Optimization and Downhole Testing of Hydraulic Impact Tools
-
摘要:
现有水力冲击技术存在配套工具适应井况有限、性能不稳定和技术机理未进行试验验证等问题,为此,基于海上油田储层及工程特点,进行了水力冲击工具优化及井下试验。通过优化水力冲击工具尺寸、工具材质及抗压强度和改进冲击片关键部件等,形成了适合于海上油田的水力冲击工具。该工具在储层条件接近海上油田储层的长庆油田3口低产低效井进行了井下试验,共采集了6~20个脉冲波形,持续20~60 s,主要技术机理为水力脉冲作用;工具性能稳定,冲击片破裂压力精度高;该技术可显著增强注水井的增注效果,试验井注入能力大幅提升。水力冲击工具优化后,为其在海上油田大尺寸井筒条件下的应用提供了依据。
Abstract:The current hydraulic impact technologies face various problems such as poor adaptability of associated tools in limited well conditions with unstable performance, and the mechanism of the technologies remains untested or verified. Therefore, the hydraulic impact tools were optimized and tested downhole according to the reservoir and engineering characteristics of offshore oilfields. A hydraulic impact tool customized to offshore oilfields was developed by optimization of its size, material and compressive strength, and modification of the key components such as the impact plates. Downhole tests of the hydraulic impact tool were carried out in three wells with low productivity and efficiency in Changqing Oilfield, the formation condition of which was closed to that of offshore oilfields. In the tests, 6–20 pulse wave forms lasting 20–60 s were collected, the main mechanism of the technology was the hydraulic pulse. The test results demonstrated that the optimized tool achieved stable performance and the modified impact plates exhibited higher precision of fracturing pressure as well. These technology significantly enhanced the injectivity of the water injectors. The optimized hydraulic impact tool provides a basis for the application of the technology in offshore oilfields with large wellbores.
-
Keywords:
- hydraulic impact /
- tool /
- impact plate /
- increasing mechanism /
- pressure pulse
-
-
表 1 水力冲击井下试验井参数
Table 1 Downhole parameters for hydraulic impact test wells
序号 井号 作业井段/m 冲击片破裂压力/MPa 作业前情况 1 H25 1 079~1 081 25.0 补孔注水泥 2 B31 1 989~1 995 25.0 压力15.0 MPa,无法注水 3 Z44 1 788~1 794 30.0 压力22.3 MPa,排量60 L/min;压力25.4 MPa,排量90 L/min -
[1] 孙林,黄波,张杰,等. 过筛管爆燃压裂技术[J]. 特种油气藏,2021,28(3):162–167. doi: 10.3969/j.issn.1006-6535.2021.03.025 SUN Lin, HUANG Bo, ZHANG Jie, et al. Study on screen-through deflagration fracturing technology[J]. Special Oil & Gas Reservoirs, 2021, 28(3): 162–167. doi: 10.3969/j.issn.1006-6535.2021.03.025
[2] 孙林,杨万有,李旭光,等. 海上油田爆燃压裂技术研究与现场试验[J]. 石油钻探技术,2019,47(5):91–96. doi: 10.11911/syztjs.2019087 SUN Lin, YANG Wanyou, LI Xuguang, et al. Research and field test of deflagration fracturing technology in offshore oilfields[J]. Petroleum Drilling Techniques, 2019, 47(5): 91–96. doi: 10.11911/syztjs.2019087
[3] 孙林,李旭光,黄利平,等. 渤海油田注水井延效酸化技术研究与应用[J]. 石油钻探技术,2021,49(2):90–95. doi: 10.11911/syztjs.2021029 SUN Lin, LI Xuguang, HUANG Liping, et al. Research and application of prolonged-effect acidizing technology for water injection wells in the Bohai Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(2): 90–95. doi: 10.11911/syztjs.2021029
[4] 游林创. 水力冲击波发生器[J]. 石油钻采机械,1983,11(6):31–35. YOU Linchuang. Hydraulic shock wave generator[J]. China Petroleum Machinery, 1983, 11(6): 31–35.
[5] 赵荣生, 王玉才, 赵星辉, 等. 正水击化学解堵工艺技术研究与应用[J]. 石油钻采工艺, 1997, 19(增刊1): 125−128. ZHAO Rongsheng, WANG Yucai, ZHAO Xinghui, et al. Positive hydraulic impact chemical plugging remove technology research and application[J]. Oil Drilling & Production Technology, 1997, 19(supplement 1): 125−128.
