Experimental Study on a Prediction Model for the Average Diameter of Initial Bubbles at Bottom Hole after Gas Cut
-
摘要:
为了提高气侵后井筒气液两相流动计算结果的准确性,实验分析了气侵后井底初始气泡直径分布特征,建立了初始气泡平均直径预测模型。用不同质量分数黄原胶溶液模拟钻井液,用多孔介质模拟地层,实验分析了不同液相流变性、地层平均孔隙直径和不同气侵速度下井筒底部气泡群的直径分布特征。实验结果表明:模拟钻井液切力越大、气侵速度越大,生成的初始气泡直径范围越大,出现频率最高的气泡直径和最大气泡直径均增大;地层孔隙直径对初始气泡直径影响不明显。基于实验结果,综合考虑钻井液黏度、气体流量和表面张力等因素的影响,得到了侵入井底初始气泡平均直径实验预测模型;并考虑实际钻井过程中井壁处气体径向侵入特征和井斜角的影响,建立了侵入井底初始气泡平均直径预测模型。井底初始气泡直径预测模型的建立,为气侵后井筒气液两相流动精确计算提供了理论支撑。
Abstract:In order to improve the accuracy of the calculation results of the gas-liquid two-phase flow along the bottom hole after gas cut, the diameter distribution characteristics of initial bubbles at the bottom hole after gas cut were experimentally studied, and a prediction model for the average diameter of the initial bubbles was established. Xanthan gum solutions with different mass fractions were used to simulate drilling fluids, and porous media were utilized to simulate the formations. The bottom hole diameter distribution characteristics of the bubble groups were observed experimentally under different liquid phase rheology, average pore diameter of formation, and gas cut rates. The experimental results showed that a larger yield strength of the simulated drilling fluid and a higher gas cut rate resulted in a larger distribution of diameter range of the initial bubbles generated. In addition, the diameter of bubbles with the highest frequency of occurences and that of the biggest bubbles both increased. However, the formation’s pore diameter had no obvious effect on the initial bubble diameter. According to the experimental results, an experimental prediction model for the average diameter of the initial bubbles invading the bottom hole was established, which comprehensively considered the influence factors such as drilling fluid viscosity, gas flow rate, and surface tension. Furthermore, an prediction model for the average diameter of the initial bubbles invading the well bottom was established by considering the influence of the radial intrusion characteristics of the gas at the borehole wall and the hole deviation angle during the actual drilling. The establishment of the prediction model for the diameter of the initial bubbles at the bottom hole provides theoretical support for the accurate calculation of the gas-liquid two-phase flow along the wellbore after gas cut.
-
-
表 1 不同质量分数的黄原胶溶液流变参数
Table 1 Rheological parameters of xanthan gum solution with different mass fractions
黄原胶质量分数,% 密度/(kg·m−3) 屈服应力/Pa 稠度系数/(Pa·sn) 幂律指数 表面张力/(N·m−1) 0.20 1 004 0 1.68 0.31 0.064 0.24 1 004 0 0.79 0.31 0.065 0.25 1 004 0.15 0.91 0.29 0.065 0.28 1 004 0.46 1.38 0.28 0.066 0.30 1 004 1.32 1.29 0.27 0.065 0.35 1 005 1.96 1.44 0.26 0.066 0.40 1 005 2.43 1.28 0.26 0.067 0.45 1 005 2.91 1.53 0.24 0.068 0.48 1 005 3.24 1.36 0.23 0.067 0.50 1 005 3.32 1.77 0.23 0.068 -
[1] 王果. 基于线性节流阀的MPD井筒压力调控方法[J]. 石油钻采工艺,2021,43(2):197–202. doi: 10.13639/j.odpt.2021.02.010 WANG Guo. MPD wellbore pressure control method based on linear throttle valve[J]. Oil Drilling & Production Technology, 2021, 43(2): 197–202. doi: 10.13639/j.odpt.2021.02.010
