中国石化页岩气电动压裂技术现状及发展建议

刘红磊, 周林波, 陈作, 薄启炜, 马玉生

刘红磊,周林波,陈作,等. 中国石化页岩气电动压裂技术现状及发展建议[J]. 石油钻探技术,2023, 51(1):62-68. DOI: 10.11911/syztjs.2022100
引用本文: 刘红磊,周林波,陈作,等. 中国石化页岩气电动压裂技术现状及发展建议[J]. 石油钻探技术,2023, 51(1):62-68. DOI: 10.11911/syztjs.2022100
LIU Honglei, ZHOU Linbo, CHEN Zuo, et al. The up-to-date electric shale gas fracturing technologies of Sinopec and suggestions for further improvements [J]. Petroleum Drilling Techniques,2023, 51(1):62-68. DOI: 10.11911/syztjs.2022100
Citation: LIU Honglei, ZHOU Linbo, CHEN Zuo, et al. The up-to-date electric shale gas fracturing technologies of Sinopec and suggestions for further improvements [J]. Petroleum Drilling Techniques,2023, 51(1):62-68. DOI: 10.11911/syztjs.2022100

中国石化页岩气电动压裂技术现状及发展建议

基金项目: 国家重点研发计划项目“深层地热资源探测评价关键技术研究”课题5“火成岩地区深层热储改造与评价关键技术”(编号:2019YFC0604905)、中国石化科技攻关项目“盐间页岩油增产工艺及试采技术研究”(编号:P19013-5)和“东南深层热储工程关键技术与开发评价研究”(编号:P20041-3)联合资助
详细信息
    作者简介:

    刘红磊(1976—),男,河北景县人,1999年毕业于石油大学(华东)石油工程专业,研究员,主要从事储层改造理论研究与现场技术推广等工作。E-mail: sloflhl@163.com

  • 中图分类号: TE934+.2

The Up-to-Date Electric Shale Gas Fracturing Technologies of Sinopec and Suggestions for Further Improvements

  • 摘要:

    随着技术的进步和环保要求的日益提高,页岩气压裂施工采用传统柴油机驱动压裂泵车组施工噪声大、能耗高和占地面积广等不足逐步显现出来,电动压裂设备因其功率和排量大、噪声和能耗低、施工占地少等优势逐步得到规模应用。在系统总结分析国内外电动压裂技术的发展应用历程及特点的基础上,重点介绍了中国石化电动压裂技术的应用规模、时效和成本,剖析了存在的不足,提出了全面升级电动压裂系统、强化施工过程管理、大规模推广应用全电动压裂技术等建议,以期推动我国电动压裂技术发展和应用,为我国深层和常压页岩气开发提供经济高效的技术手段。

    Abstract:

    As technology develops and the requirements for environmental protection rise, the disadvantages of traditional diesel-powered fracturing pumping units manifested themselves and they include loud construction noise, high energy consumption, and large space requirements for operations. As a result, electric fracturing equipment has gradually been adopted on a large scale owing to its advantages of high power, high pumping rate, low noise and energy consumption, and small space requirements for operations. The characteristics of electric fracturing technologies and their development and application history in China and abroad were studied and enumerated. The application scale, timeliness, and cost of Sinopec’s electric fracturing technologies were highlighted, and the shortages were analyzed. Multiple suggestions were proposed, including comprehensively upgrading the electric fracturing system, improving treatment process management, and conducting large-scale promotion and application of all-electric fracturing technologies. This research is expected to promote the development and application of fracturing technologies and provide economic technical means for the development of deep and normal-pressure shale gas in China.