[6] 李永康,张紫檀,张卫卫,等. 胜利油田长效扩张式分层注水技术[J]. 石油钻探技术,2020,48(4):100–105. doi: 10.11911/syztjs.2020092 LI Yongkang, ZHANG Zitan, ZHANG Weiwei, et al. Long-term expandable zonal water injection technology in the Shengli Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(4): 100–105. doi: 10.11911/syztjs.2020092
[7] 刘洪军. 水力冲击法解堵的研究及应用[J]. 石油钻采工艺,1999,21(5):100–103. doi: 10.13639/j.odpt.1999.05.025 LIU Hongjun. Research and application of plug removal with hydraulic impact method[J]. Oil Drilling & Production Technology, 1999, 21(5): 100–103. doi: 10.13639/j.odpt.1999.05.025
[8] 陈曙光. 连续冲击化学解堵管柱技术的研究与应用[J]. 石油机械,2011,39(2):72–74. doi: 10.16082/j.cnki.issn.1001-4578.2011.02.023 CHEN Shuguang. Chemical plugging remove with continuous impact pipes technology research and application[J]. China Petroleum Machinery, 2011, 39(2): 72–74. doi: 10.16082/j.cnki.issn.1001-4578.2011.02.023
[9] 李良. 水力冲击压裂及强负压解堵技术在曙光油田的应用[J]. 当代化工,2015,44(5):1101–1102. doi: 10.13840/j.cnki.cn21-1457/tq.2015.05.073 LI Liang. Application of hydraulic impact fracturing and high negative pressure blockage removal technology in Shuguang Oilfield[J]. Contemporary Chemical Industry, 2015, 44(5): 1101–1102. doi: 10.13840/j.cnki.cn21-1457/tq.2015.05.073
[10] 吴大康. 振动压裂复合酸化解堵增注技术在安塞油田的应用[J]. 长江大学学报(自科版),2007,4(2):47–49. doi: 10.16772/j.cnki.1673-1409.2007.02.017 WU Dakang. Application of acidizing technology for plugging removal and injection enhancement with vibration and fracturing in Ansai Oilfield[J]. Journal of Yangtze University(Natural Science Edition), 2007, 4(2): 47–49. doi: 10.16772/j.cnki.1673-1409.2007.02.017
[11] 张磊,孙林,李旭光,等. 海上油田脉冲水力冲击解堵工具设计[J]. 石油矿场机械,2021,50(3):23–27. doi: 10.3969/j.issn.1001-3482.2021.03.004 ZHANG Lei, SUN Lin, LI Xuguang, et al. Design of offshore oilfield pressure pulse plug removal tool[J]. Oil Field Equipment, 2021, 50(3): 23–27. doi: 10.3969/j.issn.1001-3482.2021.03.004
[12] 胡志强,杨进,黄小龙,等. 深水井套管环空泄压装置的研制与应用[J]. 石油钻探技术,2018,46(3):72–77. doi: 10.11911/syztjs.2018052 HU Zhiqiang, YANG Jin, HUANG Xiaolong, et al. Development and application of a casing annulus pressure relief device for better wellbore integrity in deepwater wells[J]. Petroleum Drilling Techniques, 2018, 46(3): 72–77. doi: 10.11911/syztjs.2018052
