Optimal and Fast Drilling Technologies for Stereoscopic Development of the Fuling Shale Gas Field
-
摘要:
为了进一步提高涪陵页岩气田的采收率,首次探索实践了下部小层加密、中部小层评价和上部地层开发的立体开发技术,但钻井过程中面临压力系统多变、压裂干扰严重、防碰绕障难度大和精准导向及钻井提速挑战多等难题。为此,开展了立体开发井组工程设计、钻井提速、基于随钻前探的轨迹控制、页岩低成本高性能钻井液及页岩气井长效密封固井技术研究,形成了以涪陵页岩气田立体开发优快钻井技术。涪陵页岩气田185口井应用了该技术,与应用该技术前相比,机械钻速提高25.5%,钻井周期降低27.8%。涪陵页岩气田立体开发优快钻井技术对国内其他区块页岩油气勘探开发具有借鉴和指导作用。
Abstract:In order to further improve the recovery of the Fuling Shale Gas Field, stereoscopic development technologies, i.e. infill drilling in lower layers, appraising middle layers, and developing upper layers, were first studied and practiced. However, many problems were encountered during drilling, such as pressure system changing, serious fracturing interference, difficult anti-collision and obstacle bypassing, and the challenge of precise steering control and rate of penetration(ROP) increase. Therefore, researches on the engineering design of stereoscopic well group development, ROP increase, trajectory control based on logging while drilling(LWD), low-cost and high-performance shale drilling fluids, and long-term sealing and cementing technologies for shale gas wells were carried out, and the optimal and fast drilling technologies for stereoscopic development of the Fuling Shale Gas Field was developed, which was successfully applied in 185 wells in the field. Compared with previous wells, the ROP was increased by 25.5%, and the drilling duration was reduced by 27.8%. The optimal and fast drilling technologies for the stereoscopic development of the Fuling Shale Gas Field can serve as reference and instruction to the exploration and development of shale in other blocks in China.
-
-
[1] 吴西顺,孙张涛,杨添天,等. 全球非常规油气勘探开发进展及资源潜力[J]. 海洋地质前沿,2020,36(4):1–17. doi: 10.16028/j.1009-2722.2019.065 WU Xishun, SUN Zhangtao, YANG Tiantian, et al. Global progress in exploration and development of unconventional hydrocarbons and assessment of resources potential[J]. Marine Geology Frontiers, 2020, 36(4): 1–17. doi: 10.16028/j.1009-2722.2019.065
[2] 范红康,刘劲歌,臧艳彬,等. 涪陵页岩气田焦石坝区块调整井钻井技术[J]. 石油钻探技术,2021,49(3):48–54. doi: 10.11911/syztjs.2020122 FAN Hongkang, LIU Jinge, ZANG Yanbin, et al. Drilling technology for adjustment wells of the Jiaoshiba Block in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2021, 49(3): 48–54. doi: 10.11911/syztjs.2020122
[3] 孙焕泉,周德华,蔡勋育,等. 中国石化页岩气发展现状与趋势[J]. 中国石油勘探,2020,25(2):14–26. doi: 10.3969/j.issn.1672-7703.2020.02.002 SUN Huanquan, ZHOU Dehua, CAI Xunyu, et al. Progress and prospect of shale gas development of Sinopec[J]. China Petroleum Exploration, 2020, 25(2): 14–26. doi: 10.3969/j.issn.1672-7703.2020.02.002
[4] 宋保健,孙凯,乐守群,等. 涪陵页岩气田钻井提速难点与对策分析[J]. 钻采工艺,2019,42(4):9–12. doi: 10.3969/J.ISSN.1006-768X.2019.04.03 SONG Baojian, SUN Kai, LE Shouqun, et al. Drilling acceleration challenges at Fuling Shale Gas Field and solutions[J]. Drilling & Production Technology, 2019, 42(4): 9–12. doi: 10.3969/J.ISSN.1006-768X.2019.04.03
[5] 贾利春,李枝林,张继川,等. 川南海相深层页岩气水平井钻井关键技术与实践[J]. 石油钻采工艺,2022,44(2):145–152. doi: 10.13639/j.odpt.2022.02.002 JIA Lichun, LI Zhilin, ZHANG Jichuan, et al. Key technology and practice of horizontal drilling for marine deep shale gas in southern Sichuan Basin[J]. Oil Drilling & Production Technology, 2022, 44(2): 145–152. doi: 10.13639/j.odpt.2022.02.002
[6] 王怡. 页岩气藏裂缝区地层孔隙压力准确求取方法[J]. 石油钻探技术,2020,48(3):29–34. doi: 10.11911/syztjs.2020056 WANG Yi. A method for accurate calculation of pore pressure in fractured formations of shale gas reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(3): 29–34. doi: 10.11911/syztjs.2020056
[7] 陈星星. 混合钻头在涪陵页岩气田的应用[J]. 探矿工程(岩土钻掘工程),2019,46(10):34–39. CHEN Xingxing. Application of hybrid drill bits in Fuling Shale Gas Field[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2019, 46(10): 34–39.