  • 图  1   国内电动压裂装备分布情况

    Figure  1.   Distribution of electric fracturing equipment in China

    图  2   国内历年电动压裂段数统计

    Figure  2.   Statistics of electrically fractured sections in China over the years

    图  3   2020–2021年中国石化电动压裂施工段数统计

    Figure  3.   Statistics of electrically fractured sections constructed by Sinopec in 2020–2021

    图  4   焦页X扩平台单日压裂段数

    Figure  4.   Number of sections fractured per day on the Jiaoye X extended platform

    图  5   单平台多井电动压裂模式

    Figure  5.   Electric fracturing mode of multiple wells on single platform

  • [1] 我国页岩气可采资源潜力为25万亿立方米[EB/OL]. (2012-03- 29)[2022-01-10]. http://www.cinic.org.cn/xw/kx/279172.html?from=timeline.

    The recoverable resource potential of shale gas in China is 25 trillion m3[EB/OL]. (2012-03-29) [2022-01-12]. http://www.cinic.org.cn/xw/kx/279172.html?from=timeline.

    [2] 吕红桥. 2020年我国页岩气产量增长超过3成 成为天然气增产主力军[EB/OL]. (2022-02-10)[2022-0-11].https://baijiahao.baidu.com/s?id=1691289018212061353&wfr=spider&for=pc.

    LYU Hongqiao. China’s shale gas production will increase by more than 30% in 2020 and become the main force of natural gas production increase[EB/OL]. (2022-02-10) [2022-02-11].https://baijiahao.baidu.com/s?id=1691289018212061353&wfr=spider&for=pc.

    [3] 曾波,王星皓,黄浩勇,等. 川南深层页岩气水平井体积压裂关键技术[J]. 石油钻探技术,2020,48(5):77–84. doi: 10.11911/syztjs.2020073

    ZENG Bo, WANG Xinghao, HUANG Haoyong, et al. Key technology of volumetric fracturing in deep sShale gas horizontal wells in Southern Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(5): 77–84. doi: 10.11911/syztjs.2020073

    [4] 李军,李玉梅,张德龙,等. 页岩气井分段压裂套损影响因素分析[J]. 断块油气田,2017,24(3):387–390.

    LI Jun, LI Yumei, ZHANG Delong, et al. Analysis of casing damage for staged fracturing in shale gas well[J]. Fault-Block Oil & Gas Field, 2017, 24(3): 387–390.

    [5] 陈新安. 页岩气水平井分段压裂微地震监测认识及应用[J]. 特种油气藏,2017,24(1):170–174.

    CHEN Xin’an. Understanding and application of microseism monitoring over staged fracturing in horizontal wells for shale gas development[J]. Special Oil & Gas Reservoirs, 2017, 24(1): 170–174.

    [6] 张树立,李心成. 适合中国大型页岩气压裂成套装备的解决方案[J]. 石油机械,2018,46(12):60–67.

    ZHANG Shuli, LI Xincheng. The solution of massive hydraulic fracturing of shale gas in China[J]. China Petroleum Machinery, 2018, 46(12): 60–67.

    [7] 杨怀成,夏苏疆,高启国,等. 常压页岩气全电动压裂装备及技术示范应用效果分析[J]. 油气藏评价与开发,2021,11(3):348–355.

    YANG Huaicheng, XIA Sujiang, GAO Qiguo, et al. Application effect of full-electric fracturing equipment and technology for normal pressure shale gas[J]. Reservoir Evaluation and Development, 2021, 11(3): 348–355.

    [8] 张国荣,王俊方,张龙富,等. 南川常压页岩气田高效开发关键技术进展[J]. 油气藏评价与开发,2021,11(3):365–376.

    ZHANG Guorong, WANG Junfang, ZHANG Longfu, et al. Key technical progress in efficient development of Nanchuan normalpressure shale gas field[J]. Reservoir Evaluation and Development, 2021, 11(3): 365–376.

    [9] 赵绪平,孔丹,常亮. 2500型超高压页岩气压裂车开发研究[J]. 石油规划设计,2017,28(3):12–14.

    ZHAO Xuping, KONG Dan, CHANG Liang. Development and research of model 2500 ultra high pressure shale gas fracturing truck[J]. Petroleum Planning & Engineering, 2017, 28(3): 12–14.

    [10] 田雨,谢梅英. 新型大功率电动压裂泵组的研制[J]. 石油机械,2017,45(4):94–97.

