Optimal and Fast Drilling Technologies for Ultra-Deep Horizontal Wells in the Fault Zones of the Shunbei Oil & Gas Field
-
摘要:
为解决顺北油气田断裂带超深水平井钻井过程中的漏失、坍塌、气侵和随钻测量仪器抗温能力低等问题,从而提高钻井速度、缩短钻井周期,利用井震联合识别技术与修正的三压力剖面,优选了井口位置、确定了必封点,将井身结构优化为四级井身结构;基于裂缝性质分析与室内试验,优选了防漏堵漏浆和封堵防塌体系的配方,保障了长裸眼井段井壁的稳定;垂直钻井系统与大扭矩螺杆配合解决深部地层岩石强度高与易井斜的问题,实现了防斜打快;设计在低温井段造斜、在高温井段稳斜的井身剖面,采用微增斜钻具组合、采取针对性技术措施,解决了随钻测量仪器抗温能力低的问题;利用低密度钻井液+简易控压钻井技术解决了储层气侵、井涌和井漏的问题。通过技术研究和制定针对性技术措施,形成了适用于顺北油气田断裂带超深水平井的优快钻井技术。该技术在顺北油气田断裂带6口超深水平井进行了应用,钻井过程中漏失、坍塌、气侵和随钻测量仪器抗温能力低等问题都基本得到解决,与未应用该技术的邻井相比,平均机械钻速提高了116.2%,平均钻井周期缩短了41.2%。研究和现场应用结果表明,超深井水平井优快钻井技术可以解决顺北油气田断裂带超深水平井钻井过程中存在的问题,提高钻井速度、缩短钻井周期,为顺北油气田勘探开发提供技术支持。
Abstract:Ultra-deep horizontal wells in the fault zones of the Shunbei Oil & Gas Field face problems such as leakage, collapse, gas cut, and low ability of temperature resistance of measure while drilling (MWD). In order to solve these problems, and to increase the drilling speed, and shorten the drilling period, the well-seismic identification technology and the modified three-pressure profile were employed to select the wellhead and determine the sealing point, and the casing program was optimized to a four-stage structure. Then, based on the fracture property analysis and laboratory experiments, the formula of anti-leakage and anti-collapse drilling fluid system was selected to ensure the stability of the long open hole wellbore. In addition, a vertical drilling system worked with a large torque screw to solve problems of high rock strength and easy well deviation in deep formation to achieve anti-deviation and fast drilling. Furthermore, a borehole profile of deflecting in the low-temperature section and holding in the high-temperature section were designed. Then, a slightly buildup drill assembly and targeted technical measures were adopted to solve the low temperature resistance of MWD. Finally, the low-density drilling fluid and the simple managed pressure drilling technology were applied to deal with the gas cut, kick, and circulation loss in the reservoir. Through technical research and targeted measures, optimal and fast drilling technologies suitable for ultra-deep horizontal wells in the fault zones of the Shunbei Oil & Gas Field were developed. These technologies have been applied in six ultra-deep horizontal wells in the fault zones of the Shunbei Oil & Gas Field, and the problems including leakage, collapse, gas cut, and low temperature resistance of MWD were basically solved. Compared with that of adjacent wells without using these technologies, the average rate of penetration (ROP) of these wells was increased by 116.2%, and the average drilling duration was reduced by 41.2%. Research and field application show that the optimal and fast drilling technologies for ultra-deep horizontal can address the problems in the drilling process of ultra-deep horizontal wells in the fault zones of the Shunbei Oil & Gas Field. They can also increase the ROP and shorten the drilling duration, which can provide technical support for exploring and developing the Shunbei Oil & Gas Field.
-
-
表 1 优快钻井技术应用效果
Table 1 Application effect of the optimal and fast drilling technologies
井名 完钻井深/m 钻井周期/d 机械钻速/(m·h−1) 备注 TT42X 7996.00 218.83 5.35 应用后 TT41X 8472.00 159.50 6.58 TT4-1H 8036.61 161.88 8.35 TT44X 8261.69 185.83 8.10 TT4-4H 8483.70 165.00 8.57 TT4-2H 8587.04 182.00 7.13 XX1 7874.00 304.20 3.40 应用前 -
[1] 金军斌. 塔里木盆地顺北区块超深井火成岩钻井液技术[J]. 石油钻探技术,2016,44(6):17–23. JIN Junbin. Drilling fluid technology for igneous rocks in ultra-deepwells in the Shunbei Area, Tarim Basin[J]. Petroleum Drilling Techniques, 2016, 44(6): 17–23.
