fuel.2017.11.092

    [4]

    AHADI A, TORABI F. Effect of light hydrocarbon solvents on the performance of CO2-based cyclic solvent injection (CSI) in heavy oil systems[J]. Journal of Petroleum Science and Engineering, 2018, 163: 526–537. doi: 10.1016/j.petrol.2017.12.062

    [5] 毕永斌,耿文爽,张雪娜,等. 高含水油藏全生命周期剩余油挖潜三参数研究[J]. 断块油气田,2021,28(1):109–114.

    BI Yongbin, GENG Wenshuang, ZHANG Xuena, et al. Study on three parameters of remaining oil potential tapping in high water cut reservoir during its whole life cycle[J]. Fault-Block Oil & Gas Field, 2021, 28(1): 109–114.

    [6] 史英,盖长城,颜菲,等. 稠油油藏CO2吞吐合理吞吐轮次[J]. 大庆石油地质与开发,2017,36(1):129–133.

    SHI Ying, GAI Changcheng, YAN Fei, et al. Reasonable cyclic times of CO2 huff and puff for heavy oil reservoirs[J]. Petroleum Geology & Oilfield Development in Daqing, 2017, 36(1): 129–133.

    [7] 张娟,周立发,张晓辉,等. 浅薄层稠油油藏水平井CO2吞吐效果[J]. 新疆石油地质,2018,39(4):485–491.

    ZHANG Juan, ZHOU Lifa, ZHANG Xiaohui, et al. Effects of CO2 huff and puff in horizontal wells in shallow-burial thin heavy oil reservoirs[J]. Xinjiang Petroleum Geology, 2018, 39(4): 485–491.

    [8] 郝宏达,侯吉瑞,黄捍东,等. 冀东浅层稠油油藏CO2/N2复合气体吞吐提高采收率的可行性[J]. 油田化学,2020,37(1):80–85.

    HAO Hongda, HOU Jirui, HUANG Handong, et al. Feasibilty of gas-EOR using CO2/N2 mixture for a shallow-buried heavy oil reservoir in Jidong Oilfield[J]. Oilfield Chemistry, 2020, 37(1): 80–85.

    [9] 郑玉飞,李翔,徐景亮,等. 渤海P油田层内生成CO2调驱技术[J]. 石油钻探技术,2020,48(2):108–112.

    ZHENG Yufei, LI Xiang, XU Jingliang, et al. In-situ CO2 generation technology in Bohai P Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 108–112.

    [10] 赵凤兰,宋黎光,冯海如,等. 厚层砂岩油藏原油密度影响下的CO2驱重力超覆实验[J]. 断块油气田,2021,28(6):842–847.

    ZHAO Fenglan, SONG Liguang, FENG Hairu, et al. Experimental study of CO2 gravity segregation effected by off density in thick sandstone reservoirs[J]. Fault-Block Oil and Gas Field, 2021, 28(6): 842–847.

    [11] 张怿赫,盛家平,李情霞,等. CO2吞吐技术应用进展[J]. 特种油气藏,2021,28(6):1–10.

    ZHANG Yihe, SHENG Jiaping, LI Qingxia, et al. Advances in the application of CO2 stimulation technology[J]. Special Oil & Gas Reservoirs, 2021, 28(6): 1–10.

    [12] 赵凤兰,付忠凤,郝宏达,等. 氮气泡沫吞吐的控水增油机理[J]. 油田化学,2018,35(3):451–457.

    ZHAO Fenglan, FU Zhongfeng, HAO Hongda, et al. Mechanism of nitrogen foam preventing edge-water coning in huff-n-puff well[J]. Oilfield Chemistry, 2018, 35(3): 451–457.

    [13] 王鹏,赵凤兰,侯吉瑞,等. 氮气泡沫吞吐抑制潜山底水油藏水平井底水锥进实验研究[J]. 油气地质与采收率,2018,25(5):110–115.

    WANG Peng, ZHAO Fenglan, HOU Jirui, et al. An experimental study of horizontal Bottom water coning control with nitrogen foam huff and puff in buried-hill reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(5): 110–115.

    [14] 周光林, 寇磊, 汤云浦, 等. 浅层天然水驱油藏氮气泡沫控水稳油技术研究[J]. 中国矿业, 2018, 27(增刊1): 361-364.

    ZHOU Guanglin, KOU Lei, TANG Yunpu, et al. Study on water control technology of nitrogen foam in shallow natural water drive reservoir[J]. China Mining Magazine, 2018, 27(supplement 1): 361-364.

