A Cementing Technology for Horizontal Shale Oil Wells in Shahejie Formation of Shengli Oilfield
-
摘要: 胜利油田沙河街组页岩油水平井固井时存在套管居中和安全下入难度大、水泥浆性能要求高和油基钻井液驱替困难等技术难点,为此研发了两亲冲洗隔离液体系、优选纤维膨胀水泥浆体系和塑性胶乳防窜水泥浆体系,并采取应用整体式弹性套管扶正器、偏心导向引鞋、漂浮顶替技术和环空加压等固井技术措施,初步形成了胜利油田沙河街组页岩油水平井固井技术。该固井技术在预探井YYP1井进行了现场试验,固井作业正常,声幅测井结果显示,一界面固井质量为优质,二界面固井质量为合格。研究与试验表明,该固井技术够解决胜利油田沙河街组页岩油水平井长水平段固井存在的技术难点,提高固井质量,满足大规模体积压裂对水泥环胶结质量的要求,可以在页岩油开发中进行推广应用。Abstract: The cementing of horizontal shale oil wells in Shahejie Formation of Shengli Oilfield faces some technical challenges, such as the difficulties in the casing centering and safe casing running, high performance requirements for cement slurry, and hard displacement of oil-base drilling fluids. In light of these, the amphiphilic flushing spacer system was developed , the fiber expanding and anti-channeling plastic latex cement slurry system were optimized. On this basis, a cementing technology was formed preliminarily for horizontal shale oil wells in Shahejie Formation of Shengli Oilfield by combining cementing equipments and measures including an integral elastic casing centralizer, an eccentric guide shoe, floating displacement, and annulus pressurization, etc. The cementing technology was tested on site in a preliminary prospecting well YYP1, with a normal cementing operation completed. The results of acoustic amplitude logging showed that the cementing quality of the first interface was quite high, and that of the second interface was qualified. As indicated by the research and tests, the proposed cementing technology can tackle technological problems in cementing for long horizontal sections of horizontal shale oil wells in Shahejie Formation of Shengli Oilfield and enhance cementing quality. It meets the requirements of large-scale volumetric fracturing for the cementing quality of cement sheaths and can be promoted and applied in the development of shale oil.
-
Keywords:
- shale oil /
- horizontal well /
- cementing /
- cement slurry /
- cementing quality /
- Shengli Oilfield
-
-
表 1 两亲冲洗隔离液油膜冲洗效率试验结果
Table 1 Test results of flushing efficiency of oil film by amphiphilic flushing spacer
冲洗时间/min W0/g W1/g W2/g 冲洗效率,% 10 51.20 56.30 51.90 86.27 20 51.20 58.10 51.40 97.10 表 2 油基钻井液与两亲冲洗隔离液相容性试验结果
Table 2 Test results of compatibility between oil-base drilling fluid and amphiphilic flushing spacer
混合比例1) 六速旋转黏度计读数 塑性黏度/
(mPa·s)动切力/
Paϕ3 ϕ6 ϕ100 ϕ200 ϕ300 ϕ600 1∶0 7 9 33 52 70 115 45 12.8 1∶1 7 8 22 30 38 58 20 9.2 1∶3 5 7 24 35 43 67 24 9.7 3∶1 9 12 40 57 76 130 54 11.2 注:1)为油基钻井液与两亲冲洗隔离液的体积比。 表 3 纤维膨胀水泥浆体系和塑性胶乳防窜水泥浆体系的基本性能参数
Table 3 Basic performance parameters of the fiber expanding and anti-channeling plastic latex cement slurry system
水泥浆体系 密度/(kg·L−1) 游离液,% API 滤失量1)/mL 稠化时间2)/min 水泥石膨胀率3),% 上下密度差/(kg·L−1) 纤维膨胀 1.85 0.1 45 306 0.6 0.01 胶乳防窜 1.92 0 15 166 1.2 0 注:1)试验条件为90 ℃×6.9 MPa×30 min;2)试验条件为90 ℃×70.0 MPa×50 min;3)试验条件为90 ℃×0.1 MPa×48 h。 表 4 水泥石力学性能试验结果
Table 4 Test results of mechanical properties of cement stone
水泥浆体系 密度/
(kg·L−1)抗压强度/MPa 弹性模量/
