顺北油气田低压易漏层泡沫水泥浆固井技术

王建云, 张红卫, 邹书强, 李明军, 王鹏

王建云,张红卫,邹书强,等. 顺北油气田低压易漏层泡沫水泥浆固井技术[J]. 石油钻探技术,2022, 50(4):25-30. DOI: 10.11911/syztjs.2022075
引用本文: 王建云,张红卫,邹书强,等. 顺北油气田低压易漏层泡沫水泥浆固井技术[J]. 石油钻探技术,2022, 50(4):25-30. DOI: 10.11911/syztjs.2022075
WANG Jianyun, ZHANG Hongwei, ZOU Shuqiang, et al. Foamed cement slurry cementing technology for low-pressure and leakage-prone layers of the Shunbei Oil & Gas Field [J]. Petroleum Drilling Techniques,2022, 50(4):25-30. DOI: 10.11911/syztjs.2022075
Citation: WANG Jianyun, ZHANG Hongwei, ZOU Shuqiang, et al. Foamed cement slurry cementing technology for low-pressure and leakage-prone layers of the Shunbei Oil & Gas Field [J]. Petroleum Drilling Techniques,2022, 50(4):25-30. DOI: 10.11911/syztjs.2022075

顺北油气田低压易漏层泡沫水泥浆固井技术

基金项目: 国家重点基础研究发展计划(“973”计划)项目“深井复杂地层安全高效钻井基础研究”(编号:2010CB226700)、国家自然科学基金项目“控压钻井测控理论及关键问题研究”(编号:51334003)联合资助
详细信息
    作者简介:

    王建云(1974—),男,湖北浠水人,1997年毕业于西南石油学院石油工程专业,高级工程师,主要从事钻井完井工程技术研究与相关管理工作。E-mail: wjianyun.xbsj@sinopec.com

  • 中图分类号: TE256

Foamed Cement Slurry Cementing Technology for Low-Pressure and Leakage-ProneLayers of the Shunbei Oil & Gas Field

  • 摘要:

    顺北油气田二叠系裂缝发育,地层承压能力低,固井漏失风险大。针对该问题,优选了抗高温抗盐的蛋白质发泡剂和高聚物稳泡剂,二者加量分别为2%~4%和0.4%~0.8%时,泡沫可在120 ℃下保持稳定;研制了密度1.10~1.30 kg/L可调的防漏泡沫水泥浆体系,其流动性好,120 ℃下API滤失量小于50 mL,泡沫水泥石密度差小于0.03 kg/L,密度1.10 kg/L泡沫水泥浆形成的水泥石在低温常压下养护72 h的抗压强度可达7.2 MPa,泡沫水泥浆综合性能优良;研究形成了基于井深、温度和压力的环空分段充气设计方法,充气量根据井深、水泥浆密度和注水泥浆排量实时调整,以保证环空泡沫水泥浆密度上下均匀。基于上述研究成果,形成了顺北油气田低压易漏层泡沫水泥浆固井技术,并在该油气田2口井封固存在低压易漏层的二叠系时进行了应用,泡沫水泥浆均成功返至地面,固井质量优良。该技术为顺北油气田低压易漏层安全高质量固井提供了技术途径,也可为其他区块裂缝性地层防漏固井提供了借鉴。

    Abstract:

    Permian strata in Shunbei Oil & Gas Field display a high level of fracture development, low bearing capacity, and a high risk of cementing leakage. In order to solve these problems, a protein foam agent and a polymer foam stabilizer with high temperature and salinity resistance were selected. Their dosages were optimized to be 2%–4% and 0.4%–0.8%, respectively, which could make the foam stable at 120 °C. In addition, an anti-leakage foamed cement slurry was developed with adjustable density ranging from 1.10–1.30 kg/L. The slurry has good fluidity, with API filtration of less than 50 mL at 120 °C. The density difference of foamed cement rocks was less than 0.03 kg/L, and the compressive strength of rocks with foamed cement slurry with density of 1.10 kg/L can reach 7.2 MPa after 72 h under low temperature and atmospheric pressure, which showed that the comprehensive performance of foamed cement slurry was excellent. Based on the well depth, temperature and pressure, the annular segmented aeration method was designed, and the aeration volume was adjusted on the fly according to the well depth, cement slurry density, and slurry displacement, which ensures uniform cement slurry density. According to the above results, the foamed cement slurry cementing technology for the low-pressure and leakage-prone layers of the Shunbei Oil & Gas Field was developed and applied in two wells, and the foamed cement slurry was back to the ground successfully, with good cementing quality. This technology supplies a way for the safe and high-quality cementing of low-pressure and leakage-prone formations of the Shunbei Oil & Gas Field and provides a reference for anti-leakage cementing of fractured formations in other blocks.

  • 图  1   泡沫水泥石的微观结构

    Figure  1.   Micro structure of foamed cement stone

    表  1   发泡剂SCF-1的性能

    Table  1   Performance of foam agent SCF-1

    试验温度/℃发泡体积/mL半衰期/s
    25850510
    90840420
    120830398
    注:试验条件为2%SCF-1溶液在温度120 ℃下老化2 h,瓦楞搅拌机以转速4 000 r/min搅拌2 min。
    下载: 导出CSV

    表  2   稳泡剂SCF-2对发泡体积与泡沫半衰期的影响

    Table  2   Effect of foam stabilizer SCF-2 on foaming volume and foam’s half life

    SCF-2加量,%发泡体积/mL泡沫半衰期/min
    0850 8.5
    0.4830 86.0
    0.6820 225.0
    0.8750 >240.0
    注:试验条件为采用2%SCF-1溶液,瓦楞搅拌机以转速4 000 r/min搅拌2 min。
    下载: 导出CSV

    表  3   发泡剂SCF-1加量对水泥浆密度的影响

    Table  3   Effect of foam agent SCF-1 dosage on cement slurry density

    SCF-1加
    量,%
    水泥浆密度/
    (kg·L−1
    泡沫体积
    分数,%
    48 h抗压强度/MPa
    100 ℃120 ℃
    01.90 024.520.2
    21.303116.812.6
    31.213614.610.8
    41.124110.6 6.4
    51.0644 5.5 3.9
    61.0346 4.7 3.0
    下载: 导出CSV

    表  4   稳泡剂SCF-2加量对泡沫水泥浆稳定性的影响

    Table  4   Effect of foam stabilizer SCF-2 dosage on cement slurry stability

    SCF-2加量,%试验温度/℃水泥浆密度/
    (kg·L−1
    水泥石密度/( kg·L−1密度差/
    ( kg·L−1
    48 h抗压强度/MPa
    上部下部100 ℃120 ℃
    0.41001.191.191.200.0114.510.6
    0.61101.201.191.200.0114.310.5
    0.81201.231.211.240.0314.210.3
    下载: 导出CSV

