Study on the NMR Response Mechanism of Micro-Fractured Tight Sandstones
-
摘要:
微裂缝是致密砂岩储层中流体的重要储存空间和迁移通道,为充分了解含微裂缝致密砂岩的核磁共振响应机理,构建了含不同微裂缝的致密砂岩数字岩心,并采用随机游走法对其在饱和油水时的核磁共振(NMR)响应进行了模拟。模拟结果表明:微裂缝的张开度、长度以及裂缝内含水饱和度为影响储层流体NMR响应的主要因素,张开度、长度以及含水饱和度的增加均会使水峰弛豫时间与信号幅度增大,但当微裂缝长度超过100 μm后,水峰弛豫时间不受上述因素影响;油峰弛豫时间不受微裂缝张开度、长度以及裂缝内含水饱和度的影响,其信号幅度反映含油量;微裂缝倾斜角对NMR响应没有影响。研究结果揭示了含微裂缝致密砂岩储层的NMR响应机理,为勘探微裂缝发育的有利层段提供了理论依据。
Abstract:Micro fractures serve as important storage spaces and migration channels for fluids in tight sandstone reservoirs. In order to fully understand the NMR (nuclear magnetic resonance) response mechanism of micro-fractured tight sandstones, we constructed several digital cores of tight sandstones with different micro fractures and simulated their NMR responses under oil-water saturation conditions by employing the random walk method. The simulation results showed that the aperture and length of micro fractures as well as the water saturation in fractures were the main controlling factors in the NMR response of reservoir fluids. In addition, the increase in the aperture, length, and water saturation could result in an improvement in relaxation time and signal amplitude of the water peak. However, the relaxation time of the water peak was not affected by above factors for micro fractures with length over 100 μm. Furthermore, the relaxation time of oil peak was independent of aperture, length, and water saturation, oil content was reflected from signal amplitude, and the inclination angle of micro fractures exerted no impact on the NMR response. The research results revealed the NMR response mechanism of micro-fractured tight sandstone reservoirs and provided a theoretical basis for the identification of favorable sections with micro-fracture developed.
-
Keywords:
- micro-fracture /
- tight sandstone /
- nuclear magnetic resonance /
- random walk method /
- digital core
-
-
-
[1] 贾承造,郑民,张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发,2012,39(2):129–136. JIA Chengzao, ZHENG Min, ZHANG Yongfeng. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 2012, 39(2): 129–136.
[2] 王平,沈海超. 加拿大M致密砂岩气藏高效开发技术[J]. 石油钻探技术,2022,50(1):97–102. doi: 10.11911/syztjs.2021123 WANG Ping, SHEN Haichao. High-efficient development technologies for the M tight sandstone gas reservoir in Canada[J]. Petroleum Drilling Techniques, 2022, 50(1): 97–102. doi: 10.11911/syztjs.2021123
[3] 王晓雯. 致密油藏储层敏感性评价及主控因素研究[J]. 特种油气藏,2021,28(1):103–110. doi: 10.3969/j.issn.1006-6535.2021.01.015 WANG Xiaowen. Study on reservoir sensitivity evaluation and key control factors of tight oil reservoirs[J]. Special Oil & Gas Reservoirs, 2021, 28(1): 103–110. doi: 10.3969/j.issn.1006-6535.2021.01.015
[4] 施砍园,庞雄奇,王克,等. 鄂尔多斯盆地华庆地区致密砂岩油藏成藏条件研究[J]. 特种油气藏,2021,28(6):20–26. doi: 10.3969/j.issn.1006-6535.2021.06.003 SHI Kanyuan, PANG Xiongqi, WANG Ke, et al. Study on accumulation conditions of tight sandstone reservoirs in Huaqing Area, Ordos Basin[J]. Special Oil & Gas Reservoirs, 2021, 28(6): 20–26. doi: 10.3969/j.issn.1006-6535.2021.06.003
[5] 罗威,倪玲梅. 致密砂岩有效储层形成演化的主控因素:以库车坳陷巴什基奇克组砂岩储层为例[J]. 断块油气田,2020,27(1):7–12. doi: 10.6056/dkyqt202001002 LUO Wei, NI Lingmei. Main controlling factors of formation and evolution of effective reservoir in tight sandstone: taking Bashijiqike Formation sandstone reservoir in Kuqa Depression as an example[J]. Fault-Block Oil & Gas Field, 2020, 27(1): 7–12. doi: 10.6056/dkyqt202001002
[6] ANDERS M H, LAUBACH S E, SCHOLZ C H. Microfractures: a review[J]. Journal of Structural Geology, 2014, 69(Part B): 377−394.
