可溶性球座Fe-Mn合金力学及腐蚀性能研究

王维, 严锐锋, 魏克颖, 吴红钦, 屈文涛

王维,严锐锋,魏克颖,等. 可溶性球座Fe-Mn合金力学及腐蚀性能研究[J]. 石油钻探技术,2022, 50(6):133-138. DOI: 10.11911/syztjs.2022103
引用本文: 王维,严锐锋,魏克颖,等. 可溶性球座Fe-Mn合金力学及腐蚀性能研究[J]. 石油钻探技术,2022, 50(6):133-138. DOI: 10.11911/syztjs.2022103
WANG Wei, YAN Ruifeng, WEI Keying, et al. Study on mechanical and corrosion properties of Fe-Mn alloy for soluble ball seats [J]. Petroleum Drilling Techniques,2022, 50(6):133-138. DOI: 10.11911/syztjs.2022103
Citation: WANG Wei, YAN Ruifeng, WEI Keying, et al. Study on mechanical and corrosion properties of Fe-Mn alloy for soluble ball seats [J]. Petroleum Drilling Techniques,2022, 50(6):133-138. DOI: 10.11911/syztjs.2022103

可溶性球座Fe-Mn合金力学及腐蚀性能研究

基金项目: 陕西省重点研发计划项目“井下服役耐高温钛基SMA智能驱动封隔技术研究”(编号:2022GY-401)资助
详细信息
    作者简介:

    王维(1988—),陕西西安人,2011年毕业于西北大学资源勘察工程专业,2014年获西北大学能源地质学专业硕士学位,工程师,主要从事常规油气田提高采收率方面的研究工作。E-mail:375616824@qq.com

  • 中图分类号: TE925.3

Study on Mechanical and Corrosion Properties of Fe-Mn Alloy for Soluble Ball Seats

  • 摘要:

    高温高压腐蚀环境下,可溶性球座会因材料强度、硬度不足及降解过快等原因过早失效。为此,采用OM、SEM、XRD表征可溶性球座材料Fe-Mn合金的微观结构与相成分,开展电化学测试、力学性能测试、加速浸泡腐蚀试验及高温高压浸泡腐蚀试验,分析了Fe-Mn合金的力学及腐蚀性能。测试结果表明,锰元素有细化晶粒的作用,随着锰含量增大,合金硬度和屈服强度呈先增大后减小趋势,Fe-5Mn合金硬度和屈服强度分别为345 HV和812 MPa;锰含量增大,自腐蚀电位负移,腐蚀电流密度增大,Fe-5Mn合金自腐蚀电流密度为4.64×10-5 mA/cm2。在长期加速浸泡腐蚀试验环境下,锰含量增大,导致腐蚀速率降低,Fe-5Mn极限降解速率为4.3 mm/a;长期高温高压浸泡试验条件下,腐蚀初期锰含量增大,提升了腐蚀速率,腐蚀后期合金整体腐蚀速率缓慢且趋于同一水平,Fe-5Mn满足作为可溶性球座材料的性能要求。研究结果可为选择Fe-Mn合金作为井下可溶性球座材料提供参考。

    Abstract:

    In high-temperature and high-pressure corrosion environments, soluble ball seats would fail prematurely due to insufficient strength, hardness and rapid degradation. Therefore, the microstructure and phase composition of the Fe-Mn alloy for soluble ball seat materials were characterized by optical microscope(OM), scanning electron microscope(SEM), and X-ray diffraction(XRD). In addition, the mechanical and corrosion properties of the Fe-Mn alloy were studied by means of electrochemical tests, mechanical property tests, accelerated immersion corrosion tests, and high-temperature and high-pressure immersion corrosion tests. The test results indicated that Mn could refine grains. With the increase of Mn content, the hardness and yield strength of the alloy first increased and then decreased. The hardness and yield strength of Fe-5Mn alloy was 345 HV and 812 MPa, respectively. With the increase in Mn content, the self-corrosion potential changed negatively, and the corrosion current density increased. The self-corrosion current density of Fe-5Mn alloy was 4.64 × 10-5mA/cm2. In the experimental environment of long-term accelerated immersion corrosion, the increase in Mn content led to the decrease of the corrosion rate, and the ultimate degradation rate of Fe-5Mn was 4.3 mm/a. In the long-term high-temperature and high-pressure immersion experiment, the increase in Mn content at the initial stage of corrosion increased the corrosion rate, while the overall corrosion rate of the alloy was slow and tended to be stable at later stages of corrosion. In conclusion, Fe-5Mn met the performance requirements for soluble ball seat materials. This study could provide a reference for the application of Fe-Mn alloy in downhole soluble ball seats.