[2] 史殊哲,吴晓东,韩国庆,等. 内边界旋转的垂直井筒气液两相流型和压降梯度[J]. 石油钻采工艺,2019,41(1):89–95. doi: 10.13639/j.odpt.2019.01.015 SHI Shuzhe, WU Xiaodong, HAN Guoqing, et al. Flow pattern and pressure gradient of the gas-liquid two-phase flow in the vertical wellbore with rotary inner boundary[J]. Oil Drilling & Production Technology, 2019, 41(1): 89–95. doi: 10.13639/j.odpt.2019.01.015
[3] 孙宝江,王雪瑞,王志远,等. 控制压力固井技术研究进展及展望[J]. 石油钻探技术,2019,47(3):56–61. doi: 10.11911/syztjs.2019066 SUN Baojiang, WANG Xuerui, WANG Zhiyuan, et al. Research development and outlook for managed pressure cementing technology[J]. Petroleum Drilling Techniques, 2019, 47(3): 56–61. doi: 10.11911/syztjs.2019066
[4] 彭明佳,周英操,郭庆丰,等. 窄密度窗口精细控压钻井重浆帽优化技术[J]. 石油钻探技术,2015,43(6):24–28. doi: 10.11911/syztjs.201506005 PENG Mingjia, ZHOU Yingcao, GUO Qingfeng, et al. Optimization of heavy mud cap in narrow density window precise managed pressure drilling[J]. Petroleum Drilling Techniques, 2015, 43(6): 24–28. doi: 10.11911/syztjs.201506005
[5] 余意,王雪瑞,柯珂,等. 极地钻井井筒温度压力预测模型及分布规律研究[J]. 石油钻探技术,2021,49(3):11–20. doi: 10.11911/syztjs.2021047 YU Yi, WANG Xuerui, KE Ke, et al. Prediction model and distribution law study of temperature and pressure of the wellbore in drilling in arctic region[J]. Petroleum Drilling Techniques, 2021, 49(3): 11–20. doi: 10.11911/syztjs.2021047
[6] 张玉山,赵维青,张星星,等. 深水井气侵在不同类型钻井液中运动特征[J]. 石油钻采工艺,2016,38(3):310–314. doi: 10.13639/j.odpt.2016.03.007 ZHANG Yushan, ZHAO Weiqing, ZHANG Xingxing, et al. Movement features of gas in different types of drilling fluid during kicking in deepwater wells[J]. Oil Drilling & Production Technology, 2016, 38(3): 310–314. doi: 10.13639/j.odpt.2016.03.007
[7] 孙士慧,于晓文,于国庆,等. 侵入气体沿井筒的上升规律研究[J]. 数学的实践与认识,2017,47(10):104–111. SUN Shihui, YU Xiaowen, YU Guoqing, et al. Rising migration rule of gas kick in wellbore[J]. Mathematics in Practice and Theory, 2017, 47(10): 104–111.
[8] 孙宝江,王雪瑞,孙小辉,等. 井筒四相流动理论在深水钻完井工程与测试领域的应用与展望[J]. 天然气工业,2020,40(12):95–105. doi: 10.3787/j.issn.1000-0976.2020.12.011 SUN Baojiang, WANG Xuerui, SUN Xiaohui, et al. Application and prospect of the wellbore four-phase flow theory in the field of deepwater drilling and completion engineering and testing[J]. Natural Gas Industry, 2020, 40(12): 95–105. doi: 10.3787/j.issn.1000-0976.2020.12.011
[9] 孙士慧. 井底恒压钻井井筒流动模型研究[D]. 大庆: 东北石油大学, 2014. SUN Shihui. Research on wellbore flow model for managed pressure drilling at constant bottomhole pressure[D]. Daqing: Northeast Petroleum University, 2014.
[10] 孟也,李相方,何敏侠,等. 气泡卡断过程中的喉道液领形态与聚并模型[J]. 断块油气田,2019,26(5):632–637. MENG Ye, LI Xiangfang, HE Minxia, et al. Shape and coalescence model of liquid collar in pore-throat during snap-off[J]. Fault-Block Oil & Gas Field, 2019, 26(5): 632–637.
[11] 韦红术,杜庆杰,曹波波,等. 深水油气井关井期间井筒含天然气水合物相变的气泡上升规律研究[J]. 石油钻探技术,2019,47(2):42–49. doi: 10.11911/syztjs.2019035 WEI Hongshu, DU Qingjie, CAO Bobo, et al. The ascending law of gas bubbles in a wellbore considering the phase change of natural gas hydrates during deepwater well shut-in[J]. Petroleum Drilling Techniques, 2019, 47(2): 42–49. doi: 10.11911/syztjs.2019035
[12] 段文广,孙宝江,潘登,等. 考虑气体悬浮的关井井筒压力计算方法[J]. 中国石油大学学报(自然科学版),2021,45(5):88–96. DUAN Wenguang, SUN Baojiang, PAN Deng, et al. A wellbore pressure calculation method considering gas entrapment in wellbore shut-in condition[J]. Journal of China University of Petroleum(Edition of Natural Science), 2021, 45(5): 88–96.