    TIAN Yu, XIE Meiying. Development of new-type superpower electric fracturing pump skid[J]. China Petroleum Machinery, 2017, 45(4): 94–97.

    [11] 王云海,陈新龙,吴汉川,等. 页岩气压裂连续输砂关键设备的研制[J]. 石油机械,2016,44(3):102–104.

    WANG Yunhai, CHEN Xinlong, WU Hanchuan, et al. Continuous sand transport unit for fracturing in shale gas development[J]. China Petroleum Machinery, 2016, 44(3): 102–104.

    [12] 王晓宇. 国外压裂装备与技术新进展[J]. 石油机械,2016,44(11):72–79.

    WANG Xiaoyu. Advances in foreign fracturing equipment and technology[J]. China Petroleum Machinery, 2016, 44(11): 72–79.

    [13] 张斌,李磊,邱勇潮,等. 电驱压裂设备在页岩气储层改造中的应用[J]. 天然气工业,2020,40(5):50–57. doi: 10.3787/j.issn.1000-0976.2020.05.006

    ZHANG Bin, LI Lei, QIU Yongchao, et al. Application of electric drive fracturing equipment in shale gas reservoir stimulation[J]. Natural Gas Industry, 2020, 40(5): 50–57. doi: 10.3787/j.issn.1000-0976.2020.05.006

    [14] 王庆群. 利用电力开展页岩气压裂规模应用的分析及建议[J]. 石油机械,2018,46(7):89–93.

    WANG Qingqun. Analysis and suggestion on the application of electric power on shale gas fracturing[J]. China Petroleum Machinery, 2018, 46(7): 89–93.

    [15] 樊开赟,荣双,周劲,等. 电动压裂泵在页岩气压裂中的应用[J]. 钻采工艺,2017,40(5):81–83. doi: 10.3969/J.ISSN.1006-768X.2017.05.25

    FAN Kaiyun, RONG Shuang, ZHOU Jin, et al. Application of electric fracturing pump in fracturing in shale gas reservoirs[J]. Drilling & Production Technology, 2017, 40(5): 81–83. doi: 10.3969/J.ISSN.1006-768X.2017.05.25

    [16] 刘红磊,韩倩,李颖,等. 彭水区块水平井清水连续加砂压裂技术[J]. 石油钻探技术,2015,43(1):13–19. doi: 10.11911/syztjs.201501003

    LIU Honglei, HAN Qian, LI Ying, et al. Water fracturing with continuous sand for horizontal wells in the Pengshui block[J]. Petroleum Drilling Techniques, 2015, 43(1): 13–19. doi: 10.11911/syztjs.201501003

    [17] 曾雨辰,杨保军. 页岩气水平井大型压裂设备配套及应用[J]. 石油钻采工艺,2013,35(6):78–82.

    ZENG Yuchen, YANG Baojun. Equipment outfitting and application for large-scale fracturing in shale gas horizontal wells[J]. Oil Drilling & Production Technology, 2013, 35(6): 78–82.

    [18] 吴汉川. 大型压裂装备应用问题解析及发展方向[J]. 石油机械,2017,45(12):53–57.

    WU Hanchuan. Issue Analysis of large scale fracturing equipment application and its development trend[J]. China Petroleum Machi-nery, 2017, 45(12): 53–57.

    [19] 张增年,李华川,郑家伟,等. 压裂设备应用评价及技术发展展望[J]. 钻采工艺,2020,43(2):41–44. doi: 10.3969/J.ISSN.1006-768X.2020.02.11

    ZHANG Zengnian, LI Huachuan, ZHENG Jiawei, et al. Application evaluation and technical development prospect of fracturing equipment[J]. Drilling & Production Technology, 2020, 43(2): 41–44. doi: 10.3969/J.ISSN.1006-768X.2020.02.11

    [20] 童征,展恩强,刘颖,等. 国内电驱压裂经济性和制约因素分析[J]. 国际石油经济,2020,28(7):53–62. doi: 10.3969/j.issn.1004-7298.2020.07.006

    TONG Zheng, ZHAN Enqiang, LIU Ying, et al. Analysis of economy and constraints of electric-powered fracturing application in China[J]. International Petroleum Economics, 2020, 28(7): 53–62. doi: 10.3969/j.issn.1004-7298.2020.07.006

    [21] 程强. 中国页岩气发展迎来2.0时代[N]. 中国石化报, 2020−12−07(005).