  • 图  1   不同锰含量下Fe-Mn合金的显微组织

    Figure  1.   Microstructure of Fe-Mn alloy with different Mn contents

    图  2   不同锰含量下Fe-Mn合金的X射线衍射图谱

    Figure  2.   X-ray diffraction patterns of Fe-Mn alloy with different Mn contents

    图  3   不同锰含量下Fe-Mn合金的显微维氏硬度

    Figure  3.   Micro Vickers hardness of Fe-Mn alloy with different Mn contents

    图  4   不同锰含量下Fe-Mn合金的单向压缩应力-应变曲线

    Figure  4.   Unidirectional compressive stress-strain of Fe-Mn alloy with different Mn contents

    图  5   不同锰含量下Fe-Mn合金的开路电位

    Figure  5.   Open circuit potential of Fe-Mn alloy with different Mn contents

    图  6   不同锰含量下Fe-Mn合金的动电位极化曲线

    Figure  6.   Potentiodynamic polarization curves of Fe-Mn alloy with different Mn contents

    图  7   不同锰含量下Fe-Mn合金的加速浸泡腐蚀速率

    Figure  7.   Accelerated immersion corrosion rate of Fe-Mn alloy with different Mn contents

    图  8   不同锰含量下Fe-Mn合金的高温高压浸泡腐蚀速率

    Figure  8.   High-temperature and high-pressure immersion corrosion rate of Fe-Mn alloy with different Mn contents

    图  9   Fe-5Mn高温高压浸泡腐蚀微观形貌

    Figure  9.   Microstructure of Fe-5Mn after high-temperature and high-pressure immersion corrosion

    表  1   Fe-Mn合金各元素设计含量与实际含量

    Table  1   Designed value and actual value of Fe-Mn alloy compositions

    样品各元素设计含量,%各元素实际含量,%
    FeMnFeMn
    Fe-5Mn95.005.0094.725.28
    Fe-10Mn90.0010.0089.9110.09
    Fe-15Mn85.0015.0084.0415.96
    Fe-20Mn80.0020.0079.4420.56
    下载: 导出CSV
  • [1] 熊友明,刘理明,张林,等. 我国水平井完井技术现状与发展建议[J]. 石油钻探技术,2012,40(1):1–6. doi: 10.3969/j.issn.1001-0890.2012.01.001

    XIONG Youming, LIU Liming, ZHANG Lin, et al. Present status and development comments on horizontal well completion techniques in China[J]. Petroleum Drilling Techniques, 2012, 40(1): 1–6. doi: 10.3969/j.issn.1001-0890.2012.01.001

    [2] 秦金立,吴姬昊,崔晓杰,等. 裸眼分段压裂投球式滑套球座关键技术研究[J]. 石油钻探技术,2014,42(5):52–56. doi: 10.11911/syztjs.201405009

    QIN Jinli, WU Jihao, CUI Xiaojie, et al. Key technology on ball-activated sleeve for open hole staged fracturing[J]. Petroleum Drilling Techniques, 2014, 42(5): 52–56. doi: 10.11911/syztjs.201405009

    [3] 安杰,唐梅荣,张矿生,等. 致密油水平井全可溶桥塞体积压裂技术评价与应用[J]. 特种油气藏,2019,26(5):159–163. doi: 10.3969/j.issn.1006-6535.2019.05.027

    AN Jie, TANG Meirong, ZHANG Kuangsheng, et al. Evaluation and application of volume fracturing with full-soluble plug in tight oil horizontal well[J]. Special Oil & Gas Reservoirs, 2019, 26(5): 159–163. doi: 10.3969/j.issn.1006-6535.2019.05.027

    [4] 冯长青,邵媛,任勇,等. 水平井多级滑套压裂工艺中的压裂球返排规律[J]. 断块油气田,2018,25(4):545–548.

    FENG Changqing, SHAO Yuan, REN Yong, et al. Returning mode of fracturing ball used by horizontal well multi-sleeve fracturing technology[J]. Fault-Block Oil and Gas Field, 2018, 25(4): 545–548.