GPa12 h 24 h 48 h 72 h 纤维膨胀1) 1.85 8.15 21.40 纤维膨胀2) 1.85 6.65 20.75 6.80 胶乳防窜3) 1.92 10.90 19.30 28.60 6.20 注:1)试验条件为0.1 MPa×30 ℃;2)试验条件为0.1 MPa×90 ℃;3)试验条件为30 MPa×124 ℃。 -
[1] 张善文,王永诗,张林晔,等. 济阳坳陷渤南洼陷页岩油气形成条件研究[J]. 中国工程科学,2012,14(6):49–55. doi: 10.3969/j.issn.1009-1742.2012.06.007 ZHANG Shanwen, WANG Yongshi, ZHANG Linye, et al. Formation conditions of shale oil and gas in Bonan Sub-Sag, Jiyang Depression[J]. Engineering Science, 2012, 14(6): 49–55. doi: 10.3969/j.issn.1009-1742.2012.06.007
[2] 刘建伟. 济阳坳陷东营凹陷北带砂砾岩扇体沉积相井震联合地震精细描述[J]. 特种油气藏,2021,28(1):18–25. doi: 10.3969/j.issn.1006-6535.2021.01.003 LIU Jianwei. Accurate description by well-to-seismic integration of glutenite fan sedimentation in the Northern Dongying Sag, Jiyang Sub-Basin[J]. Special Oil & Gas Reservoirs, 2021, 28(1): 18–25. doi: 10.3969/j.issn.1006-6535.2021.01.003
[3] 韩来聚,杨春旭. 济阳坳陷页岩油水平井钻井完井关键技术[J]. 石油钻探技术,2021,49(4):22–28. doi: 10.11911/syztjs.2021073 HAN Laiju, YANG Chunxu. Key technologies for drilling and completion of horizontal shale oil wells in the Jiyang Depression[J]. Petroleum Drilling Techniques, 2021, 49(4): 22–28. doi: 10.11911/syztjs.2021073
[4] 宋明水. 济阳坳陷页岩油勘探实践与现状[J]. 油气地质与采收率,2019,26(1):1–12. SONG Mingshui. Practice and current status of shale oil exploration in Jiyang Depression[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 1–12.
[5] 赵波,陈二丁. 胜利油田页岩油水平井樊页平1井钻井技术[J]. 石油钻探技术,2021,49(4):53–58. doi: 10.11911/syztjs.2021078 ZHAO Bo, CHEN Erding. Drilling technologies for horizontal shale oil Well Fan Yeping 1 in the Shengli Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 53–58. doi: 10.11911/syztjs.2021078
[6] 张锦宏. 中国石化页岩油工程技术现状与发展展望[J]. 石油钻探技术,2021,49(4):8–13. doi: 10.11911/syztjs.2021072 ZHANG Jinhong. Present status and development prospects of Sinopec shale oil engineering technologies[J]. Petroleum Drilling Techniques, 2021, 49(4): 8–13. doi: 10.11911/syztjs.2021072
[7] 李宗田,肖勇,李宁,等. 低油价下的页岩油气开发工程技术新进展[J]. 断块油气田,2021,28(5):577–585. LI Zongtian, XIAO Yong, LI Ning, et al. New progress in shale oil and gas development engineering technology under low oil prices[J]. Fault-Block Oil & Gas Field, 2021, 28(5): 577–585.
[8] 李小林,吴朝明,赵殊勋,等. 大港油田页岩油储层固井技术研究与应用[J]. 钻井液与完井液,2020,37(2):232–238. doi: 10.3969/j.issn.1001-5620.2020.02.017 LI Xiaolin, WU Chaoming, ZHAO Shuxun, et al. Technology for cementing shale oil reservoirs in Dagang Oilfield: study and application[J]. Drilling Fluid & Completion Fluid, 2020, 37(2): 232–238. doi: 10.3969/j.issn.1001-5620.2020.02.017
[9] 王志远,黄维安,范宇,等. 长宁区块强封堵油基钻井液技术研究及应用[J]. 石油钻探技术,2021,49(5):31–38. doi: 10.11911/syztjs.2021039 WANG Zhiyuan, HUANG Weian, FAN Yu, et al. Technical research and application of oil base drilling fluid with strong plugging property in Changning Block[J]. Petroleum Drilling Techniques, 2021, 49(5): 31–38. doi: 10.11911/syztjs.2021039