[8] 李建亭,胡金建,罗恒荣. 低压耗增强型水力振荡器的研制与现场试验[J]. 石油钻探技术,2022,50(1):71–75. doi: 10.11911/syztjs.2021137 LI Jianting, HU Jinjian, LUO Hengrong. Development and field tests of an enhanced hydraulic oscillator with low pressure loss[J]. Petroleum Drilling Techniques, 2022, 50(1): 71–75. doi: 10.11911/syztjs.2021137
[9] 路保平,袁多,吴超,等. 井震信息融合指导钻井技术[J]. 石油勘探与开发,2020,47(6):1227–1234. doi: 10.11698/PED.2020.06.16 LU Baoping, YUAN Duo, WU Chao, et al. A drilling technology guided by well-seismic information integration[J]. Petroleum Exploration and Development, 2020, 47(6): 1227–1234. doi: 10.11698/PED.2020.06.16
[10] 吴宏杰. 定测录导一体化技术在涪陵页岩气田的应用[J]. 探矿工程(岩土钻掘工程),2019,46(8):10–14. WU Hongjie. Integration of directional drilling, logging and rotary steering in Fuling Shale Gas Field[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2019, 46(8): 10–14.
[11] 赵福豪,黄维安,雍锐,等. 地质工程一体化研究与应用现状[J]. 石油钻采工艺,2021,43(2):131–138. doi: 10.13639/j.odpt.2021.02.001 ZHAO Fuhao, HUANG Weian, YONG Rui, et al. Research and application status of geology-engineering integration[J]. Oil Drilling & Production Technology, 2021, 43(2): 131–138. doi: 10.13639/j.odpt.2021.02.001
[12] 肖霞,许明标,由福昌,等. 不同油水比油基钻井液滤失性能的影响因素[J]. 油田化学,2018,35(4):577–581. doi: 10.19346/j.cnki.1000-4092.2018.04.002 XIAO Xia, XU Mingbiao, YOU Fuchang, et al. Influence factor of filtration property of oil-based drilling fluid with different oil-water ratio[J]. Oilfield Chemistry, 2018, 35(4): 577–581. doi: 10.19346/j.cnki.1000-4092.2018.04.002
[13] 何淼,施皓瀚,许明标. 水基钻井液高温高压流变动力学研究[J]. 钻井液与完井液,2021,38(3):271–279. HE Miao, SHI Haohan, XU Mingbiao. Study of rheological dynamics of water-based drilling fluids at high temperature and high pressure[J]. Drilling Fluid & Completion Fluid, 2021, 38(3): 271–279.
[14] 刘智勤,管申,许明标,等. 硅酸盐钻井液用多功能润滑剂[J]. 钻井液与完井液,2021,38(2):158–163. doi: 10.3969/j.issn.1001-5620.2021.02.005 LIU Zhiqin, GUAN Shen, XU Mingbiao, et al. Laboratory study and application of a multifunctional lubricant for silicate drilling fluids[J]. Drilling Fluid & Completion Fluid, 2021, 38(2): 158–163. doi: 10.3969/j.issn.1001-5620.2021.02.005
[15] 于欣,张振,郭梦扬,等. 抗高温油基钻井液堵漏剂的研制与应用:以龙马溪组页岩气井W204H为例[J]. 断块油气田,2021,28(2):168–172. YU Xin, ZHANG Zhen, GUO Mengyang, et al. Development and application of high temperature resistant oil-based drilling fluid plugging agent: taking shale gas well W204H of Longmaxi Formation as an example[J]. Fault-Block Oil & Gas Field, 2021, 28(2): 168–172.
[16] 李科,贾江鸿,于雷,等. 页岩油钻井漏失机理及防漏堵漏技术[J]. 钻井液与完井液,2022,39(4):446–450. LI Ke, JIA Jianghong, YU Lei, et al. Mechanisms of lost circulation and technologies for mud loss prevention and control in shale oil drilling[J]. Drilling Fluid & Completion Fluid, 2022, 39(4): 446–450.
[17] 陈雷,陈会年,张林海,等. JY页岩气田水平井预防环空带压固井技术[J]. 石油钻采工艺,2019,41(2):152–159. doi: 10.13639/j.odpt.2019.02.006 CHEN Lei, CHEN Huinian, ZHANG Linhai, et al. A cementing technology for preventing the annulus pressure of horizontal wells in JY shale gasfield[J]. Oil Drilling & Production Technology, 2019, 41(2): 152–159. doi: 10.13639/j.odpt.2019.02.006
-
期刊类型引用(6)
1. 朱亮,李晓明,纪慧,楼一珊. 基于SAE和LSTM神经网络的深部未钻地层可钻性预测方法. 西安石油大学学报(自然科学版). 2025(01): 39-46+64 . 百度学术
2. 叶长文,张琴,董钟骏,陈雪松,李超,梅峻铭,黄梅,彭德军,宋益. 用名义复杂概念和大数据研究区域钻井. 钻采工艺. 2023(06): 184-189 . 百度学术
3. 吴丰,谢煜华,王雲,尹晓明,殷召海,童鑫. 厚层状砂砾岩油藏优快钻井关键技术. 石油钻采工艺. 2022(01): 26-30 . 百度学术
4. 苏崭,王博,盖京明,李玮,赵欢,陈冰邓. 复合式扭力冲击器在坚硬地层中的应用. 中国煤炭地质. 2021(05): 47-50+57 . 百度学术
5. 苏建,袁则名,和鹏飞,宋瑞,吴义标. HPG复合冲击钻井提速工具在渤海油田的应用. 海洋工程装备与技术. 2019(01): 457-464 . 百度学术
6. 张进双,张增宝,王学才. 刀翼式孕镶金刚石钻头设计及在哈山101井的应用. 石油钻探技术. 2019(05): 57-61 . 本站查看
其他类型引用(3)