    [5] 任国富,赵粉霞,冯长青,等. 套管球座压裂工具研制与试验[J]. 钻采工艺,2017,40(5):76–77. doi: 10.3969/J.ISSN.1006-768X.2017.05.23

    REN Guofu, ZHAO Fenxia, FENG Changqing, et al. Development and trial of casing ballseat fracturing tool[J]. Drilling & Production Technology, 2017, 40(5): 76–77. doi: 10.3969/J.ISSN.1006-768X.2017.05.23

    [6] 杨同玉,魏辽,李强,等. 全自溶分段压裂滑套的研制与应用[J]. 特种油气藏,2019,26(3):153–157. doi: 10.3969/j.issn.1006-6535.2019.03.029

    YANG Tongyu, WEI Liao, LI Qiang, et al. Development and application of fully auto-soluble multi-stage fracturing sliding sleeve[J]. Special Oil & Gas Reservoirs, 2019, 26(3): 153–157. doi: 10.3969/j.issn.1006-6535.2019.03.029

    [7] 王林,平恩顺,张建华,等. 可降解桥塞研制及其承压性能试验[J]. 石油机械,2017,45(2):64–67.

    WANG Lin, PING Enshun, ZHANG Jianhua, et al. Development and pressure bearing performance experiment of the degradable bridge plug[J]. China Petroleum Machinery, 2017, 45(2): 64–67.

    [8] 黄传艳,李双贵,李林涛,等. 井下压裂暂堵工具用可溶金属材料研究进展[J]. 石油矿场机械,2019,48(1):68–72. doi: 10.3969/j.issn.1001-3482.2019.01.014

    HUANG Chuanyan, LI Shuanggui, LI Lintao, et al. Research progress on the dissolvable metal for downhole temporary plugging tools[J]. Oil Field Equipment, 2019, 48(1): 68–72. doi: 10.3969/j.issn.1001-3482.2019.01.014

    [9]

    XU Zhiyue, RICHARD B M, SOLFRONK M D. Nanostructured material based completion tools enhance well productivity[R]. IPTC-16538-MS, 2013.

    [10] 张洪宝. 可分解纳米结构混合物在完井工具中的应用[J]. 石油钻探技术,2014,42(4):119.

    ZHANG Hongbao. Application of decomposable nanostructure mixture in well completion tools[J]. Petroleum Drilling Techniques, 2014, 42(4): 119.

    [11] 魏辽. 石墨烯增强铝基可溶球座研制与性能评价[J]. 石油钻探技术,2022,50(2):113–117. doi: 10.11911/syztjs.2021134

    WEI Liao. Development and performance evaluation of a graphene reinforced aluminum-based soluble ball seat[J]. Petroleum Drilling Techniques, 2022, 50(2): 113–117. doi: 10.11911/syztjs.2021134

    [12] 解雪,刘昊一,朱雪梅. 新型生物可降解Fe-Mn合金在Hanks溶液中的电化学腐蚀行为[J]. 大连交通大学学报,2017,38(4):134–137.

    XIE Xue, LIU Haoyi, ZHU Xuemei. Electrochemical corrosion behavior of new biomedical Fe-Mn alloy in Hanks solution[J]. Journal of Dalian Jiaotong University, 2017, 38(4): 134–137.

    [13]

    VENEZUELA J, DARGUSCH M S. Addressing the slow corrosion rate of biodegradable Fe-Mn: Current approaches and future trends[J]. Current Opinion in Solid State and Materials Science, 2020, 24(3): 100822. doi: 10.1016/j.cossms.2020.100822

    [14] 刘玉玲,张修庆. Fe-Mn合金在生物医学方面的应用及前景[J]. 材料导报,2019,33(增刊2):331–335.

    LIU Yuling, ZHANG Xiuqing. Application and prospect of biomedical Fe-Mn alloy[J]. Materials Reports, 2019, 33(supplement2): 331–335.

    [15]

    HERMAWAN H, DUBÉ D, MANTOVANI D. Degradable metallic biomaterials: Design and development of Fe-Mn alloys for stents[J]. Journal of Biomedical Materials Research Part A, 2010, 93A(1): 1–11.

    [16] 朱雪梅,张彦生. 锰与铝对Fe-Mn合金在Na2SO4水溶液中电化学腐蚀性能的影响[J]. 大连铁道学院学报,1992,13(2):57–60.

    ZHU Xuemei, ZHANG Yansheng. The effect of the manganese and aluminium content on the electrochemical corrosion characterization of Fe-Mn alloys in Na2SO4 solution[J]. Journal of Dalian Institute of Railway Technology, 1992, 13(2): 57–60.