[10] 左京杰,张振华,姚如钢,等. 川南页岩气地层油基钻井液技术难题及案例分析[J]. 钻井液与完井液,2020,37(3):294–300. doi: 10.3969/j.issn.1001-5620.2020.03.005 ZUO Jingjie, ZHANG Zhenhua, YAO Rugang, et al. Technical difficulties and case study of oil base drilling fluid operation in shale gas drilling in South Sichuan[J]. Drilling Fluid & Completion Fluid, 2020, 37(3): 294–300. doi: 10.3969/j.issn.1001-5620.2020.03.005
[11] 王星媛,陆灯云,袁志平. 川西地区油基钻井液井壁强化技术[J]. 石油钻探技术,2021,49(1):34–40. doi: 10.11911/syztjs.2020116 WANG Xingyuan, LU Dengyun, YUAN Zhiping. Borehole streng-thening technology with oil-based drilling fluid in the Western Sich-uan Basin[J]. Petroleum Drilling Techniques, 2021, 49(1): 34–40. doi: 10.11911/syztjs.2020116
[12] 陈小华,张福铭,赵琥,等. 油基钻井液用冲洗液PC-W31L的制备及性能研究[J]. 石油钻探技术,2019,47(2):81–86. doi: 10.11911/syztjs.2019015 CHEN Xiaohua, ZHANG Fuming, ZHAO Hu, et al. The development and properties of PC-W31L flushing fluid for oil-based drilling fluid[J]. Petroleum Drilling Techniques, 2019, 47(2): 81–86. doi: 10.11911/syztjs.2019015
[13] 赵启阳,张成金,严海兵,等. 提高油基钻井液固井质量的冲洗型隔离液技术[J]. 钻采工艺,2017,40(5):88–90. doi: 10.3969/J.ISSN.1006-768X.2017.05.27 ZHAO Qiyang, ZHANG Chengjin, YAN Haibing, et al. Flush type spacer fluid technology used to improving cementing quality of OBM drilled wells[J]. Drilling & Production Technology, 2017, 40(5): 88–90. doi: 10.3969/J.ISSN.1006-768X.2017.05.27
[14] 刘成贵. 非常规油气水平井固井关键技术研究与应用[J]. 石油钻采工艺,2013,35(2):48–51. doi: 10.3969/j.issn.1000-7393.2013.02.015 LIU Chenggui. Key technology research and application of cementing in horizontal wells of unconventional oil and gas reservoir[J]. Oil Drilling & Production Technology, 2013, 35(2): 48–51. doi: 10.3969/j.issn.1000-7393.2013.02.015
[15] 唐世忠,饶富培,吴华,等. 固井冲洗液冲洗效率评价方法[J]. 石油钻采工艺,2016,38(5):601–605. TANG Shizhong, RAO Fupei, WU Hua, et al. Assessment method for flushing efficiency of flushing liquid in cementing[J]. Oil Drilling & Production Technology, 2016, 38(5): 601–605.
[16] 吕斌,周琛洋,邱爱民,等. 防漏早强韧性水泥浆体系的室内研究[J]. 钻井液与完井液,2020,37(2):226–231. doi: 10.3969/j.issn.1001-5620.2020.02.016 LYU Bin, ZHOU Chenyang, QIU Aimin, et al. Laboratory study on leak-proof early strength tough cement slurry[J]. Drilling Fluid & Completion Fluid, 2020, 37(2): 226–231. doi: 10.3969/j.issn.1001-5620.2020.02.016
[17] 郑国生,朱礼平,李群生,等. 塑性膨胀防气窜水泥浆体系研究与应用[J]. 石油钻采工艺,2013,35(5):52–55. doi: 10.3969/j.issn.1000-7393.2013.05.015 ZHENG Guosheng, ZHU Liping, LI Qunsheng, et al. Study and application of plastic expansion anti-channeling slurry system[J]. Oil Drilling & Production Technology, 2013, 35(5): 52–55. doi: 10.3969/j.issn.1000-7393.2013.05.015
[18] 黄海鸿,唐世忠,喻芬,等. 水泥石力学变形能力的影响因素实验分析[J]. 钻井液与完井液,2015,32(1):73–76. doi: 10.3969/j.issn.1001-5620.2015.01.019 HUANG Haihong, TANG Shizhong, YU Fen, et al. Experimental analysis of influencing factors on the mechanical deformation of set cement[J]. Drilling Fluid & Completion Fluid, 2015, 32(1): 73–76. doi: 10.3969/j.issn.1001-5620.2015.01.019
[19] 姚晓,葛荘,汪晓静,等. 加砂油井水泥石高温力学性能衰退机制研究进展[J]. 石油钻探技术,2018,46(1):17–23. YAO Xiao, GE Zhuang, WANG Xiaojing, et al. Research progress of degradation of mechanical properties of sand-containing cement in high temperature regimes[J]. Petroleum Drilling Techniques, 2018, 46(1): 17–23.