    [15]

    CHEN Danqi, ZHAO Hongwei, LIU Kun, et al. The effect of emulsion and foam on anti-water coning during nitrogen foam injection in bottom-water reservoirs[J]. Journal of Petroleum Science and Engineering, 2021, 196: 107766. doi: 10.1016/j.petrol.2020.107766

    [16] 李兆敏,徐正晓,李宾飞,等. 泡沫驱技术研究与应用进展[J]. 中国石油大学学报(自然科学版),2019,43(5):118–127.

    LI Zhaomin, XU Zhengxiao, LI Binfei, et al. Advances in research and application of foam flooding technology[J]. Journal of China University of Petroleum(Edition of Natural Science), 2019, 43(5): 118–127.

    [17] 孙鹏霄,苏崇华,孟伟斌. 氮气泡沫在海上高含水油田选择性堵水中的应用[J]. 石油钻采工艺,2016,38(1):110–113.

    SUN Pengxiao, SU Chonghua, MENG Weibin. Application of nitrogen foam in selective water plugging of offshore high water content oil field[J]. Oil Drilling & Production Technology, 2016, 38(1): 110–113.

    [18]

    HE Gang, LI Huabin, GUO Chengfei, et al. Stable foam systems for improving oil recovery under high-temperature and high-salt reservoir conditions[J]. Journal of Petroleum Science and Engineering, 2022, 211: 110145. doi: 10.1016/j.petrol.2022.110145

    [19]

    HANSSEN J E. Foam as a gas-blocking agent in petroleum reservoirs I: Empirical observations and parametric study[J]. Journal of Petroleum Science and Engineering, 1993, 10(2): 117–133. doi: 10.1016/0920-4105(93)90036-E

    [20] 吕伟,刘笑春,白海龙,等. CO2响应性增强泡沫体系室内试验研究[J]. 石油钻探技术,2021,49(5):88–93.

    LYU Wei, LIU Xiaochun, BAI Hailong, et al. Laboratory test study of CO2 responsive enhanced foam system[J]. Petroleum Drilling Techniques, 2021, 49(5): 88–93.

    [21] 张旋,张贵才,葛际江,等. 聚合物强化CO2泡沫稳定性能研究[J]. 断块油气田,2020,27(6):799–802.

    ZHANG Xuan, ZHANG Guicai, GE Jijiang, et al. Research on the stability of polymer enhanced CO2 foam[J]. Fault-Block Oil & Gas Field, 2020, 27(6): 799–802.

    [22] 牟汉生,陆文明,曹长霄,等. 深水浊积岩油藏提高采收率方法研究:以安哥拉X油藏为例[J]. 石油钻探技术,2021,49(2):79–89.

    MOU Hansheng, LU Wenming, CAO Changxiao, et al. Study on enhanced oil recovery method in deep-water turbidite reservoirs: a case study of X reservoir in Angola[J]. Petroleum Drilling Techniques, 2021, 49(2): 79–89.

  • 期刊类型引用(33)