[2] 张亚云,李大奇,高书阳,等. 顺北油气田奥陶系破碎性地层井壁失稳影响因素分析[J]. 断块油气田,2022,29(2):256–260. ZHANG Yayun,LI Daqi,GAO Shuyang,et al. Analysis on influencing factors of wellbore instability of Ordovician fractured formation in Shunbei Oil and Gas Field[J]. Fault-Block Oil & Gas Field, 2022, 29(2): 256–260.
[3] 潘丽娟,杜春朝,龙武,等. 顺北油气田非均质碳酸盐岩储层矿化度敏感规律[J]. 钻井液与完井液,2020,37(3):337–344. PAN Lijuan, DU Chunchao, LONG Wu, et al. Patterns of salinity sensitivity of heterogeneous carbonate reservoirs in Shunbei Oil and Gas Field[J]. Drilling Fluid & Completion Fluid, 2020, 37(3): 337–344.
[4] 陈曾伟,刘四海,林永学,等. 塔河油田顺西2井二叠系火成岩裂缝性地层堵漏技术[J]. 钻井液与完井液,2014,31(1):40–43. CHEN Zengwei, LIU Sihai, LIN Yongxue, et al. Lost circulation control technology for fractured Permian igneous rock formation in Well Shunxi 2 of Tahe Oilfield[J]. Drilling Fluid & Completion Fluid, 2014, 31(1): 40–43.
[5] 李新勇,纪成,王涛,等. 顺北油田上浮剂封堵及泵注参数实验研究[J]. 断块油气田,2021,28(1):139–144. LI Xinyong, JI Cheng, WANG Tao, et al. Experimental study on plugging performance and pumping parameters of floating agent in Shunbei Oilfield[J]. Fault-Block Oil & Gas Field, 2021, 28(1): 139–144.
[6] 宣扬,刘珂,郭科佑,等. 顺北超深水平井环保耐温低摩阻钻井液技术[J]. 特种油气藏,2020,27(3):163–168. XUAN Yang, LIU Ke, GUO Keyou, et al. Environmental anti-temperature low-friction drilling fluid technology of ultra-deep horizontal well in Shunbei Oil & Gas Field[J]. Specail Oil & Gas Reservoirs, 2020, 27(3): 163–168.
[7] 于洋,李双贵,高德利,等. 顺北5-5H 超深ϕ120.65 mm 小井眼水平井钻井技术[J]. 石油钻采工艺,2020,42(3):276–281. YU Yang, LI Shuanggui, GAO Deli, et al. Drilling techniques used in Well Shunbei 5-5H, an ultradeep slimhole ϕ120.65 mm horizontal well[J]. Oil Drilling & Production Technology, 2020, 42(3): 276–281.
[8] 舒刚,孟英峰,李皋,等. 重力置换式漏喷同存机理研究[J]. 石油钻探技术,2011,39(1):6–11. doi: 10.3969/j.issn.1001-0890.2011.01.002 SHU Gang, MENG Yingfeng, LI Gao, et al. Mechanism of mud loss and well kick due to gravity displacement[J]. Petroleum Drilling Techniques, 2011, 39(1): 6–11. doi: 10.3969/j.issn.1001-0890.2011.01.002
[9] 朱立华,马灵伟,白英哲,等. 顺北超深断控体地震多信息约束速度建模[J]. 石油物探,2019,58(6):864–873. doi: 10.3969/j.issn.1000-1441.2019.06.009 ZHU Lihua, MA Lingwei, BAI Yingzhe, et al. Velocity modeling of an ultra-deep fault-controlled reservoir in Shunbei Area, China, using a multi-information constrait[J]. Geophysical Prospecting for Petroleum Drilling, 2019, 58(6): 864–873. doi: 10.3969/j.issn.1000-1441.2019.06.009
[10] 马永生,蔡勋育,云露,等. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J]. 石油勘探与开,2022,49(1):1–17. MA Yongsheng, CAI Xunyu, YUN Lu, et al. Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas field, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(1): 1–17.
