致密砂岩地层气体钻井井眼稳定性试验研究

张文, 刘向君, 梁利喜, 熊健

张文,刘向君,梁利喜,等. 致密砂岩地层气体钻井井眼稳定性试验研究[J]. 石油钻探技术,2023, 51(2):37-45. DOI: 10.11911/syztjs.2022094
引用本文: 张文,刘向君,梁利喜,等. 致密砂岩地层气体钻井井眼稳定性试验研究[J]. 石油钻探技术,2023, 51(2):37-45. DOI: 10.11911/syztjs.2022094
ZHANG Wen, LIU Xiangjun, LIANG Lixi, et al. Test research on tight sandstone wellbore stability during gas drilling [J]. Petroleum Drilling Techniques,2023, 51(2):37-45. DOI: 10.11911/syztjs.2022094
Citation: ZHANG Wen, LIU Xiangjun, LIANG Lixi, et al. Test research on tight sandstone wellbore stability during gas drilling [J]. Petroleum Drilling Techniques,2023, 51(2):37-45. DOI: 10.11911/syztjs.2022094

致密砂岩地层气体钻井井眼稳定性试验研究

基金项目: 中国石油–西南石油大学创新联合体科技合作项目(编号:2020CX040101)资助
详细信息
    作者简介:

    张文(1993—),男,四川南充人,2016年毕业于西南石油大学石油与天然气工程专业,2019年获西南石油大学油气井工程专业工学硕士学位,在读博士研究生,主要从事岩石力学与井壁稳定、井眼轨迹优化等方面的研究工作。E-mail:swpuzhangwen@qq.com

    通讯作者:

    刘向君,liuxiangjunswpi@163.com

  • 中图分类号: TE21

Test Research on Tight Sandstone Wellbore Stability During Gas Drilling

  • 摘要:

    为明确气体钻井过程中致密砂岩地层井壁失稳的机理,基于能量耗散原理,利用三轴压缩试验,研究了气体钻井中致密砂岩地层井壁失稳的机理。通过分析三轴压缩试验结果得知:砂岩的能量演化可分为弹性能稳定聚集阶段、耗散能缓慢聚集阶段、弹性能释放且耗散能快速聚集阶段;随着围压降低,破坏砂岩结构所需耗散能峰值极限呈指数下降,而弹性储能峰值极限呈线性下降。随着加载速率增大,破坏砂岩结构所需耗散能先减小后增大,存在临界加载速率;砂岩耗散能转化速率与围压和加载速率呈正相关,较高的砂岩耗散能转化速率引起黏聚力弱化、摩擦强化。气体钻井速度过快将引起井壁失稳区域增大,而且在钻遇高压地层时更严重,因此,适当地降低钻井速度,给予地层充分泄压时间,有利于气体钻井过程中保持井壁的稳定性。研究结果对于优化气体钻井速度具有重要作用。

    Abstract:

    In light of the energy dissipation principle, the mechanism of wellbore instability in a tight sandstone formation during gas drilling was studied through triaxial compression tests. The results of triaxial compression tests were analyzed, and it was found that the energy evolution process of sandstone includes three stages, i.e., the stable accumulation of elastic energy, the slow accumulation of dissipated energy, and elastic energy release with rapid accumulation of dissipated energy. With the decrease in confining pressure, the limit of dissipated energy required to destroy sandstone structure decreased exponentially, while that of the stored elastic energy declined linearly. As the loading rate was enhanced, the dissipated energy required to destroy the sandstone structure first decreased and then increased, with the appearance of a critical loading rate. The conversion rate of dissipated energy of sandstone was positively correlated with confining pressure and loading rate, and a high conversion rate caused the weakening of cohesion and the strengthening of friction. Too fast gas drilling enlarged the wellbore instability area, this was more distinct when drilling high-pressure formations. Therefore, appropriately reducing the drilling speed while giving sufficient pressure relief time to formations is conducive to maintaining wellbore stability during gas drilling. The research results are of great significance for optimizing gas drilling speed.