[7] ZHU Peng, LIN Chengyan, REN Huaiqiang, et al. Micro-fracture characteristics of tight sandstone reservoirs and its evaluation by capillary pressure curves: a case study of Permian sandstones in Ordos Basin, China[J]. Journal of Natural Gas Science and Engineering, 2015, 27(Part 1): 90 − 97.
[8] 韦青,李治平,王香增,等. 裂缝性致密砂岩储层渗吸机理及影响因素:以鄂尔多斯盆地吴起地区长8储层为例[J]. 油气地质与采收率,2016,23(4):102–107. doi: 10.3969/j.issn.1009-9603.2016.04.016 WEI Qing, LI Zhiping, WANG Xiangzeng, et al. Mechanism and influence factors of imbibition in fractured tight sandstone reservoir: an example from Chang 8 reservoir of Wuqi Area in Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2016, 23(4): 102–107. doi: 10.3969/j.issn.1009-9603.2016.04.016
[9] SUN Ruofan, HU Jinghong, ZHANG Yuan, et al. A semi-analytical model for investigating the productivity of fractured horizontal wells in tight oil reservoirs with micro-fractures[J]. Journal of Petroleum Science and Engineering, 2020, 186: 106781. doi: 10.1016/j.petrol.2019.106781
[10] 李长海,赵伦,刘波,等. 微裂缝研究进展、意义及发展趋势[J]. 天然气地球科学,2020,31(3):402–416. LI Changhai, ZHAO Lun, LIU Bo, et al. Research status, significance and development trend of microfractures[J]. Natural Gas Geoscience, 2020, 31(3): 402–416.
[11] 黄玉欣,胡望水,尹帅. 基于动态弹性力学模型的煤系致密砂岩储层裂缝预测方法[J]. 石油钻探技术,2018,46(5):115–120. doi: 10.11911/syztjs.2018082 HUANG Yuxin, HU Wangshui, YIN Shuai. Fracture prediction method for coal-bearing tight sandstone reservoirs based on a dynamic elastic mechanics model[J]. Petroleum Drilling Techniques, 2018, 46(5): 115–120. doi: 10.11911/syztjs.2018082
[12] TALEGHANI A D, AHMADI M, WANG W, et al. Thermal reactivation of microfractures and its potential impact on hydraulic-fracture efficiency[J]. SPE Journal, 2014, 19(5): 761–770. doi: 10.2118/163872-PA
[13] JIA Zijian, XIAO Lizhi, WANG Zhizhan, et al. Magic echo for nuclear magnetic resonance characterization of shales[J]. Energy & Fuels, 2017, 31(8): 7824–7830.
[14] 王志战. 国内非常规油气录井技术进展及发展趋势[J]. 石油钻探技术,2017,45(6):1–7. doi: 10.11911/syztjs.201706001 WANG Zhizhan. Technical progress and developing trends in unconventional oil and gas mud logging in China[J]. Petroleum Drilling Techniques, 2017, 45(6): 1–7. doi: 10.11911/syztjs.201706001
[15] 梁灿,肖立志,周灿灿,等. 岩石润湿性的核磁共振表征方法与初步实验结果[J]. 地球物理学报,2019,62(11):4472–4481. doi: 10.6038/cjg2019M0266 LIANG Can, XIAO Lizhi, ZHOU Cancan, et al. Nuclear magnetic resonance characterizes rock wettability: preliminary experimental results[J]. Chinese Journal of Geophysics, 2019, 62(11): 4472–4481. doi: 10.6038/cjg2019M0266
[16] JIN Guowen, XIE Ranhong, LIU Mi, et al. A new method for permeability estimation using integral transforms based on NMR echo data in tight sandstone[J]. Journal of Petroleum Science and Engineering, 2019, 180: 424–434. doi: 10.1016/j.petrol.2019.05.056
[17] WU Bohan, XIE Ranhong, WANG Xiaoyu, et al. Characterization of pore structure of tight sandstone reservoirs based on fractal analysis of NMR echo data[J]. Journal of Natural Gas Science and Engineering, 2020, 81: 103483. doi: 10.1016/j.jngse.2020.103483
[18] TAN Maojin, WANG Kun, ZOU Youlong, et al. Nuclear magnetic resonance simulations of nano-scale cores and microscopic mechanisms of oil shale[J]. Fuel, 2019, 256: 115843. doi: 10.1016/j.fuel.2019.115843
[19] GUO Jiangfeng, XIE Ranhong, ZOU Youlong, et al. Numerical simulation of multi-dimensional NMR response in tight sand-stone[J]. Journal of Geophysics and Engineering, 2016, 13(3): 285–294. doi: 10.1088/1742-2132/13/3/285
[20] 郭江峰,谢然红,邹友龙. 砂岩核磁共振响应模拟及受限扩散[J]. 地球物理学报,2016,59(7):2703–2712. doi: 10.6038/cjg20160733 GUO Jiangfeng, XIE Ranhong, ZOU Youlong. Simulation of NMR responses in sandstone and restricted diffusion[J]. Chinese Journal of Geophysics, 2016, 59(7): 2703–2712. doi: 10.6038/cjg20160733
[21] GUO Jiangfeng, XIE Ranhong. Numerical investigations of NMR T1–T2 map in two-phase fluid-bearing tight sandstone[J]. Applied Magnetic Resonance, 2019, 50(1): 479–495.