    表  5   泡沫水泥浆的基本性能

    Table  5   Basic properties of foamed cement slurry

    类型密度/
    ( kg·L−1
    流变参数API滤失量/
    mL
    沉降稳定性/
    (kg·L−1
    稠化时间/
    min
    抗压强度/MPa
    Kn48 h/90 ℃72 h/30 ℃
    基浆11.501.060.75441.50/1.50/1.5036118.514.3
    水泥浆11.470.960.68461.47/1.47/1.4740217.512.8
    1.301.320.74421.30/1.30/1.3039114.7 9.5
    1.101.400.73401.10/1.10/1.10410 9.8 7.2
    基浆21.880.970.74321.88/1.88/1.8829828.626.6
    水泥浆21.850.890.75341.85/1.85/1.8533327.525.8
    1.601.290.71321.60/1.60/1.6032919.718.2
    1.501.590.69301.50/1.50/1.5034116.313.4
    1.401.850.67281.40/1.40/1.4033714.2 9.8
    注:①基浆1(低密度水泥浆)配方为AG+16.0%微珠+12.0%微硅+2.0%增黏剂+6.0%降滤失剂+4.2%缓凝剂+1.0%早强剂+56.0%水+4.0%SCF-1+0.6%SCF-2;②水泥浆1是在基浆1基础上配制的不同密度泡沫水泥浆; ③基浆2(常规密度水泥浆)配方为AG+4.0%微硅 +1.0%增黏剂 +5.0%降滤失剂 +2.8%缓凝剂 +3.0%SCF-1+0.4%SCF-2+44.0%水; ④水泥浆2是在基浆2基础上配制的不同密度泡沫水泥浆; ⑤稠化试验条件为温度120℃、压力90 MPa,升温时间70 min;⑥泡沫水泥石强度为加压4 MPa密封取样测取。
    下载: 导出CSV

    表  6   泡沫水泥浆固井多级分段注气设计结果

    Table  6   Cementing design of multi-stage segmented aeration of foamed cement slurry

    级数井深/m压力/MPa水泥浆体积/m3注气量/
    (m3· m−3
    密度/( kg·L−1
    顶端底端顶部底部
    0 0 500 7.218111.450 01.450 0
    1 500100013.32611171.191 61.288 7
    21 0001 50019.45111271.219 01.274 6
    31 5002 00025.58111361.230 31.266 9
    42 0002 50031.71413441.237 01.262 0
    52 5003 00037.84713501.240 11.259 5
    63 0003 50043.98013561.242 01.257 8
    73 5004 00050.11513621.243 41.256 6
    84 0004 50054.532 81.450 01.450 0
    下载: 导出CSV

    表  7   顺北油气田A井ϕ273.1 mm技术套管固井水泥浆性能

    Table  7   Cement slurry performance of ϕ273.1 mm casing cementing in Well A of the Shunbei Oil & Gas Field

    类型密度/(kg·L−1六速旋转黏度计读数API滤失量/mL自由水/mL稠化时间/min抗压强度/MPa
    领浆基浆1.45284/181/138/87/13/1032043411.2
    尾浆1.85210/133/97/62/7/528026522.5
     注:稠化试验条件为温度80 ℃、压力55 MPa,升温时间70 min;密度1.18 kg/L泡沫水泥石25 ℃下养护72 h后的抗压强度为6.4 MPa。
    下载: 导出CSV
  • [1] 潘军,李大奇. 顺北油田二叠系火成岩防漏堵漏技术[J]. 钻井液与完井液,2018,35(3):42–47. doi: 10.3969/j.issn.1001-5620.2018.03.007

    PAN Jun, LI Daqi. Technology of preventing and controlling mud losses into the Permian igneous rocks in Shunbei Oilfield[J]. Drilling Fluid & Completion Fluid, 2018, 35(3): 42–47. doi: 10.3969/j.issn.1001-5620.2018.03.007

    [2] 董小虎,李银婷. 塔里木盆地顺北区块二叠系井漏复杂的分析及对策[J]. 探矿工程(岩土钻掘工程),2020,47(2):59–62.

    DONG Xiaohu, LI Yinting. Analysis and countermeasures for complex Permian well leakage in the Shunbei Block of Tarim Basin[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2020, 47(2): 59–62.