  • 图  1   三轴压缩试验下井壁岩石采动力学路径[25]

    Figure  1.   Mining-induced mechanical paths of sidewall rocks in triaxial compression tests[25]

    图  2   岩样在不同有效围压、不同加载速率下的破坏形态

    Figure  2.   Sandstone failure morphology under different confining pressures and loading rates

    图  3   不同加载速率对剪切塑形区扩展的影响[16]

    Figure  3.   Effect of the loading rate on the expansion of the shear shaping zone[16]

    图  4   弹性能与耗散能计算关系图[23]

    Figure  4.   Calculation relationship diagram of elastic energy and dissipation energy[23]

    图  5   不同围压下砂岩岩样的应力-应变曲线及能量演化曲线

    Figure  5.   Stress–strain curves and energy evolution process of sandstone under different confining pressures

    图  6   卸荷过程中特征能量参数的散点图

    Figure  6.   Scatter diagram of characteristic energy parameters during unloading

    图  7   不同加载速率下砂岩耗散能演化曲线

    Figure  7.   Evolution curves of dissipated energy of sandstone under different loading rates

    图  8   砂岩耗散能及转化速率与加载速率的关系曲线

    Figure  8.   Relationship curves of dissipated energy and its conversion rate of sandstone with loading rate

    图  9   砂岩工程参数与加载速率的关系曲线

    Figure  9.   Relationship curves between sandstone engineering parameters and loading rates

    图  10   不同加载速率下维持井壁稳定所需的黏聚力

    Figure  10.   Cohesion required to maintain wellbore stability under different loading rates

    表  1   三轴压缩试验结果

    Table  1   Triaxial compression test results

    序号有效围压/MPa加载速率/(mm·min−1抗压强度/MPa损伤强度/MPa特征应力比
    1200.1252.38229.940.91
    2200.4215.18197.780.92
    3200.7236.57191.680.81
    4201.0166.29127.380.77
    5400.1299.86277.920.93
    6400.4293.37249.900.85
    7400.7276.94251.240.91
    8401.0307.78279.210.91
    9600.1322.75295.780.92
    10600.4319.23269.930.85
    11600.7356.56313.930.88
    12601.0346.17309.890.90
    下载: 导出CSV
  • [1] 李皋,孟英峰,唐洪明,等. 气体钻井高效开发致密砂岩气藏[J]. 天然气工业,2007,27(7):59–62. doi: 10.3321/j.issn:1000-0976.2007.07.017

    LI Gao, MENG Yingfeng, TANG Hongming, et al. Gas drilling used for efficient development of tight sandstone gas reservoirs[J]. Natural Gas Industry, 2007, 27(7): 59–62. doi: 10.3321/j.issn:1000-0976.2007.07.017

    [2] 李皋,孟英峰,蒋俊,等. 气体钻井的适应性评价技术[J]. 天然气工业,2009,29(3):57–61. doi: 10.3787/j.issn.1000-0976.2009.03.016

    LI Gao, MENG Yingfeng, JIANG Jun, et al. Evaluation techniques on the adaptability of gas drilling[J]. Natural Gas Industry, 2009, 29(3): 57–61. doi: 10.3787/j.issn.1000-0976.2009.03.016

    [3] 刘向君,丁乙,罗平亚,等. 钻井卸载对泥页岩地层井壁稳定性的影响[J]. 石油钻探技术,2018,46(1):10–16. doi: 10.11911/syztjs.2018005

    LIU Xiangjun, DING Yi, LUO Pingya, et al. The impact of drilling unloading on wellbore stability of shale formations[J]. Petroleum Drilling Techniques, 2018, 46(1): 10–16. doi: 10.11911/syztjs.2018005

    [4] 吴超,陈勉,金衍. 井壁稳定性实时预测方法[J]. 石油勘探与开发,2008,35(1):80–84. doi: 10.3321/j.issn:1000-0747.2008.01.014

    WU Chao, CHEN Mian, JIN Yan. Real-time prediction method of borehole stability[J]. Petroleum Exploration and Development, 2008, 35(1): 80–84. doi: 10.3321/j.issn:1000-0747.2008.01.014

    [5]

    DING Yi, LUO Pingya, LIU Xiangjun, et al. Wellbore stability model for horizontal wells in shale formations with multiple planes of weakness[J]. Journal of Natural Gas Science and Engineering, 2018, 52: 334–347. doi: 10.1016/j.jngse.2018.01.029

    [6] 邓金根, 郭东旭, 周建良, 等. 泥页岩井壁应力的力学–化学耦合计算模式及数值求解方法[J]. 岩石力学与工程学报, 2003, 22(增刊1): 2250−2253.

    DENG Jingen, GUO Dongxu, ZHOU Jianliang, et al. Mechanics-chemistry coupling calculation model of borehole stress in shale formation and its numerical solving method[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(supplement1): 2250− 2253.