[11] 文山师,李海英,洪才均,等. 顺北油田断溶体储层地震响应特征及描述技术[J]. 断块油气田,2020,27(1):45–49. WEN Shanshi, LI Haiying, HONG Caijun, et al. Technology of seismic response characteristics and description of fault-karst reservoir in Shunbei Oilfield[J]. Fault-Block Oil & Gas Field, 2020, 27(1): 45–49.
[12] 吕海涛,韩俊,张继标,等. 塔里木盆地顺北地区超深碳酸盐岩断溶体发育特征与形成机制[J]. 石油实验地质,2021,43(1):14–22. doi: 10.11781/sysydz202101014 LYU Haitao, HAN Jun, ZHANG Jibiao, et al. Development characteristics and formation mechanism of ultra-deep carbonate fault-dissolution body in Shunbei Area, Tarim Basin[J]. Petroleum Geology and Experiment, 2021, 43(1): 14–22. doi: 10.11781/sysydz202101014
[13] 刘彪,潘丽娟,易浩,等. 顺北含辉绿岩超深井井身结构优化设计[J]. 石油钻采工艺,2016,38(3):296–301. LIU Biao, PAN Lijuan, YI Hao, et al. Casing program optimization of ultra-deep well with diabase reservoir in Shunbei Block[J]. Oil Drilling & Production Technology, 2016, 38(3): 296–301.
[14] 刘彪,潘丽娟,王圣明,等. 顺北油气田超深井井身结构系列优化及应用[J]. 石油钻采工艺,2019,41(2):130–136. LIU Biao, PAN Lijuan, WANG Shengming, et al. Casing program optimization and application of ultradeep wells in Shunbei Oil and Gas Field[J]. Oil Drilling & Production Technology, 2019, 41(2): 130–136.
[15] 翟科军,于洋,刘景涛,等. 顺北油气田火成岩侵入体覆盖区超深井优快钻井技术[J]. 石油钻探技术,2020,48(2):1–5. ZHAI Kejun, YU Yang, LIU Jingtao, et al. Ultra-deep well drilling technology in the igneous invasion coverage area of the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(2): 1–5.
[16] 李双贵,于洋,樊艳芳,等. 顺北油气田超深井井身结构优化设计[J]. 石油钻探技术,2020,48(2):6–11. LI Shuanggui, YU Yang, FAN Yanfang, et al. Optimal design of casing programs for ultra-deep wells in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Technique, 2020, 48(2): 6–11.
[17] 邱春阳,张翔宇,赵红香,等. 顺北区块深层井壁稳定钻井液技术[J]. 天然气勘探与开发,2021,44(2):81–86. QIU Chunyang, ZHANG Xiangyu, ZHAO Hongxiang, et al. Drilling-fluid system for deep borehole stability in Shunbei Block, Tarim Basin[J]. Natural Gas Exploration and Development, 2021, 44(2): 81–86.
[18] 方俊伟,张翼,李双贵,等. 顺北一区裂缝性碳酸盐岩储层抗高温可酸溶暂堵技术[J]. 石油钻探技术,2020,48(2):17–22. FANG Junwei, ZHANG Yi, LI Shuanggui, et al. Acid-soluble temporary plugging technology for ultra-deep fractured carbonate reservoirs in Block 1 of the Shunbei Area[J]. Petroleum Drilling Techniques, 2020, 48(2): 17–22.
[19] 张平. 顺北蓬1井ϕ444.5 mm 长裸眼井筒强化钻井液技术[J]. 石油钻探技术,2018,46(3):27–33. ZHANG Ping. Wellbore enhancing technlogy for ϕ444.5 mm openhole section in Well SHBP1 by means of drilling fluid optization[J]. Petroleum Drilling Techniques, 2018, 46(3): 27–33.