    [17] 田骏,张昆,王金. Mn含量对低合金钢耐海水腐蚀性能的影响[J]. 材料保护,2019,52(11):33–37. doi: 10.16577/j.cnki.42-1215/tb.2019.11.007

    TIAN Jun, ZHANG Kun, WANG Jin. Effects of Mn content on the corrosion resistance of low alloy steels in seawater[J]. Materials Protection, 2019, 52(11): 33–37. doi: 10.16577/j.cnki.42-1215/tb.2019.11.007

    [18]

    BALYANOV A, KUTNYAKOVA J, AMIRKHANOVA N A, et al. Corrosion resistance of ultra fine-grained Ti[J]. Scripta Materialia, 2004, 51(3): 225–229. doi: 10.1016/j.scriptamat.2004.04.011

    [19]

    MOSAVAT S H, SHARIAT M H, BAHROLOLOOM M E. Study of corrosion performance of electrodeposited nanocrystalline Zn–Ni alloy coatings[J]. Corrosion Science, 2012, 59: 81–87. doi: 10.1016/j.corsci.2012.02.012

    [20] 吕博,何亚荣,郑春雷,等. 纳米高锰钢在海水腐蚀介质中的耐蚀性能研究[J]. 燕山大学学报,2016,40(1):9–15.

    LYU Bo, HE Yarong, ZHENG Chunlei, et al. Corrosion behaviors of nanocrystalline Hadfield steel in seawater[J]. Journal of Yanshan University, 2016, 40(1): 9–15.

  • 期刊类型引用(11)

    1. 吕振虎,张传新,陈小璐,杨刚,程福山,佟亮,陶先高. 砂砾岩尺寸及密度对压裂缝网扩展的影响. 断块油气田. 2024(02): 337-344 . 百度学术
    2. 蔺敬旗,孟鑫,李晴晴,曹志锋,张凯,穆丽. 砾岩储层电成像测井表征方法及应用——以准噶尔盆地玛湖凹陷砾岩油藏为例. 石油钻探技术. 2022(02): 126-131 . 本站查看
    3. 王培春,崔云江. 黏土化蚀变作用定量分析方法在储层评价中的应用——以莱州湾凹陷沙四段砂砾岩为例. 中国海上油气. 2022(02): 59-66 . 百度学术
    4. 金国文,王堂宇,刘忠华,谢然红,邵亮,李博宇. 基于核磁共振测井的砂砾岩储层分类与产能预测方法. 石油学报. 2022(05): 648-657 . 百度学术
    5. 陈国军,张帆,高明,潘拓,张啸,张进,范小秦. 一种基于胶结因子谱的砂砾岩胶结程度的判定方法. 海洋石油. 2021(03): 42-47 . 百度学术
    6. 韩博华,王飞,刘倩茹,张程恩. 测井储层分类评价方法研究进展综述. 地球物理学进展. 2021(05): 1966-1974 . 百度学术
    7. 胡婷婷,李静,余海涛,贾春明,肖亮. 利用常规测井资料评价致密砂砾岩储层有效性的方法研究——以准噶尔盆地西北缘沙湾凹陷百口泉组为例. 地球物理学进展. 2021(06): 2462-2471 . 百度学术
    8. 蒋云箭,周广清,柴春艳,冷洪涛. 高压低孔隙度低渗透率储层流体测井响应特征研究. 测井技术. 2021(06): 617-623 . 百度学术
    9. 吴有彬,林伟川,张小刚,牟瑜,涂慧智,周丽艳. 鄂尔多斯盆地致密碳酸盐岩储层分类方法. 测井技术. 2020(05): 472-476 . 百度学术
    10. 张峰,罗少成,李震,牟瑜,李婷婷. 四川盆地茅口组岩溶缝洞型储层有效性测井评价. 石油钻探技术. 2020(06): 116-122 . 本站查看
    11. 李瑞娟,崔云江,熊镭,陆云龙,王淼. 利用重构中子曲线法评价渤海油田C区块含砾砂岩储层. 测井技术. 2019(04): 427-433 . 百度学术

    其他类型引用(6)

图(9)  /  表(1)
计量
  • 文章访问数:  232
  • HTML全文浏览量:  93
  • PDF下载量:  50
  • 被引次数: 17
出版历程
  • 收稿日期:  2021-11-22
  • 修回日期:  2022-08-19
  • 录用日期:  2022-10-03
  • 网络出版日期:  2022-11-14
  • 刊出日期:  2022-12-07

目录

    /

    返回文章
    返回