    [7]

    LIU Xiangjun, ZENG Wei, LIANG Lixi, et al. Wellbore stability analysis for horizontal wells in shale formations[J]. Journal of Natural Gas Science and Engineering, 2016, 31: 1–8. doi: 10.1016/j.jngse.2016.02.061

    [8] 卢运虎,陈勉,金衍,等. 钻井液浸泡下深部泥岩强度特征试验研究[J]. 岩石力学与工程学报,2012,31(7):1399–1405. doi: 10.3969/j.issn.1000-6915.2012.07.012

    LU Yunhu, CHEN Mian, JIN Yan, et al. Experimental study of strength properties of deep mudstone under drilling fluid soaking[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(7): 1399–1405. doi: 10.3969/j.issn.1000-6915.2012.07.012

    [9] 张亚云,李大奇,高书阳,等. 顺北油气田奥陶系破碎性地层井壁失稳影响因素分析[J]. 断块油气田,2022,29(2):256–260.

    ZHANG Yayun, LI Daqi, GAO Shuyang, et al. Analysis on influencing factors of wellbore instability of Ordovician fractured formation in Shunbei Oil and Gas Field[J]. Fault-Block Oil & Gas Field, 2022, 29(2): 256–260.

    [10] 邓媛,何世明,邓祥华,等. 力化耦合作用下的层理性页岩气水平井井壁失稳研究[J]. 石油钻探技术,2020,48(1):26–33. doi: 10.11911/syztjs.2020010

    DENG Yuan, HE Shiming, DENG Xianghua, et al. Study on wellbore instability of bedded shale gas horizontal wells under chemo-mechanical coupling[J]. Petroleum Drilling Techniques, 2020, 48(1): 26–33. doi: 10.11911/syztjs.2020010

    [11] 闫睿昶,张宇,吴红玲,等. 巴彦河套盆地临河区块深层井壁失稳钻井液对策[J]. 石油钻采工艺,2022,44(2):168–172.

    YAN Ruichang, ZHANG YU, WU Hongling, et al. Drilling fluid solutions to well instability in deep layers of Linhe Block of the Bayan Hetao Basin[J]. Oil Drilling & Production Technology, 2022, 44(2): 168–172.

    [12] 陈修平,高雷雨,刘景涛,等. 顺北油气田却尔却克组井壁失稳机理及应对措施[J]. 钻井液与完井液,2021,38(1):35–41.

    CHEN Xiuping, GAO Leiyu, LIU Jingtao, et al. echanisms of borehole wall destabilization in Que’er’Que’ke Formation in Shunbei Oil and Gas Field and measures dealing with the borehole wall collapse[J]. Drilling Fluid & Completion Fluid, 2021, 38(1): 35–41.

    [13] 石秉忠,张栋,褚奇. 松南气田泥岩井壁失稳形式及失稳机制的微观数字化分析[J]. 石油钻探技术,2023,51(1):22–33. doi: 10.11911/syztjs.2023005

    SHI Bingzhong, ZHANG Dong, CHU Qi. Micro digital analysis on instability form and mechanism of mudstone borehole wall in Songnan Gas Field [J]. Petroleum Drilling Techniques, 2023, 51(1): 22–33. doi: 10.11911/syztjs.2023005

    [14] 潘冠昌,杨斌,张浩,等. 超深层碳酸盐岩裂缝面形态与摩擦因数研究[J]. 断块油气田,2022,29(6):794–799.

    PAN Guanchang,YANG Bin,ZHANG Hao,et al. Research on fracture surface morphology and friction coefficient of ultra-deep carbonate rock[J]. Fault-Block Oil & Gas Field, 2022, 29(6): 794–799.

    [15] 兰凯,熊友明,闫光庆,等. 川东北水平井储层井壁稳定性及其对完井方式的影响[J]. 吉林大学学报(地球科学版),2011,41(4):1233–1238. doi: 10.13278/j.cnki.jjuese.2011.04.031

    LAN Kai, XIONG Youming, YAN Guangqing, et al. Horizontal borehole stability and its influence on well completion optimization in the northeast Sichuan Basin[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(4): 1233–1238. doi: 10.13278/j.cnki.jjuese.2011.04.031

    [16] 刘向君,罗平亚,孟英峰. 地应力场对井眼轨迹设计及稳定性的影响研究[J]. 天然气工业,2004,24(9):57–59. doi: 10.3321/j.issn:1000-0976.2004.09.017

    LIU Xiangjun, LUO Pingya, MENG Yingfeng. Influence of ground stress field on borehole trajectory design and well face stability[J]. Natural Gas Industry, 2004, 24(9): 57–59. doi: 10.3321/j.issn:1000-0976.2004.09.017

    [17]

    EWY R T. Wellbore-stability predictions by use of a modified lade criterion[J]. SPE Drilling & Completion, 1999, 14(2): 85–91.