[20] 鄢锐,马疆,宋会光. 胶乳水泥浆防窜性能研究与应用[J]. 新疆石油天然气,2009,5(4):80–84. doi: 10.3969/j.issn.1673-2677.2009.04.020 YAN Rui, MA Jiang, SONG Huiguang. Research on later slurry’s antigas channeling effect and its application[J]. Xinjiang Oil & Gas, 2009, 5(4): 80–84. doi: 10.3969/j.issn.1673-2677.2009.04.020
[21] 陆沛青,桑来玉,谢少艾,等. 苯丙胶乳水泥浆防气窜效果与失重规律分析[J]. 石油钻探技术,2019,47(1):52–58. doi: 10.11911/syztjs.2018141 LU Peiqing, SANG Laiyu, XIE Shaoai, et al. Analysis of the anti-gas channeling effect and weight loss law of styrene-acrylic latex cement slurry[J]. Petroleum Drilling Techniques, 2019, 47(1): 52–58. doi: 10.11911/syztjs.2018141
[22] 华苏东,姚晓,诸华军,等. 纤维水泥浆体系防漏性能评价及作用机制[J]. 中国石油大学学报(自然科学版),2012,36(1):158–161. HUA Sudong, YAO Xiao, ZHU Huajun, et al. Anti-lost-circulation performance evaluation and function mechanism of fiber slurry system[J]. Journal of China University of Petroleum(Edition of Natural Science), 2012, 36(1): 158–161.
[23] 邹双,冯明慧,张天意,等. 多尺度纤维韧性水泥浆体系研究与应用[J]. 石油钻探技术,2020,48(6):40–46. doi: 10.11911/syztjs.2020084 ZOU Shuang, FENG Minghui, ZHANG Tianyi, et al. Research and application of tough cement slurry systems with multi-scale fiber[J]. Petroleum Drilling Techniques, 2020, 48(6): 40–46. doi: 10.11911/syztjs.2020084
[24] 杨启贞. 在水平井、大位移井中选用合适的套管扶正器[J]. 石油钻采工艺,2000,22(4):37–39. doi: 10.3969/j.issn.1000-7393.2000.04.011 YANG Qizhen. Selection of suitable casing centralizers in horizontal and extended reach well[J]. Oil Drilling & Production Technology, 2000, 22(4): 37–39. doi: 10.3969/j.issn.1000-7393.2000.04.011
[25] 刘洋,陈敏,史芳芳,等. 水泥浆失重压力评价技术研究与应用[J]. 钻井液与完井液,2019,36(6):749–753. LIU Yang, CHEN Min, SHI Fangfang, et al. Study and application of a technology for evaluating pressure loss of cement plug[J]. Drilling Fluid & Completion Fluid, 2019, 36(6): 749–753.
[26] 郑忠茂,刘天恩,周宝义,等. 浮力作用对大斜度井套管居中度的影响[J]. 石油钻采工艺,2017,39(3):313–318. ZHENG Zhongmao, LIU Tianen, ZHOU Baoyi, et al. Effect of buoyance on casing central degree of high angle deviated well[J]. Oil Drilling & Production Technology, 2017, 39(3): 313–318.
-
期刊类型引用(10)
1. 隋成龙. 渤海油田某大斜度井保型取心技术难点及对策. 石油工业技术监督. 2023(05): 9-13 . 百度学术
2. 苏朝博. 基于构型界面控制的浅层优快钻井取心卡层方法. 石油钻采工艺. 2023(06): 661-667 . 百度学术
3. 韩成,罗鸣,刘忠宝,杨玉豪,邓文彪,周庆元. 莺琼盆地半潜式平台超高温高压钻井取心技术. 钻采工艺. 2021(04): 28-30 . 百度学术
4. 段绪林,卓云,张杰,熊鸿照,陈锦泉,张运迪. 高渗透易阻卡地层防卡旋转割心工艺——以威207井为例. 天然气勘探与开发. 2021(03): 68-72 . 百度学术
5. 李鑫淼,李宽,梁健,尹浩,王志刚,孙建华,张永勤. 复杂地层取心钻进堵心原因分析及其预防措施. 探矿工程(岩土钻掘工程). 2018(12): 12-15 . 百度学术
6. 和鹏飞,李振坤,刘杰,赵秋璇,冯晟,张彬奇. 渤中凹陷太古界潜山破碎地层取心技术. 石油钻采工艺. 2018(S1): 115-117+128 . 百度学术
7. 吴为. 伊朗Y油田取心作业堵心现象分析. 化工管理. 2017(26): 71-72 . 百度学术
8. 杨立文. 古巴Majaguillar稠油油藏大斜度井取心技术. 石油机械. 2017(09): 53-56 . 百度学术
9. 苏洋. 伊拉克格拉芙油田Mishrif储层长筒取心技术. 石油钻探技术. 2017(05): 30-35 . 本站查看
10. 梁海明,裴学良,赵波. 页岩地层取心技术研究及现场应用. 石油钻探技术. 2016(01): 39-43 . 本站查看
其他类型引用(2)