[20] 林永学,王伟吉,金军斌. 顺北油气田鹰1井超深井段钻井液关键技术[J]. 石油钻探技术,2019,47(3):113–120. doi: 10.11911/syztjs.2019068 LIN Yongxue, WANG Weiji, JIN Junbin. Key drilling fluid technology in the ultra deep section of Well Ying-1 in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(3): 113–120. doi: 10.11911/syztjs.2019068
[21] 李成,白杨,于洋,等. 顺北油田破碎地层井壁稳定钻井液技术[J]. 钻井液与完井液,2020,37(1):15–22. LI Cheng, BAI Yang, YU Yang, et al. Study and application of drilling fluid technology for stabilizing fractured formations in Shunbei Oilfield[J]. Drilling Fluid & Completion Fluid, 2020, 37(1): 15–22.
[22] 陈修平,李双贵,于洋,等. 顺北油气田碳酸盐岩破碎性地层防塌钻井液技术[J]. 石油钻探技术,2020,48(2):12–16. CHEN Xiuping, LI Shuanggui, YU Yang, et al. Anti-collapse drilling fluid technology for broken carbonate formation in Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(2): 12–16.
[23] LIU Biao, ZHU Zhongxi , ZHANG Jun, et al. Fatigue failure analysis of drilling tools for ultra-deep wells in Shunbei Block: proceedings of 2018 4th International Conference on Applied Materials and Manufacturing Technology(ICAMMT 2018)[C]. Bristol: IOP Publishing, 2018: 1403 − 1409.
[24] 刘彪,潘丽娟,张俊,等. 顺北区块超深小井眼水平井优快钻井技术[J]. 石油钻探技术,2016,44(6):11–16. LIU Biao, PAN Lijuan, ZHANG Jun, et al. The optimized drilling techniques used in ultra-deep and slim-hole horizontal wells of the Shunbei Block[J]. Petroleum Drilling Techniques, 2016, 44(6): 11–16.
[25] 刘彪,张俊,王居贺,等. 顺北油田含侵入岩区域超深井安全高效钻井技术[J]. 石油钻采工艺,2020,42(2):138–142. LIU Biao, ZHANG Jun, WANG Juhe, et al. Technologies for the safe and efficient drilling of ultradeep wells in the areas with intrusive rocks in the Shunbei Oilfield[J]. Oil Drilling & Production Technology, 2020, 42(2): 138–142.
[26] 苏雄,杨明合,陈伟峰,等. 顺北一区小井眼超深井井筒温度场特征研究与应用[J]. 石油钻探技术,2021,49(3):67–74. doi: 10.11911/syztjs.2021006 SU Xiong, YANG Minghe, CHEN Weifeng, et al. Study and application of wellbore temperature field characteristics in the ultra-deep slim-hole wells in the Shunbei No.1 Area[J]. Petroleum Drilling Techniques, 2021, 49(3): 67–74. doi: 10.11911/syztjs.2021006
[27] 孙明光. 顺北油田超深小井眼水平井定向钻井技术[J]. 钻采工艺,2019,43(4):19–22. doi: 10.3969/J.ISSN.1006-768X.2019.04.01 SUN Mingguang. Directional drilling technique for ultra-deep horizontal slimhole wells in Shunbei Oilfield[J]. Drilling & Production Technology, 2019, 43(4): 19–22. doi: 10.3969/J.ISSN.1006-768X.2019.04.01
[28] 王果. 基于三级反馈调节的控压钻井回压自动调控方法[J]. 石油钻采工艺,2019,41(4):441–447. WANG Guo. Automatic backpressure control techniques of MPD drilling based on three-layer feedback regulation method[J]. Oil Drilling & Production Technology, 2019, 41(4): 441–447.
[29] 柴龙,林永学,金军斌,等. 塔河油田外围高温高压井气滞塞防气窜技术[J]. 石油钻探技术,2018,46(5):40–45. CHAI Long, LIN Yongxue, JIN Junbin, et al. Anti-gas channeling technology with gas-block plug for high temperature and high pressure wells in the periphery of the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2018, 46(5): 40–45.