    CHENG Qiang. China shale gas development ushered in the 2.0 era[N]. Sinopec News, 2020−12−07(005).

  • 期刊类型引用(15)

    1. 迟焕鹏,胡志方,王胜建,张家政,吴迪,李大勇,薛宗安. 鄂西地区黄陵背斜页岩气钻井难点与对策. 钻采工艺. 2021(02): 21-25 . 百度学术
    2. 张露,张玉胜,江波,王希勇,朱化蜀,张继尹. DY3-1HF常压页岩气水平井低成本钻井技术. 西部探矿工程. 2021(07): 89-91 . 百度学术
    3. 何希鹏,王运海,王彦祺,张龙胜,汪凯明,高玉巧,刘明. 渝东南盆缘转换带常压页岩气勘探实践. 中国石油勘探. 2020(01): 126-136 . 百度学术
    4. 王世炬,刘昕伟,王烁,徐明曙,纪卫军. 潮页1井钻探施工技术. 探矿工程(岩土钻掘工程). 2020(10): 33-37 . 百度学术
    5. 樊华,龙志平. 页岩气水平井JY10HF井钻井关键技术及认识. 石油机械. 2019(01): 14-19 . 百度学术
    6. 李中,郭永宾,管申,刘智勤,彭巍. 涠洲K油田复杂工况旋转尾管固井技术. 钻井液与完井液. 2019(01): 87-92 . 百度学术
    7. 史配铭,肖春学,王建军. 苏里格南部气田大斜度井钻井技术. 石油钻采工艺. 2019(01): 18-22 . 百度学术
    8. 刘彦学. 龙凤山气田易漏地层低密度固井技术. 中国石油和化工标准与质量. 2019(14): 192-194 . 百度学术
    9. 何贵松,何希鹏,万静雅,高玉巧,张培先. 低勘探程度区页岩气水平井地质导向方法与应用——以渝东南地区LY1HF井为例. 科学技术与工程. 2019(27): 124-133 . 百度学术
    10. 朱亮,楼一珊,沈建中,贺庆,秦杜. 南川页岩气田岩石抗钻特性参数分布规律研究及应用. 油气藏评价与开发. 2019(05): 84-88 . 百度学术
    11. 王彦祺,龙志平. 隆页2HF页岩气水平井钻井技术研究与实践. 探矿工程(岩土钻掘工程). 2018(07): 30-33 . 百度学术
    12. 陈安明,龙志平,周玉仓,王彦祺,彭兴,曹华庆. 四川盆地外缘常压页岩气水平井低成本钻井技术探讨. 石油钻探技术. 2018(06): 9-14 . 本站查看
    13. 唐国旺,安玉秀,于培志. GW-1油基钻井液增黏剂的合成和性能. 断块油气田. 2017(05): 723-726 . 百度学术
    14. 刘云,王涛,于小龙,牛萌. 延长油田西部地区低压易漏地层固井技术. 石油钻探技术. 2017(04): 53-58 . 本站查看
    15. 龙志平,王彦祺,周玉仓,贺庆,刘广庆. 平桥南区页岩气水平井钻井优化设计. 探矿工程(岩土钻掘工程). 2017(12): 34-37 . 百度学术

    其他类型引用(2)

图(5)
计量
  • 文章访问数:  522
  • HTML全文浏览量:  148
  • PDF下载量:  181
  • 被引次数: 17
出版历程
  • 收稿日期:  2022-09-08
  • 修回日期:  2022-12-09
  • 网络出版日期:  2022-12-30
  • 刊出日期:  2023-01-24

目录

    /

    返回文章
    返回