[13] 周强,张志东,李淼,等. 早期溢流监测方法[J]. 油气田地面工程,2012,31(3):72–73. doi: 10.3969/j.issn.1006-6896.2012.3.036 ZHOU Qiang, ZHANG Zhidong, LI Miao, et al. Early overflow monitoring method[J]. Oil-Gas Field Surface Engineering, 2012, 31(3): 72–73. doi: 10.3969/j.issn.1006-6896.2012.3.036
[14] 李旭光,杨波,孙晓峰. 关井侵入气体运移规律探讨[J]. 长江大学学报(自科版),2013,10(14):65–66. doi: 10.16772/j.cnki.1673-1409.2013.14.023 LI Xuguang, YANG Bo, SUN Xiaofeng. Discussion on migration law of shut in intrusive gas[J]. Journal of Yangtze University (Natural Science Edition), 2013, 10(14): 65–66. doi: 10.16772/j.cnki.1673-1409.2013.14.023
[15] 尹浚羽,蒋宏伟,李磊,等. 井底气泡的形成过程及其平均初始直径计算[J]. 科学技术与工程,2014,14(19):30–33. doi: 10.3969/j.issn.1671-1815.2014.19.006 YIN Junyu, JIANG Hongwei, LI Lei, et al. Bubbles formation from the Bottom region of borehole and their initial average diameter calculation[J]. Science Technology and Engineering, 2014, 14(19): 30–33. doi: 10.3969/j.issn.1671-1815.2014.19.006
[16] ZHANG Lei, SHOJI M. Aperiodic bubble formation from a submerged orifice[J]. Chemical Engineering Science, 2001, 56(18): 5371–5381. doi: 10.1016/S0009-2509(01)00241-X
[17] KAZAKIS N A, MOUZA A A, PARAS S V. Experimental study of bubble formation at metal porous spargers: Effect of liquid properties and sparger characteristics on the initial bubble size distribution[J]. Chemical Engineering Journal, 2008, 137(2): 265–281. doi: 10.1016/j.cej.2007.04.040
[18] SUN Baojiang, PAN Shaowei, ZHANG Jianbo, et al. A dynamic model for predicting the geometry of bubble entrapped in yield stress fluid[J]. Chemical Engineering Journal, 2020, 391: 123569. doi: 10.1016/j.cej.2019.123569
[19] WANG Zhiyuan, LOU Wenqiang, SUN Baojiang, et al. A model for predicting bubble velocity in yield stress fluid at low Reynolds number[J]. Chemical Engineering Science, 2019, 201: 325–338. doi: 10.1016/j.ces.2019.02.035
[20] LOU Wenqiang, WANG Zhiyuan, PAN Shaowei, et al. Prediction model and energy dissipation analysis of Taylor bubble rise velocity in yield stress fluid[J]. Chemical Engineering Journal, 2020, 396: 125261. doi: 10.1016/j.cej.2020.125261
[21] 尹浚羽,周英操,张辉,等. 钻井环空中赫-巴流体内气泡的上升速度[J]. 西南石油大学学报(自然科学版),2016,38(3):135–143. YIN Junyu, ZHOU Yingcao, ZHANG Hui, et al. Bubble rise velocity in Herchel-Bulkley fluid of drilling annulus[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2016, 38(3): 135–143.
[22] 艾池,张东,任帅勤,等. 环空气泡融合特性对流体流动规律影响研究[J]. 石油地质与工程,2011,25(3):102–105. doi: 10.3969/j.issn.1673-8217.2011.03.032 AI Chi, ZHANG Dong, REN Shuaiqin, et al. Influence of bubble fusion characteristics in annulus on fluid flow law[J]. Petroleum Geology and Engineering, 2011, 25(3): 102–105. doi: 10.3969/j.issn.1673-8217.2011.03.032
[23] ONG E E S, O’BYRNE S, LIOW J L. Yield stress measurement of a thixotropic colloid[J]. Rheologica Acta, 2019, 58(6): 383–401.
[24] MOUZA A A, DALAKOGLOU G K, PARAS S V. Effect of liquid properties on the performance of bubble column reactors with fine pore spargers[J]. Chemical Engineering Science, 2005, 60(5): 1465–1475. doi: 10.1016/j.ces.2004.10.013
[25] 包立炯. 毛细管管口气泡生长及脱离特性研究[D]. 重庆: 重庆大学, 2007. BAO Lijiong. The study on the characteristics of air bubble growth and departure at the orifice of capillary tubes[D]. Chongqing: Chongqing University, 2007.
-
期刊类型引用(4)
1. 薛成,谢明英,冯沙沙,涂志勇,陈一鸣,侯凯. 水平井地质导向技术在海上油田薄油层开发中的应用. 录井工程. 2023(04): 42-48 . 百度学术
2. 陆自清. 基于卡尔曼滤波的动态地质模型导向方法. 石油钻探技术. 2021(01): 113-120 . 本站查看
3. 苏洲,刘永福,韩剑发,杨淑雯,刘博,赖鹏,彭鹏,张慧芳,易珍丽. 相控约束下的超深薄层砂体预测技术在塔北隆起玉东区块中的应用. 天然气地球科学. 2020(02): 295-306 . 百度学术
4. 高弘毅,王光,夏竹君,杨坚,程宝庆. 水平井随钻地质导向技术在南海某气田的应用. 石化技术. 2019(11): 164 . 百度学术
其他类型引用(1)