[13] 张冠林,徐星,赵聪,等. 国内外高温高压尾管悬挂器技术新进展[J]. 断块油气田,2020,27(1):113–116. doi: 10.6056/dkyqt202001023 ZHANG Guanlin, XU Xing, ZHAO Cong, et al. New development of high temperature and high pressure liner hanger technology in China and abroad[J]. Fault-Block Oil & Gas Field, 2020, 27(1): 113–116. doi: 10.6056/dkyqt202001023
[14] 刘书杰,吴怡,谢仁军,等. 深水深层井钻井关键技术发展与展望[J]. 石油钻采工艺,2021,43(2):139–145. doi: 10.13639/j.odpt.2021.02.002 LIU Shujie, WU Yi, XIE Renjun, et al. Development and prospect of the key technologies for the drilling of deep wells in deep water[J]. Oil Drilling & Production Technology, 2021, 43(2): 139–145. doi: 10.13639/j.odpt.2021.02.002
-
期刊类型引用(24)
1. 黄崇君,陈科旭,魏萧. 井下非均匀温度场对钻压测量影响研究. 石油机械. 2025(04): 24-31 . 百度学术
2. 王江帅,任茜钰,邓嵩,汪海阁,崔猛,徐守坤,徐明华,李军,殷文. 基于井筒-地层置换效应的页岩油钻井环空流体温度分布. 中国石油大学学报(自然科学版). 2024(03): 84-90 . 百度学术
3. 徐宝昌,张学智,王雅欣,刘伟,孟卓然. 用于两相流环空压力预测的自适应物理信息神经网络模型. 石油学报. 2023(03): 545-555 . 百度学术
4. 廖星奥,李军,杨宏伟,柳贡慧,刘伟,李牧,廖茂林. 井筒温压场下微型测量器运移模型及校正研究. 石油机械. 2023(06): 27-35 . 百度学术
5. 柳鹤,于国伟,于琛,郑锋,陈文博,王超,郑双进. 基于地面降温的井下钻井液冷却技术. 钻井液与完井液. 2023(06): 756-764 . 百度学术
6. 刘争,孙宝江,王志远,陈龙桥,王鄂川,陈立涛,王金堂. 海域天然气水合物降压开采压力控制及气液流动特性. 石油学报. 2022(08): 1173-1184 . 百度学术
7. 夏顺雷,李军,柳贡慧,杨宏伟,罗鸣,李文拓. 基于无迹卡尔曼滤波的井筒压力实时校正模型. 石油机械. 2022(09): 10-18 . 百度学术
8. 王江帅,付盼,胡旭辉,宫臣兴,邓嵩,唐政,殷文. 海洋双层管双梯度钻井井筒温度分布规律研究. 石油机械. 2022(12): 51-57 . 百度学术
9. 刘源泂,史晋铭,马国军,程小军. 基于CFD的钢渣风淬工艺参数分析与设计. 炼钢. 2021(04): 74-80 . 百度学术
10. 阮彪,黄鸿,徐新纽,甘仁忠,张伟,杨虎. 超高密度油基钻井液井筒循环温度场模型研究. 石油机械. 2021(11): 10-16 . 百度学术
11. 王江帅,李军,柳贡慧,杨宏伟,郝希宁,何玉发,周云健. 考虑温度和回压影响的控压钻井参数设计方法. 石油机械. 2021(12): 10-16 . 百度学术
12. 王江帅,李军,柳贡慧,陈安明,骆奎栋,黄涛,汪伟. 变压力梯度下钻井环空压力预测. 石油学报. 2020(04): 497-504 . 百度学术
13. 邢星,吴玉杰,张闯,荣光来,李阳洁. 超深水平井钻井水力参数优选. 断块油气田. 2020(03): 381-385 . 百度学术
14. 刘书杰,任美鹏,李军,张兴全,吴怡,杨宏伟. 我国海洋控压钻井技术适应性分析. 中国海上油气. 2020(05): 129-136 . 百度学术
15. 于喜伟,孟大伟,李琼. 正压型防爆电机吹扫过程多组分瞬态浓度场分析. 电机与控制学报. 2019(04): 49-55 . 百度学术
16. 杨宏伟,李军,柳贡慧,高旭,王江帅,骆奎栋. 多梯度钻井动态控制参数优化设计. 中国石油大学学报(自然科学版). 2019(03): 73-79 . 百度学术
17. 徐剑乔. 基于FLUENT的排水深隧入流竖井三维湍流仿真. 中国给水排水. 2019(21): 125-131 . 百度学术
18. 吴雪婷,邹韵,陆彦颖,赵增义,周城汉. 漏失循环条件下井筒温度预测与漏层位置判断. 石油钻探技术. 2019(06): 54-59 . 本站查看
19. 王江帅,李军,柳贡慧,杨宏伟,王超,宋学锋. 循环钻进过程中井筒温度场新模型. 断块油气田. 2018(02): 240-243 . 百度学术
20. 王克林,刘洪涛,程红伟,张雪松,王艳,周鹏遥. 存在岩屑床的水平环空钻井液紊流CFD模拟. 断块油气田. 2017(01): 116-119 . 百度学术
21. 王博,王东,靳锁宝,张华涛,马力. 苏里格南区气井速度管柱适用条件分析. 断块油气田. 2017(02): 264-268 . 百度学术
22. 罗金刚,何玲,王仁伟. 基于动网格的固液多相流灌装的数值模拟. 机械工程师. 2016(01): 21-22 . 百度学术
23. 赵向阳,孟英峰,侯绪田,杨顺辉,鲍洪志,李皋. 沥青质稠油与钻井液重力置换规律与控制技术. 石油钻采工艺. 2016(05): 622-627 . 百度学术
24. 孙小辉,孙宝江,王志远,王金堂. 超临界CO_2钻井井筒水合物形成区域预测. 石油钻探技术. 2015(06): 13-19 . 本站查看
其他类型引用(28)