    [3] 张俊,杨谋,李双贵,等. 顺北二叠系低压易漏井固井质量影响因素探讨[J]. 钻井液与完井液,2019,36(4):486–490. doi: 10.3969/j.issn.1001-5620.2019.04.016

    ZHANG Jun, YANG Mou, LI Shuanggui, et al. Investigation of factors affecting cementing job quality in wells penetrating low pressure Permian formations having mud loss tendency in Shunbei Oilfield[J]. Drilling Fluid & Completion Fluid, 2019, 36(4): 486–490. doi: 10.3969/j.issn.1001-5620.2019.04.016

    [4] 邹书强,王建云,张红卫,等. 顺北鹰1井ϕ444.5 mm长裸眼固井技术[J]. 石油钻探技术,2020,48(1):40–45. doi: 10.11911/syztjs.2020008

    ZOU Shuqiang, WANG Jianyun, ZHANG Hongwei, et al. ϕ444.5 mm long openhole cementing technology for Well SBY-1[J]. Petroleum Drilling Techniques, 2020, 48(1): 40–45. doi: 10.11911/syztjs.2020008

    [5] 陈铧. 封固气层的泡沫水泥浆固井技术研究[J]. 中国石油和化工标准与质量,2019,39(10):213–214. doi: 10.3969/j.issn.1673-4076.2019.10.103

    CHEN Hua. Study on cementing technology of foam cement slurry for gas reservoir sealing[J]. China Petroleum and Chemical Standard and Quality, 2019, 39(10): 213–214. doi: 10.3969/j.issn.1673-4076.2019.10.103

    [6] 杨现禹,岳也,蔡记华. 化学发泡式泡沫水泥浆稠化实验方法对比与分析[J]. 钻井液与完井液,2016,33(2):96–100.

    YANG Xianyu, YUE Ye, CAI Jihua. Comparison and analysis of thickening experiment methods for chemically foamed cement slurry[J]. Drilling Fluid & Completion Fluid, 2016, 33(2): 96–100.

    [7] 姜政华,陶谦,匡立新,等. 泡沫水泥浆固井技术在页岩气生产套管固井中应用研究[J]. 内蒙古石油化工,2019,45(2):76–80. doi: 10.3969/j.issn.1006-7981.2019.02.031

    JIANG Zhenghua, TAO Qian, KUANG Lixin, et al. Application of foam cement cementing technology in casing cementing in shale gas production[J]. Inner Mongolia Petrochemical Industry, 2019, 45(2): 76–80. doi: 10.3969/j.issn.1006-7981.2019.02.031

    [8] 周仕明,肖京男. 突破国外技术壁垒:中国石化泡沫水泥浆固井装备与技术研发应用纪实[J]. 国企管理,2018(10):58–61.

    ZHOU Shiming, XIAO Jingnan. Breaking through foreign technical barriers-Sinopec foam cement slurry cementing equipment and technology research and development application[J]. China State-Owned Enterprise Management, 2018(10): 58–61.

    [9] 胡伟. 泡沫水泥浆体系研究与应用[D]. 大庆: 东北石油大学, 2012.

    HU Wei. Research and application of foam cement slurry system[D]. Daqing: Northeast Petroleum University, 2012.

    [10] 肖京男,方春飞,周仕明,等. 泡沫分数对泡沫水泥性能的影响规律分析[J]. 钻井液与完井液,2015,32(5):69–72.

    XIAO Jingnan, FANG Chunfei, ZHOU Shiming, et al. Effect of gas volume fraction in foam on performance of foam cement slurry[J]. Drilling Fluid & Completion Fluid, 2015, 32(5): 69–72.

    [11] 陈雷,杨红歧,肖京男,等. 杭锦旗区块漂珠–氮气超低密度泡沫水泥固井技术[J]. 石油钻探技术,2018,46(3):34–38. doi: 10.11911/syztjs.2018049

    CHEN Lei, YANG Hongqi, XIAO Jingnan, et al. Ultra-low density hollow microspheres-nitrogen foamed cementing technology in Block Hangjinqi[J]. Petroleum Drilling Techniques, 2018, 46(3): 34–38. doi: 10.11911/syztjs.2018049

    [12] 肖京男,刘建,桑来玉,等. 充气泡沫水泥浆固井技术在焦页9井的应用[J]. 断块油气田,2016,23(6):835–837. doi: 10.6056/dkyqt201606031