[22] GUO Jiangfeng, XIE Ranhong, XIAO Lizhi. Pore-fluid characterizations and microscopic mechanisms of sedimentary rocks with three-dimensional NMR: tight sandstone as an example[J]. Journal of Natural Gas Science and Engineering, 2020, 80: 103392. doi: 10.1016/j.jngse.2020.103392
[23] SUN Tianwei, YAN Weichao, WANG Haitao, et al. Developing a new NMR-based permeability model for fractured carbonate gas reservoirs[J]. Journal of Natural Gas Science and Engineering, 2016, 35(Part A): 906−919.
[24] 汪勇,孙业恒,梁栋,等. 基于数字岩心与格子Boltzmann方法的致密砂岩自发渗吸模拟研究[J]. 石油科学通报,2020,5(4):458–466. doi: 10.3969/j.issn.2096-1693.2020.04.040 WANG Yong, SUN Yeheng, LIANG Dong, et al. Spontaneous imbibition simulation of tight sandstone based on digital rock and lattice Boltzmann method[J]. Petroleum Science Bulletin, 2020, 5(4): 458–466. doi: 10.3969/j.issn.2096-1693.2020.04.040
[25] 李蕾,郝永卯,王程伟,等. 页岩油藏单相流体低速渗流特征[J]. 特种油气藏,2021,28(6):70–75. doi: 10.3969/j.issn.1006-6535.2021.06.009 LI Lei, HAO Yongmao, WANG Chengwei, et al. Low-velocity seepage characteristics of single-phase fluid in shale reservoir[J]. Special Oil & Gas Reservoirs, 2021, 28(6): 70–75. doi: 10.3969/j.issn.1006-6535.2021.06.009
[26] DUNSMUIR J H, FERGUSON S R, D’AMICO K L, et al. X-ray microtomography: a new tool for the characterization of porous media[R]. SPE 22860, 1991.
[27] SCANZIANI A, SINGH K, BULTREYS T, et al. In situ characterization of immiscible three-phase flow at the pore scale for a water-wet carbonate rock[J]. Advances in Water Resources, 2018, 121: 446–455. doi: 10.1016/j.advwatres.2018.09.010
-
期刊类型引用(8)
1. 张静静. 新沟致密油水平井水基钻井液性能优化评价. 辽宁化工. 2023(03): 439-442 . 百度学术
2. 付顺龙,侯珊珊,吴宇,由福昌,何淼. 低油水比乳状液稳定性影响因素分析. 油田化学. 2021(02): 191-195+215 . 百度学术
3. 刘特立,李胜,王显光. 梨树断陷页岩气水平井油基钻井液技术. 中外能源. 2019(10): 45-48 . 百度学术
4. 肖霞,许明标,由福昌,潘永功,王学力,周俊. 不同油水比油基钻井液滤失性能的影响因素. 油田化学. 2018(04): 577-581 . 百度学术
5. 臧艳彬. 川东南地区深层页岩气钻井关键技术. 石油钻探技术. 2018(03): 7-12 . 本站查看
6. 潘军,刘卫东,张金成. 涪陵页岩气田钻井工程技术进展与发展建议. 石油钻探技术. 2018(04): 9-15 . 本站查看
7. 路保平,丁士东. 中国石化页岩气工程技术新进展与发展展望. 石油钻探技术. 2018(01): 1-9 . 本站查看
8. 单海霞,王中华,徐勤,何焕杰,杨庆叙. 生物质基液PO-12的合成与性能评价. 石油钻探技术. 2017(04): 41-45 . 本站查看
其他类型引用(3)