    [18] 梁利喜,丁乙,刘向君,等. 硬脆性泥页岩井壁稳定渗流–力化耦合研究[J]. 特种油气藏,2016,23(2):140–143. doi: 10.3969/j.issn.1006-6535.2016.02.034

    LIANG Lixi, DING Yi, LIU Xiangjun, et al. Seepage-mechanochemistry coupling of wellbore stability in hard-brittle shale[J]. Special Oil & Gas Reservoirs, 2016, 23(2): 140–143. doi: 10.3969/j.issn.1006-6535.2016.02.034

    [19]

    FREIJ-AYOUB R, TAN C, CLENNELL B, et al. A wellbore stability model for hydrate bearing sediments[J]. Journal of Petroleum Science and Engineering, 2007, 57(1/2): 209–220.

    [20] 邓华锋, 王晨玺杰, 李建林, 等. 加载速率对砂岩抗拉强度的影响机制[J]. 岩土力学, 2018, 39(增刊1): 79−88.

    DENG Huafeng, WANG Chenxijie, LI Jianlin, et al. Influence mechanism of loading rate on tensile strength of sandstone[J]. Rock and Soil Mechanics, 2018, 39(supplement 1): 79−88.

    [21] 吴绵拔. 加载速率对岩石抗压和抗拉强度的影响[J]. 岩土工程学报,1982,4(2):97–106. doi: 10.3321/j.issn:1000-4548.1982.02.010

    WU Mianba. The effect of loading rate on the compressive and tensile strength of rocks[J]. Chinese Journal of Geotechnical Engineering, 1982, 4(2): 97–106. doi: 10.3321/j.issn:1000-4548.1982.02.010

    [22] 尹小涛, 葛修润, 李春光, 等. 加载速率对岩石材料力学行为的影响[J]. 岩石力学与工程学报, 2010, 29(增刊1): 2610−2615.

    YIN Xiaotao, GE Xiurun, LI Chunguang, et al. Influences of loading rates on mechanical behaviors of rock materials[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(supplement 1): 2610−2615.

    [23] 谢和平,鞠杨,黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报,2005,24(17):3003–3010. doi: 10.3321/j.issn:1000-6915.2005.17.001

    XIE Heping, JU Yang, LI Liyun. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003–3010. doi: 10.3321/j.issn:1000-6915.2005.17.001

    [24] 马振乾,姜耀东,李彦伟,等. 加载速率和围压对煤能量演化影响试验研究[J]. 岩土工程学报,2016,38(11):2114–2121. doi: 10.11779/CJGE201611023

    MA Zhenqian, JIANG Yaodong, LI Yanwei, et al. Experimental research on influence of loading rate and confining pressure on energy evolution of coal[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 2114–2121. doi: 10.11779/CJGE201611023

    [25] 张志镇,高峰. 受载岩石能量演化的围压效应研究[J]. 岩石力学与工程学报,2015,34(1):1–11. doi: 10.13722/j.cnki.jrme.2015.01.001

    ZHANG Zhizhen, GAO Feng. Confining pressure effect on rock energy[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(1): 1–11. doi: 10.13722/j.cnki.jrme.2015.01.001

    [26] 张黎明,高速,王在泉. 加卸荷条件下灰岩能耗变化规律试验研究[J]. 岩土力学,2013,34(11):3071–3076. doi: 10.16285/j.rsm.2013.11.004

    ZHANG Liming, GAO Su, WANG Zaiquan. Experimental study of energy evolution of limestone under loading and unloading conditions[J]. Rock and Soil Mechanics, 2013, 34(11): 3071–3076. doi: 10.16285/j.rsm.2013.11.004

    [27] 陈卫忠,吕森鹏,郭小红,等. 基于能量原理的卸围压试验与岩爆判据研究[J]. 岩石力学与工程学报,2009,28(8):1530–1540. doi: 10.3321/j.issn:1000-6915.2009.08.003

    CHEN Weizhong, LYU Senpeng, GUO Xiaohong, et al. Research on unloading confining pressure tests and rockburst criterion based on energy theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(8): 1530–1540. doi: 10.3321/j.issn:1000-6915.2009.08.003

    [28] 徐小丽,陈琳,高峰,等. 花岗岩的加载速率效应及能量机制研究[J]. 固体力学学报,2015,36(2):154–163. doi: 10.19636/j.cnki.cjsm42-1250/o3.2015.02.008