    XIAO Jingnan, LIU Jian, SANG Laiyu, et al. Application of foamed cement slurry to Jiaoye-9 Well[J]. Fault-Block Oil & Gas Field, 2016, 23(6): 835–837. doi: 10.6056/dkyqt201606031

    [13] 吴事难,张金龙,丁士东,等. 井下泡沫水泥浆密度计算模型修正[J]. 石油钻探技术,2013,41(2):28–33. doi: 10.3969/j.issn.1001-0890.2013.02.006

    WU Shinan, ZHANG Jinlong, DING Shidong, et al. Revision of mathematical model of foamed cement slurry density under down-hole conditions[J]. Petroleum Drilling Techniques, 2013, 41(2): 28–33. doi: 10.3969/j.issn.1001-0890.2013.02.006

    [14]

    HANACHI N, MALEKI A, FRIGAARD I. A model for foamed cementing of oil and gas wells[J]. Journal of Engineering Mathematics, 2018, 113(1): 93–121. doi: 10.1007/s10665-018-9975-5

    [15] 匡立新,陶谦. 渝东地区常压页岩气水平井充氮泡沫水泥浆固井技术[J]. 石油钻探技术,2022,50(3):39–45. doi: 10.11911/syztjs.2021103

    KUANG Lixin, TAO Qian. Cementing technology using a nitrogen-filled foamed cement slurry for horizontal shale gas wells in the eastern Chongqing Area[J]. Petroleum Drilling Techniques, 2022, 50(3): 39–45. doi: 10.11911/syztjs.2021103

  • 期刊类型引用(10)

    1. 高元. 长裸眼恶性漏失井双重防漏固井技术. 钻井液与完井液. 2024(03): 390-395 . 百度学术
    2. 杜晓雨,王学海,贾彦龙,李鹏程,万永华. 东胜页岩气超长水平段水平井固井关键技术. 石油机械. 2023(04): 46-53 . 百度学术
    3. 吴艳华. 纳米二氧化硅对水泥浆性能的影响及防腐作用机理研究. 内江科技. 2023(04): 72-74+25 . 百度学术
    4. 肖京男,初永涛,丁士东,周仕明,张晋凯. 川渝地区浅表层破碎带漏垮塌治理技术及应用. 科技和产业. 2023(09): 204-209 . 百度学术
    5. 张强. 文23储气库储层段钻井液及储层保护技术. 断块油气田. 2023(03): 517-522 . 百度学术
    6. 曾义金,金衍,周英操,陈军海,李牧,光新军,卢运虎. 深层油气钻采技术进展与展望. 前瞻科技. 2023(02): 32-46 . 百度学术
    7. 王海平,李治,董志明,魏周胜,苏洪生,于骏杰,刘开强. 高活性低密度水泥浆及其强度形成机理研究. 钻采工艺. 2023(03): 147-153 . 百度学术
    8. 曾义金. 中国石化深层超深层油气井固井技术新进展与发展建议. 石油钻探技术. 2023(04): 66-73 . 本站查看
    9. 孙晓峰,陶亮,朱志勇,于福锐,孙铭浩,赵元喆,曲晶瑀. 页岩储层水平扩径井段固井顶替效率数值模拟研究. 特种油气藏. 2023(04): 139-145 . 百度学术
    10. 杨昆鹏,李鹏晓,敖康伟,张天意,夏元博,侯薇. 富满油田长封固段低摩阻超低密度水泥浆固井技术. 石油钻探技术. 2023(06): 64-70 . 本站查看

    其他类型引用(0)

图(1)  /  表(7)
计量
  • 文章访问数:  365
  • HTML全文浏览量:  954
  • PDF下载量:  62
  • 被引次数: 10
出版历程
  • 收稿日期:  2022-01-09
  • 修回日期:  2022-06-10
  • 网络出版日期:  2022-06-19
  • 刊出日期:  2022-07-24

目录

    /

    返回文章
    返回