[30] 王建云,杨晓波,王鹏,等. 顺北碳酸盐岩裂缝性气藏安全钻井关键技术[J]. 石油钻探技术,2020,48(3):8–15. doi: 10.11911/syztjs.2020003 WANG Jianyun, YANG Xiaobo, WANG Peng, et al. Key technologies for the safe drilling of fractured carbonate gas reservoirs in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(3): 8–15. doi: 10.11911/syztjs.2020003
-
期刊类型引用(21)
1. 孙菁. C26区块优快钻井技术研究与应用. 石化技术. 2025(02): 115-117 . 百度学术
2. 肖沣峰,杨丽丽,吴家乐,冯尚江,邱士鑫,蒋官澄. 蓖麻油基环保水性聚氨酯成膜剂CWPU. 钻井液与完井液. 2025(02): 201-208 . 百度学术
3. 傅玉,蒲杨. 长裸眼水平段超深井完井液密度对井壁稳定的重要性剖析. 天然气技术与经济. 2024(06): 15-19+63 . 百度学术
4. 高斐,何云,董淼,刘云鹏,张艳. 一种新型双季铵盐页岩抑制剂的制备及其作用机理. 中国科技论文. 2023(06): 694-698 . 百度学术
5. 孙翀,周定照,王涛,邢希金,崔应中,向兴国. YH7井钻井液煤层井壁稳定技术研究及应用. 石油化工应用. 2023(05): 20-22 . 百度学术
6. 李勇尚,马诚,杨超,王晨,周成华,张珍. 聚合物微球封堵防塌剂的制备与性能评价. 精细石油化工. 2023(04): 13-17 . 百度学术
7. 赵春雨,申超,张蕾,曲学超,刘佩. 水基钻井液用CaCO_3/PAA纳米颗粒的制备及性能研究. 当代化工. 2022(04): 810-814 . 百度学术
8. 马少强. 泥页岩地层油基钻井液封堵防塌技术研究与应用. 西部探矿工程. 2022(06): 43-45 . 百度学术
9. 庄艳君,肖林通,于雷,邱春阳. 丁页10井水平井钻井液技术. 四川化工. 2022(06): 37-40 . 百度学术
10. 王伟吉. 基于石墨烯修饰的超低渗透成膜剂制备及性能评价. 石油钻探技术. 2021(01): 59-66 . 本站查看
11. 杨洪烈,可点,吴宇,周书胜,周姗姗. 一种油基钻井液用降滤失剂室内研究. 当代化工. 2020(01): 99-102+106 . 百度学术
12. 曾文韬,许明标,由福昌. 泥页岩纳—微米微孔隙封堵评价方法. 能源与环保. 2019(03): 73-76+160 . 百度学术
13. 魏然,刘成杰. BZ34-5油田复杂地层低效井治理工艺技术. 探矿工程(岩土钻掘工程). 2019(06): 47-52 . 百度学术
14. 黄熠,胜亚楠,管志川,罗鸣,李文拓,邓文彪. 莺琼盆地钻井井壁稳定性定量风险评价. 断块油气田. 2019(03): 380-384 . 百度学术
15. 林永学,王伟吉,金军斌. 顺北油气田鹰1井超深井段钻井液关键技术. 石油钻探技术. 2019(03): 113-120 . 本站查看
16. 许杰,何瑞兵,谢涛,胡进军,崔应中. 钻井液水驱动力调控技术研究. 石油化工应用. 2019(09): 44-47 . 百度学术
17. 田月昕,黄进军,郭星波,沈景原,李春霞. 纳米封堵剂Fe_3O_4性能评价与机理探究. 化学世界. 2018(07): 440-447 . 百度学术
18. 于雷,张敬辉,李公让,赵怀珍,刘天科. 低活度强抑制封堵钻井液研究与应用. 石油钻探技术. 2018(01): 44-48 . 本站查看
19. 洪国斌,陈勉,卢运虎,金衍. 川南深层页岩各向异性特征及对破裂压力的影响. 石油钻探技术. 2018(03): 78-85 . 本站查看
20. 王平全,王建龙,白杨,邓嘉丁,青胜兰. 新型水基钻井液在延长油田页岩气水平井的应用. 石油与天然气化工. 2018(05): 79-84 . 百度学术
21. 吴若宁,熊汉桥,苏晓明,朱杰,孙运昌,王启任. 成膜封堵技术室内实验研究. 油气藏评价与开发. 2018(06): 57-61+69 . 百度学术
其他类型引用(15)