    XU Xiaoli, CHEN Lin, GAO Feng, et al. Studies on loading rate effects and energy mechanism of granite[J]. Chinese Journal of Solid Mechanics, 2015, 36(2): 154–163. doi: 10.19636/j.cnki.cjsm42-1250/o3.2015.02.008

    [29] 姜耀东,李海涛,赵毅鑫,等. 加载速率对能量积聚与耗散的影响[J]. 中国矿业大学学报,2014,43(3):369–373. doi: 10.13247/j.cnki.jcumt.000121

    JIANG Yaodong, LI Haitao, ZHAO Yixin, et al. Effect of loading rate on energy accumulation and dissipation in rocks[J]. Journal of China University of Mining & Technology, 2014, 43(3): 369–373. doi: 10.13247/j.cnki.jcumt.000121

    [30] 苏国韶,冯夏庭. 基于粒子群优化算法的高地应力条件下硬岩本构模型的参数辨识[J]. 岩石力学与工程学报,2005,24(17):3029–3034. doi: 10.3321/j.issn:1000-6915.2005.17.005

    SU Guoshao, FENG Xiating. Parameter identification of constitutive model for hard rock under high in-situ stress condition using particle swarm optimization algorithm[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3029–3034. doi: 10.3321/j.issn:1000-6915.2005.17.005

    [31]

    HAJIABDOLMAJID V, KAISER P K, MARTIN C D. Modelling brittle failure of rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(6): 731–741. doi: 10.1016/S1365-1609(02)00051-5

    [32]

    DIEDERICHS M S. The 2003 Canadian geotechnical colloquium: Mechanistic interpretation and practical application of damage and spalling prediction criteria for deep unneling[J]. Canadian Geotechnical Journal, 2007, 44(9): 1082–1116. doi: 10.1139/T07-033

    [33]

    EDELBRO C. Numerical modelling of observed fallouts in hard rock masses using an instantaneous cohesion-softening friction-hardening model[J]. Tunnelling and Underground Space Technology, 2009, 24(4): 398–409. doi: 10.1016/j.tust.2008.11.004

    [34] 马天寿,陈平. 层理页岩水平井井周剪切失稳区域预测方法[J]. 石油钻探技术,2014,42(5):26–36. doi: 10.11911/syztjs.201405005

    MA Tianshou, CHEN Ping. Prediction method of shear instability region around the borehole for horizontal wells in bedding shale[J]. Petroleum Drilling Techniques, 2014, 42(5): 26–36. doi: 10.11911/syztjs.201405005

    [35] 李留伟,吴建军,龙学,等. 川西新场构造地应力分布规律研究及其应用[J]. 天然气工业,2008,28(9):80–82. doi: 10.3787/j.issn.1000-0976.2008.09.025

    LI Liuwei, WU Jianjun, LONG Xue, et al. Research on the distribution laws of tectonic in-site stress in Xinchang structure (West Sichuan Basin) and their applications[J]. Natural Gas Industry, 2008, 28(9): 80–82. doi: 10.3787/j.issn.1000-0976.2008.09.025

    [36] 刘厚彬,韩旭,张俊,等. 川西低渗透气藏气体钻井井壁稳定性评价方法[J]. 石油钻探技术,2019,47(1):25–31. doi: 10.11911/syztjs.2019004

    LIU Houbin, HAN Xu, ZHANG Jun, et al. Wellbore stability evaluation during gas drilling through low permeability gas reservoirs in western Sichuan[J]. Petroleum Drilling Techniques, 2019, 47(1): 25–31. doi: 10.11911/syztjs.2019004

  • 期刊类型引用(2)

    1. 周军,史叶,梁光川,彭操. 分时电价下油田分压周期注水优化研究. 石油钻探技术. 2024(03): 106-111 . 本站查看
    2. 袁永文,张西峰,李宏伟,胡春,宁朝华,杨红刚,程严军. 有缆式第四代智能分层注水技术优化及现场应用. 粘接. 2024(07): 117-120 . 百度学术

    其他类型引用(1)

图(10)  /  表(1)
计量
  • 文章访问数:  314
  • HTML全文浏览量:  138
  • PDF下载量:  83
  • 被引次数: 3
出版历程
  • 收稿日期:  2022-06-17
  • 修回日期:  2022-12-13
  • 网络出版日期:  2022-12-06
  • 刊出日期:  2023-03-24

目录

    /

    返回文章
    返回