    1. 熊冬,王翔,马新仿,张士诚,王雷,张遂安,郭天魁,刘美娟,贺甲元. 基于机械比能聚类分析的深层煤岩水平段岩性判识方法. 天然气工业. 2025(02): 114-124 . 百度学术
    2. 李富强,宋朝晖,伊明,刘洪涛,张森,刁斌斌. 救援井磁测距时电极与探管最优距离的计算. 石油钻探技术. 2024(03): 34-39 . 本站查看
    3. 于瑞丰,刁斌斌,高德利,刘喆,张富磊. 救援井在穿越井段提高测量精度的计算方法研究. 钻采工艺. 2024(04): 132-139 . 百度学术
    4. 胡中志,王佩赛. 套管—钻杆窄间隙环形空间电磁波传输特性. 天然气工业. 2024(08): 114-124 . 百度学术
    5. 张吉喆,乔磊,张宇昊,任宪可,车阳,吴昌亮,金玲. MGD无源磁导向工具隔热保护舱优化设计. 石油机械. 2024(09): 45-51 . 百度学术
    6. 颜肖平,王志博,王龙,刁斌斌,曹旭东,梁华庆. 微弱低频磁测距信号的高精度测量系统设计. 传感器与微系统. 2023(04): 115-118 . 百度学术
    7. 刘刚,王刚,王锴,李祎宸,胡轶男,孔得臣. 密集丛式井防碰技术研究现状及发展趋势. 中国海上油气. 2023(02): 146-154 . 百度学术
    8. 车阳,乔磊,王建国,曹东建,杜卫强,蓝海峰. X井精准治理技术研究与应用. 断块油气田. 2023(02): 347-352 . 百度学术
    9. 刘聃,陈剑垚,侯岳,何楠,周绍武. 钻井利器的故事之“慧磁”高精度定向中靶导向系统. 钻探工程. 2023(04): 155-159 . 百度学术
    10. 高德利,黄文君,刁斌斌,张玉霖. 复杂结构井定向钻井技术现状及展望. 前瞻科技. 2023(02): 11-21 . 百度学术
    11. 鲜保安,高德利,徐凤银,毕延森,李贵川,王京光,张洋,韩金良. 中国煤层气水平井钻完井技术研究进展. 石油学报. 2023(11): 1974-1992 . 百度学术
    12. 车阳,乔磊,林盛杰,朱晓雨,杜卫强,王开龙. 页岩油原位开发小井间距水平井钻井模拟实验初探. 钻采工艺. 2022(01): 29-34 . 百度学术
    13. 颜肖平,梁华庆,王志博,王龙,曹旭东. 井下高温高精度磁场随钻测量系统设计. 仪表技术与传感器. 2022(03): 88-91+97 . 百度学术
    14. 高德利,毕延森,鲜保安. 中国煤层气高效开发井型与钻完井技术进展. 天然气工业. 2022(06): 1-18 . 百度学术
    15. 杨连行. 磁导向钻井技术在辽河油田复杂结构井的应用. 石化技术. 2022(06): 69-71 . 百度学术
    16. 胡一鸣,于晓东,翁广超. 磁导向钻井技术在井眼重入中的应用. 天然气勘探与开发. 2022(03): 57-66 . 百度学术
    17. 窦新宇. 邻井定位多频优化过零梯形激励信号源设计. 唐山学院学报. 2022(06): 21-28 . 百度学术
    18. 车阳,王金忠,晋新伟,胡勇科,胡一鸣,余文艳,杜卫强,蓝海峰. 地下储气库多井眼重入封井技术研究及应用. 石油钻采工艺. 2022(04): 415-421 . 百度学术
    19. 姜天杰,刘建强,党熠蒲,陈志勇,刘小刚. 基于磁通门阵列的被动式救援井探测定位系统研究. 石化技术. 2021(01): 65-67 . 百度学术
    20. 车卫勤,谭勇志,叶伟娟,杜晶,罗忠保,许雅潇. 套管坐标截面法推算磁干扰轨迹的研究与应用. 石油钻采工艺. 2021(02): 170-176 . 百度学术
    21. 李国强,李翠. 基于磁场梯度的邻井防碰方法研究. 石化技术. 2021(05): 149-150+154 . 百度学术
    22. 高德利. 非常规油气井工程技术若干研究进展. 天然气工业. 2021(08): 153-162 . 百度学术
    23. 于瑞丰,刁斌斌,高德利. 基于邻井距离测量误差的救援井磁测距工具优选方法. 石油钻探技术. 2021(06): 118-124 . 本站查看
    24. 高德利. 深海天然气及其水合物开发模式与钻采技术探讨. 天然气工业. 2020(08): 169-176 . 百度学术
    25. 付友义,周洪林,陈佳杰. 大港油田长新5磨铣套管救援井设计与实践. 钻采工艺. 2020(05): 5-8+152 . 百度学术
    26. 张森,刁斌斌,高德利. 基于统计分析的最优救援井数量及救援成功率研究. 钻采工艺. 2020(06): 1-4+6 . 百度学术
    27. 任凤娟. 无刷直流电机电控纠偏控制系统设计与研究. 石油矿场机械. 2019(02): 38-41 . 百度学术
    28. 高德利,黄文君,李鑫. 大位移井钻井延伸极限研究与工程设计方法. 石油钻探技术. 2019(03): 1-8 . 本站查看
    29. 高德利. 大型丛式水平井工程与山区页岩气高效开发模式. 天然气工业. 2018(08): 1-7 . 百度学术
    30. 王海涛,刘瑞杰,赵璐阳,边晨,赵南星,曾传云. 煤层气连通水平井精确控制技术. 石油钻采工艺. 2017(06): 692-696 . 百度学术
    31. 李峰飞,蒋世全,周建良,李迅科. 深水救援井井眼轨道设计探讨. 石油钻探技术. 2017(01): 21-26 . 本站查看
    32. 范光第,蒲文学,赵国山,黄根炉. 磁力随钻测斜仪轴向磁干扰校正方法. 石油钻探技术. 2017(04): 121-126 . 本站查看
    33. 李翠,高丽萍,李佳,高德利,侯煜琨. 邻井随钻电磁测距防碰工具模拟试验研究. 石油钻探技术. 2017(06): 110-115 . 本站查看

    其他类型引用(20)

图(5)  /  表(4)
计量
  • 文章访问数:  199
  • HTML全文浏览量:  91
  • PDF下载量:  42
  • 被引次数: 53
出版历程
  • 收稿日期:  2022-03-06
  • 修回日期:  2022-09-09
  • 录用日期:  2022-10-23
  • 网络出版日期:  2022-11-13
  • 刊出日期:  2022-12-07

目录

    /

    返回文章
    返回